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ABSTRACT

As autonomous vehicular technologies such as self-driving cars and uncrewed aircraft sys-
tems (UAS) evolve to become more accessible and cost-efficient, autonomous multi-agent
systems, that comprise of such entities, will become ubiquitous in the near future. The close
operational proximity between such autonomous agents will warrant the need for multi-agent
coordination to ensure safe operations. In this thesis, we adopt a formal methods-based ap-
proach to investigate multi-agent coordination for safety-critical autonomous multi-agent
systems. We explore algorithms that can be used for decentralized multi-agent coordina-
tion among autonomous mobile agents by communicating over asynchronous vehicle-to-
vehicle (V2V) networks that can be prone to agent failures. In particular, we study two
types of distributed algorithms that are useful for decentralized coordination — consen-
sus, which can be used by autonomous agents to agree on a set of compatible operations;
and knowledge propagation, which can be used to ensure sufficient situational awareness
in autonomous multi-agent systems. We develop the first machine-checked proof of even-
tual progress for the Synod consensus algorithm, that does not assume a unique leader. To
consider agent failures while reasoning about progress, we introduce a novel Failure-Aware
Actor Model (FAM). We then propose a formally verified Two-Phase Acknowledge Proto-
col (TAP) for knowledge propagation that can establish a safe state of knowledge suitable for
autonomous vehicular operations. The non-deterministic and dynamic operating conditions
of distributed algorithms deployed over asynchronous V2V networks make it challenging to
provide appropriate formal guarantees for the algorithms. To address this, we introduce prob-
abilistic correctness properties that can be developed by stochastically modeling the systems.
We present a formal proof library that can be used for reasoning about probabilistic prop-
erties of distributed algorithms deployed over V2V networks. We also propose a Dynamic
Data-Driven Applications Systems (DDDAS)-based approach for the runtime verification of
distributed algorithms. This approach uses parameterized proofs, which can be instantiated
at runtime, and progress envelopes, which can divide the operational state space into dis-
tinct regions where a proof of progress may or may not hold. To motivate our verification
of decentralized coordination, we introduce an autonomous air traffic management (ATM)
technique for multi-aircraft systems called Decentralized Admission Control (DAC).
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CHAPTER 1
INTRODUCTION

In the near future, autonomous vehicles such as self-driving cars and uncrewed aircraft sys-
tems (UAS) will be used for applications such as passenger transportation, package delivery,
disaster relief, agriculture surveillance, and weather tracking. Systems comprising of such
autonomous entities can be termed as autonomous multi-agent systems. As autonomous
vehicular technologies evolve to become more accessible and cost-efficient, such autonomous
multi-agent systems will become ubiquitous in urban and semi-urban areas. The close op-
erational proximity between such autonomous agents will warrant the need for multi-agent
coordination to ensure their safe and secure operations. In this thesis, we investigate multi-
agent coordination for future autonomous vehicular operations.

1.1 Autonomous Multi-Agent Coordination
Effective autonomous multi-agent coordination requires complex interactions between

the agents in the form of messages exchanged via a suitable communication network. There
are two primary ways in which autonomous agents can achieve coordination via communi-
cating with one another — centralized and decentralized (Fig. 1.1).

1.1.1 Centralized Coordination

In centralized coordination, there is a distinguished agent known as the coordinator
that can communicate with all other agents. The agents can only communicate with the
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(DASC), pp. 1-10 (2020). doi:10.1109/dasc50938.2020.9256620
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1



2

(a) (b)

Figure 1.1: Communication in (a) centralized vs (b) decentralized coordination.

coordinator and not directly among themselves. This model of coordination has poor fault-
tolerance – if the coordinator malfunctions or fails for some reason, then there can be no
coordination. It also creates an operational bottleneck since all messages have to be processed
via the coordinator, which prevents this model of coordination from scaling efficiently to
considerably large systems involving a large number of agents.

1.1.2 Decentralized Coordination

In decentralized coordination, there is no central coordinator and the agents can di-
rectly communicate with all other agents. If one agent fails, then the other agents may
still manage to coordinate successfully, making it more fault-tolerant and robust than the
centralized model. This type of coordination model also scales well to arbitrarily large sys-
tems as there is no operational bottleneck. However, guaranteeing successful coordination is
significantly more complex in the decentralized model than in the centralized model as there
is no central authority to act as an intermediary.

Autonomous vehicular systems are expected to be ubiquitous and involve an arbitrarily
large number of vehicles connected in an ad-hoc manner in the near future. Establishing
and maintaining dedicated fault-tolerant infrastructures to coordinate the safe operations
of such systems will be very expensive. In situations when such centralized infrastructures
have failed or are unavailable, the autonomous agents must be capable of coordinating in
a decentralized manner to ensure safe operations. Therefore, in this thesis, we study the
decentralized model of multi-agent coordination that can be used by autonomous multi-
vehicular systems in situations when centralized infrastructures are not available.
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1.2 Formal Methods
Autonomous vehicular systems are safety-critical in nature, i.e., their failure or mal-

function can be catastrophic. In engineering, imprecision can lead to errors, thereby pre-
senting an incentive for using precise mathematical techniques for specifying and reasoning
about the properties of critical systems. Formal methods bring forward rigorous mathemat-
ical techniques to reason about the critical properties of hardware and software systems.
Mathematical logic provides a natural framework for precisely constructing and expressing
various concepts in computing and lends itself well to formalization [123]. Formal verification
of safety-critical systems requires tools and techniques for mechanically checking proofs of
correctness guarantees. There are two main uses of formal methods in system development:

• Specification - the process of describing a system and its required properties using a
formal language with mathematically defined syntax and semantics.

• Verification - the process of determining if the specified system satisfies the required
properties using theorem proving and/or model Checking.

1.2.1 Theorem Proving

Theorem proving entails creating a set of statements S that reflects the specification
of a system and a set of formulae F that represents the required correctness properties as
constraints on states. The theorem proving technique allows models with possibly infinitely
large state spaces as there is no need to exhaustively explore all the reachable states for a
given model. Rather, a set of logical inference rules is used to construct proofs that can
mathematically establish that S entails F . Infinite state spaces are usually modeled by
using universal quantification (denoted by the ∀ symbol) which implies that a property can
be satisfied by all possible members of a domain. Theorem proving allows us to reason
about constraints on states in addition to individual state instances. Proof assistants and
automated theorem provers like Athena [7], Temporal Logic of Actions (TLA) Proof Sys-
tem (TLAPS) [33], PVS [132], and Coq [35] can automatically search for and check proofs
in defined domains.
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1.2.2 Model Checking

In model checking [36], an abstract model M of a system is first constructed in the form
of variations of finite-state automata, and a set of formulae F is constructed that specifies
the correctness properties. It is then established that M semantically entails F by exploring
the entire set of reachable states for M. If a property does not hold in all of the reachable
states, then at least one valid counter-example is produced and the property is said to be
false. Models can be designed for both software and hardware systems before the actual
systems are developed, but to successfully apply model checking, the models need to have
finite state spaces. The task of verification can be fully automated by using model checking
tools like Kind 2 [27], Alloy [90], and TLA+ Model Checker [167].

Compared to model checking, theorem proving is a more expressive approach for the
verification of properties since theorems are usually defined as logical constraints that hold
over infinite system states, which is in contrast to the finite set of states used in model
checking. Unlike model checking, theorem proving also enables reasoning about complex
data structures and recursive data types of arbitrary sizes, such as graphs, trees, and lists,
by using structural induction [7]. Moreover, model checking is limited by the state space
explosion problem which makes the verification of many real-world applications with large
state space dimensionality intractable.

Automated reasoning involves the use of computing systems to automatically make
logical inferences [73]. E.g., model checking can be used to automatically analyze the model
of a system to check if some properties are satisfied and automated theorem provers (ATP)
can be used to automatically search for proofs of properties from a set of logical statements.
Interactive theorem proving involves the development of formal machine verifiable proofs
manually in a theorem proving system and then mechanically verifying it. In this thesis, we
employ formal theorem proving techniques for the verification of decentralized coordination.

1.3 Problem Description
The road to the realization of safe and efficient decentralized multi-agent coordination

for autonomous vehicular systems is rife with several significant technical challenges. These
challenges include, but are not limited to — ensuring sufficient situational awareness among
the mobile agents by passing information through asynchronous vehicle-to-vehicle (V2V)
networks [160]; the unpredictable and dynamic operating conditions of distributed protocols
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operating in such networks; and the safety-critical nature of autonomous vehicular opera-
tions. We first discuss some of these challenges and then define our problem statement.

1.3.1 The Challenges Towards Decentralized Multi-Agent Coordination

1.3.1.1 Ensuring Effective and Correct Cooperation Among Agents

In autonomous vehicular systems, the agents are interdependent as the operations un-
dertaken by the individual agents are related. This is because the local decisions made by any
arbitrary agent in a system can significantly affect the collective safe operation of all agents
in the system. E.g., in the case of multi-aircraft systems, if the aircraft plan their operations
without considering the operations of other aircraft, then they may encounter catastrophic
mid-air collisions. For ensuring the safe operation of autonomous vehicular systems, cer-
tain safety constraints must be satisfied globally. This requires that the autonomous agents
cooperatively plan their collective operations instead of planning independent operations
in isolation. Therefore, the agents must share operational intents and coordinate with one
another by communicating through a communication medium like a V2V network.

1.3.1.2 Nature of Communication Between Mobile Agents

Mobile ad-hoc networks (MANET) are temporary communication networks that are
formed by wireless mobile nodes which can freely and dynamically self-organize into arbitrary
and temporary network topologies [34]. MANETs allow seamless internetworking in areas
where there is no centralized communication infrastructure available. This makes them useful
for decentralized communication in autonomous vehicular systems. MANETs comprised
of vehicular agents are known as vehicular ad-hoc networks (VANET) [74]. Real-world
communication networks are asynchronous, i.e., the message processing and transmission
delays are unbounded. Moreover, mobile agents, like aircraft, can experience temporary or
permanent disruptions (or failures) in their communication capabilities which may be caused
by them getting disconnected from the network. This makes it difficult to ensure correct and
timely coordination between mobile agents connected via asynchronous ad-hoc networks as
it is impossible to deterministically predict message transmission and processing delays, and
consequently detect agent communication failures.
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1.3.1.3 Unpredictable and Dynamic Operating Conditions

Owing to the ubiquitous nature of autonomous vehicular operations, the operating
conditions of agents in such systems cannot be deterministically modeled in advance. Some
examples of the dynamic factors that characterize the unpredictable operating conditions of
vehicular systems are – the varying topologies of ad-hoc networks, agent failures, the effect
of agent mobility patterns, the unbounded message transmission and processing delays, the
real-time operational intents of the agents, and emergency conditions that may arise during
operation (e.g. – aircraft can experience loss in engine performance during flight [135,137]).
Therefore, decentralized coordination algorithms used by multi-agent vehicular systems must
be robust enough to dynamically adapt to such uncertain operating conditions.

1.3.1.4 Verification of Safety-Critical Multi-Agent Coordination

Owing to the safety-critical nature of vehicular operations, the multi-agent coordina-
tion algorithms used in vehicular systems must be rigorously verified to ensure that they
operate with some strong correctness guarantees. E.g., for an algorithm that can be used to
transmit information between aircraft, a possible correctness guarantee may be that messages
are sent to the intended recipients. Formal methods can be used for the rigorous verifica-
tion of such correctness guarantees. However, agents in autonomous vehicular systems are
expected to operate in uncertain and dynamic operating environments, which makes it chal-
lenging to provide formal guarantees that are relevant after the deployment of the systems.
Guarantees that are developed in the pre-deployment stages may cease to be relevant if the
runtime operating conditions do not follow the assumptions used in the formal development
of the guarantees. Therefore, it is necessary to investigate approaches that can aid in the for-
mal verification of multi-agent coordination algorithms deployed in the uncertain operating
environments presented by autonomous vehicular operations.

1.3.2 Problem Statement

The primary question we pose in this thesis is — “In the absence of a centralized coor-
dinator, how can a group of autonomous agents, that are connected through an asynchronous
communication network and are prone to failures, collaboratively coordinate to plan safe
operations in a provably correct manner?”
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1.4 Approach
In this thesis, we try to address some of the aforementioned challenges by taking

a formal methods-based approach to investigate decentralized multi-agent coordination in
autonomous vehicular systems. We study distributed algorithms that can be used for decen-
tralized coordination and verify that they follow some desirable correctness properties. In
addition to using existing tools and techniques, we propose novel approaches to aid in our
analysis of both deterministic and non-deterministic properties of distributed algorithms.

1.4.1 Decentralized Multi-Agent Coordination via Distributed Algorithms

In autonomous vehicular systems, each vehicle may have its own operational goals to
fulfill that may not necessarily be compatible with the operational goals of the other vehicles.
Therefore, to ensure safety in the absence of a centralized coordinator, the vehicles must
cooperate and collaborate by communicating with one another to plan a set of compatible
and safe operations.

Effective decentralized coordination involves several complex processes such as reach-
ing an agreement on the same data and establishing sufficient awareness about data in a
network. For achieving such decentralized coordination, autonomous vehicles can use dis-
tributed algorithms by communicating over the network. We study two main types of dis-
tributed algorithms that we believe are pertinent for achieving multi-agent coordination in
autonomous vehicular systems — consensus and knowledge propagation.

1.4.1.1 Consensus

Consensus, which requires a set of agents to reach an agreement on some value, is a
fundamental problem in distributed systems. E.g., in a group of agents trying to access a
shared resource, the agents must decide on the order in which to access the resource. Con-
sensus algorithms typically involve a group of agents voting on values to choose which value
should be agreed upon. Successful consensus implies that a sufficiently large subset of the
set of agents has reached an agreement on some value. Various types of consensus algo-
rithms such as Paxos [101], Synod [100], and Raft [131] have been proposed in the literature.
Consensus algorithms are widely used for applications such as distributed lock services [24],
cryptocurrency networks [168], smart power grids [165], and autonomous vehicles [150].
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1.4.1.2 Knowledge Propagation

Knowledge can be defined as the state of an agent being aware of some fact. Several
states of knowledge arise when analyzing the properties of knowledge relative to a group of
agents. E.g., if there are two agents Alice and Omar, and there is a fact that it is raining,
some possible states of knowledge are – both Alice and Omar know that it is raining; only
Alice knows that it is raining; and no one knows that it is raining. Knowledge propagation is
the process of propagating a fact within a network of agents in order to attain a desired state
of knowledge. A suitable knowledge propagation algorithm for an application must establish
an appropriate application-specific state of knowledge upon completion.

We study distributed consensus and knowledge propagation algorithms for autonomous
vehicular systems deployed using VANETs to guarantee two types of correctness properties
that are necessary for safety-critical applications — (1) the algorithm will behave as in-
tended (called safety) and (2) the algorithm will achieve its intended goal (called progress).

1.4.1.3 The System Model

In our formal analysis of distributed consensus and knowledge propagation algorithms,
we make some common assumptions on the system properties. These assumptions are:

• the total number of agents in the network is arbitrary but constant,

• agents are non-Byzantine and non-adversarial, can temporarily or permanently fail,
and have stable storage that can tolerate failures,

• message transmission and message processing delays are arbitrary, and

• messages cannot be lost.

While proving the correctness properties of the individual distributed algorithms that
we study, we make additional assumptions beyond the common system model as necessary.

1.4.2 Formal Verification of Distributed Coordination Algorithms

We investigate the formal verification of distributed coordination algorithms deployed
over ad-hoc networks by employing machine verifiable theorem proving techniques.
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1.4.2.1 Reasoning About Asynchronous Communication

Mobile agents connected through ad-hoc networks like VANETs may experience per-
manent or temporary communication failures that may render them unable to send or receive
any messages. This may be caused by all messages to and from an agent getting delayed
because of transmission problems or due to internal processing failures in the agent. In asyn-
chronous communication, since message transmission and processing delays are unbounded,
it is not possible to distinguish transmission delays from processing delays or failures. How-
ever, when reasoning about distributed algorithms, it is necessary to take into account if an
agent has failed at any given time, i.e., if it is incapable of sending or receiving messages.

The actor model [1, 85] is a theoretical model of concurrent computation that can be
used for formal reasoning about distributed algorithms. It assumes some fairness guarantees
that are useful for reasoning about the progress of distributed systems and assumes asyn-
chronous communication to be the most primitive form of interaction between actors. The
actor model is suitable for reasoning about the properties of algorithms operating in open
distributed systems as it allows the creation of new actors, replacement of existing compo-
nents, and dynamic changes in component interactions. Agha, Mason, Smith, and Talcott
presented an actor language (AMST) [3], which provides a suitable foundation for reasoning
about the properties of actor systems, as an extension of a simple functional language. How-
ever, AMST does not support reasoning about actor failures. Therefore, we propose a novel
Failure-Aware Actor Model (FAM) that can be used to formally reason about temporary or
permanent failures in agents connected through ad-hoc networks.

1.4.2.2 Probabilistic Properties of Distributed Algorithms

The operating conditions of distributed coordination algorithms deployed over VANETs
are rife with uncertainties that cannot be predicted accurately in advance, making it difficult
to provide guarantees for deterministic correctness properties. E.g., it is not possible to
deterministically predict the amount of time that may be required to attain consensus in a
VANET as this depends on many dynamic factors such as the number of messages involved,
the message transmission and processing delays, and the mobility pattern of the agents.

When deterministic properties cannot be guaranteed, it is still beneficial to have some
properties that may not be completely accurate but can help the agents make important op-
erational decisions. E.g., a property may probabilistically bound the total time required for
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the progress of a distributed algorithm to some maximum value. Therefore, we investigate
mechanically verified guarantees of probabilistic correctness properties for distributed algo-
rithms deployed over VANETs. We stochastically model the different uncertain aspects of
the operating conditions, such as the message transmission and processing delays, to provide
guarantees of probabilistic properties. This enables the generation of useful formal properties
that are cognizant of the uncertainties of the operating environment.

1.4.2.3 Proof Library to Reason About Distributed Algorithms

Formal verification of high-level properties of distributed algorithms deployed over ad-
hoc networks involves holistic consideration of various domain-specific aspects. Formally
proving the correctness of a high-level property using an interactive proof assistant like
Athena requires access to formal constructs that are sufficiently expressive to correctly specify
such aspects. Developing such expressive formal constructs in a machine-readable language
is a challenging task since it requires — domain knowledge of all aspects of the systems that
need to be specified; knowledge of formal logic and reasoning techniques; and mastery in
the language in which the constructs are to be developed. Therefore, we present a formal
proof library in Athena to aid in the development of formal machine verifiable guarantees of
correctness for distributed algorithms deployed over VANETs.

1.4.2.4 Runtime Verification of Distributed Algorithms

The dynamic operating conditions of distributed coordination algorithms deployed over
ad-hoc networks make it challenging to provide formal guarantees that are relevant after
deployment. This is because formal proofs of correctness, that are developed in the pre-
deployment stages, may cease to be relevant at runtime if the operating conditions do not
conform to the assumptions made during reasoning. Since developing machine verifiable for-
mal proofs of complex properties takes a considerable amount of skill, expertise, and time,
it is not feasible to develop them from scratch at runtime to keep up with the dynamic oper-
ating conditions. This creates a need for methods that can enable the use of formal theorem
proving techniques to verify the properties of systems operating in dynamic conditions.

Dynamic Data-Driven Applications Systems (DDDAS) is a paradigm that allows an
application to dynamically incorporate new data to enhance an existing model of a sys-
tem [40]. DDDAS enables an application to influence the data collection and measurement
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processes in real-time and give way to more effective collection and measurement of data,
thus leading to a better quality of data specifically suited for the application. Using the
DDDAS paradigm, we propose a set of novel techniques — a formal DDDAS feedback loop,
parameterized proofs, and progress envelopes — that can be used to extend the practicality
of formal theorem proving methods to the pre-deployment stages. Our proposed techniques
allow the instantiation of appropriate pre-developed formal proofs at runtime using real-time
data, thereby allowing the generation of new formal properties at runtime that retain the
mathematical rigor of formal theorem proving methods.

1.5 Multi-Agent Coordination in Aerospace Systems
Urban air mobility (UAM) [156] is an emerging concept that focuses on the safe and

efficient air traffic operations in metropolitan areas for crewed and uncrewed aircraft systems.
One of the most important considerations for UAM is the safe integration of UAS in the
National Airspace System (NAS) to ensure that UAS operations in the NAS do not cause
any harm to life, property, or the environment. Potential UAM operations for commercial
passenger transportation have been put forth by several private companies. Government
agencies such as the Federal Aviation Administration (FAA) and the National Aeronautics
and Space Administration (NASA) have also been involved in the research and development
of prospective UAM operations in the NAS [58, 156]. Nevertheless, successful realization
of UAM operations is presently constrained by many factors such as designing suitable
air traffic management (ATM) techniques, safety-critical concerns, and the development of
proper infrastructure to support the high-density air traffic of the future. For this reason,
programs such as the Next Generation Air Transportation System (NextGen) and the Single
European Sky Air Traffic Management Research (SESAR) are being developed in the United
States and Europe respectively [43].

1.5.1 Autonomous Air Traffic Management (ATM)

Air traffic management encompasses all systems and techniques that are used to ensure
the safe operation of aircraft within an airspace by maintaining safe separation between the
aircraft. The loss of safe separation between aircraft can have catastrophic consequences like
near mid-air collisions (NMAC) [66] and wake-vortex induced rolls [113]. Currently, air traf-
fic control (ATC) is performed by human air traffic controllers and is complemented by tacti-
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cal conflict-management tools, such as the Traffic Collision Avoidance System (TCAS) [57],
that help minimize the risk of NMACs at high-altitude flight levels. This centralized, human-
operated system of ATC is prone to human errors and its efficiency is affected by the cogni-
tive workload of the air traffic controllers. In fact, several fatal accidents, such as in 2002 at
Überlingen [23], have resulted, in part, due to errors made by human air traffic controllers.
This creates an incentive for designing algorithms and standards that can enable aircraft to
autonomously coordinate in a decentralized manner. Such autonomous operations are free
from human errors and are amenable to formal verification, making them suitable for UAS
traffic management (UTM) in safety-critical UAM operations.

1.5.2 The Internet of Planes (IoP)

IoP

Figure 1.2: The Internet of Planes.

Aircraft participating in autonomous ATM operations must be capable of communi-
cating with each other to exchange air traffic information. For this reason, we envision an
Internet of Planes (IoP), which is a V2V network of aircraft, ground stations, and satellites
that can be used by autonomous aircraft to share important air traffic data. Similar air-
borne networks have been proposed previously in the literature for communication between
aerospace systems (e.g. – Airborne Internet [88, 116], Space Internet [17], and Ad-Hoc UAS
and Ground Network (AUGNet) [61]). In this work, we assume that the IoP is an asyn-
chronous ad-hoc network where message transmission and processing delays are unbounded,
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communication is affected by factors such as the mobility of aircraft, and the aircraft can
experience temporary or permanent communication failures.

1.5.3 Decentralized Admission Control (DAC)

We propose a technique called Decentralized Admission Control (DAC) that can be used
by aircraft to collaboratively plan operations through a common four-dimensional airspace.

Candidates

Airspace

Owners

Figure 1.3: Aircraft trying to enter a controlled airspace using DAC.

DAC is an autonomous separation assurance [51] approach that allows aircraft to col-
laboratively plan safe operations through well-defined four-dimensional airspaces in a com-
pletely decentralized manner. In DAC, a four-dimensional airspace has a set of owner aircraft
which already have the authorization to carry out a predefined set of flight plans through the
airspace. The set of flight plans of the owners is safe, i.e., there is no possibility of NMACs
between any subset of the flight plans in the set. One or more candidate aircraft can then use
the knowledge of this safe set to compute a conflict-free flight plan that is compatible with
the flight plans of the owners (Fig. 1.3). A candidate can then propose its conflict-free flight
plan to the owners and request authorization to use the airspace. When a new candidate
aircraft is authorized to use the airspace, the set of owners of the airspace changes to include
the new aircraft. To ensure safe operations, all future candidates must use the new set of
owners to compute their respective conflict-free proposals.
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1.5.4 Multi-Aircraft Coordination in DAC

In DAC, participating aircraft must coordinate in a decentralized manner to plan safe
operations through a common four-dimensional airspace. Decentralized coordination in DAC
involves the following consecutive phases, in order:

• The consensus phase:

As there may be multiple candidates concurrently competing for admission into an
airspace, the owners can only admit the candidates sequentially. This is because the
competing candidates do not consider each other in their proposals — in fact, a can-
didate may not even be aware of other candidates. Thus, admitting one candidate
potentially invalidates the proposals of all other candidates. For this reason, the own-
ers must use a distributed consensus algorithm in the first stage to ensure that only a
single candidate’s proposal is chosen at a time.

• The knowledge propagation phase:

After a candidate is authorized, the set of owners changes to include the new candi-
date. Hence, after successful consensus on a single candidate, all members of the new
set of owners (that includes the newly admitted candidate) must be informed about the
agreement. In fact, to ensure that the aircraft can operate in a decentralized manner
with a sense of “safety”, an appropriate safe state of knowledge about the agreement
is required with respect to the new set of owners. However, successful consensus in the
first phase only guarantees that a non-empty subset of the set of owners, which partic-
ipated in consensus, will learn about the agreement (Fig. 1.4). Therefore, a knowledge
propagation algorithm is required in the second phase to sufficiently propagate the
knowledge of consensus to the new set of owners for attaining the safe state.

Since DAC is completely autonomous, it is free from human errors and is amenable
to formal verification, making it suitable for safety-critical UAM operations. DAC is also
conceptually similar to the UTM Concept of Operations (UTM ConOps) [58] approach that
involves UAS Service Suppliers (USS) and a USS Discovery Service (UDS). In the UTM
ConOps, there are multiple USS, each of which is responsible for managing the operations
of a single set of aircraft. There is a single UDS that maintains the information of a set
of operations that have already been authorized. A USS uses the UDS of a particular
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Admitted
Candidate
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Admitted
Candidate

(b)

Figure 1.4: Representation of the state of knowledge guaranteed by
(a) consensus and (b) knowledge propagation for DAC (green
represents that the agent will learn a fact upon completion while
red represents that the agent may not learn the fact upon
completion).

operational area like a lookup table to learn about the authorized operations of other USS
in the area in order to propose new conflict-free operations. In DAC, the set of owners and
their flight plans, that is maintained and updated collaboratively by the aircraft, acts as the
lookup table or the UDS, while each aircraft acts as its own unique USS.

In the rest of the thesis, we will use DAC to motivate our formal analysis of decentral-
ized coordination algorithms for safety-critical autonomous multi-agent systems.

1.6 Thesis Contributions
The specific contributions of this thesis are:

1. Verification of Distributed Algorithms for Decentralized Coordination

(a) The first machine-checked proof of eventual progress in the Synod consensus pro-
tocol under completely asynchronous conditions [136].

(b) A formally-verified Two-Phase Acknowledge Protocol (TAP) for attaining a safe
state of knowledge suitable for decentralized multi-aircraft coordination [140].

2. Formal Methods for Distributed Systems

(a) A Failure-Aware Actor Model that can be used for formal reasoning about tem-
porary or permanent agent failures in VANETs [136].
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(b) Formal guarantees of probabilistic properties of timely progress for distributed
algorithms deployed over VANETs [141].

(c) A formal proof library in Athena that is tailored towards reasoning about proba-
bilistic properties of distributed algorithms deployed over VANETs [141].

(d) A data-driven approach for the runtime verification of dynamic distributed ap-
plications using a formal DDDAS feedback loop, progress envelopes, and param-
eterized proofs [138].

3. A formally-verified algorithm that can be used by candidates in DAC to compute
conflict-free flight plans with respect to a set of owners [139].

1.7 Related Work
In this section, we provide a global view of related work in the literature on the ver-

ification of distributed systems and stochastic systems. Interested readers are suggested to
refer to the "Related Work" section of the different chapters of the thesis for a more detailed
analysis of relevant prior work.

1.7.1 Formal Verification of Distributed Systems

Küfner et al. [96] provided a methodology to develop machine-checkable proofs of fault-
tolerant round-based distributed systems. Schiper et al. [152] have formally verified the safety
property of a totally ordered broadcast algorithm using EventML [18] and the NuPRL [129]
proof assistant. Howard et al. [86] have presented Flexible Paxos by introducing flexible
quorums for the Paxos consensus protocol and have model checked its safety property using
the TLA+ model checker. McMillan et al. [115] machine-checked and verified the proofs of
safety and progress properties of Stoppable Paxos [114] using Ivy [134]. Dragoi et al. [47]
introduced PSync, a language that allows writing, execution, and verification of high-level
implementations of fault-tolerant distributed systems. Hawblitzel et al. [82, 83] introduced
IronFleet, a framework for designing provably correct distributed algorithms by embedding
TLA+ specifications in Dafny [108]. Chand et al. [28] have used TLAPS [33] to prove the
safety property of the Multi-Paxos consensus algorithm. Musser and Varela [127] presented a
formalization of the actor model in Athena and developed several important theorems about
the fundamental properties of actor systems.
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1.7.2 Verification of Dynamic and Stochastic Systems

Hasan [75] presented formalizations of statistical properties of discrete random variables
in the HOL Theorem Prover [67]. Hasan et al. have formalized properties of the standard
uniform random variable [76], discrete and continuous random variables [77, 79], tail distri-
bution bounds [78], and conditional probability [80]. Mhamdi et al. [120,121] have extended
Hasan et al.’s work by formalizing measure theory and the Lebesque integral in HOL. HOL
formalizations of the Poisson process, continuous chain Markov process, and M/M/1 queue
have been presented in [29]. Qasim [146] has used Mhamdi et al.’s work to formalize the
standard normal variable. Mitsch and Platzer [122] have presented ModelPlex, a runtime
validation tool that can monitor the runtime behavior of a distributed system against verified
properties. Pike et al. [142] presented Copilot, a language and compiler that can be used to
generate runtime monitors for real-time distributed systems.

1.8 Thesis Outline
The rest of the thesis is structured as follows: Chapter 2 presents our work on ver-

ification of the eventual progress property of Synod using the Failure-Aware Actor Model;
Chapter 3 presents TAP, our distributed knowledge propagation protocol for DAC; Chap-
ter 4 presents our approach for developing probabilistic properties for distributed algorithms
deployed in uncertain operating environments and our Athena proof library for machine-
checking such properties; Chapter 5 presents our approach for the runtime verification of
distributed algorithms using real-time observations about dynamic operating conditions;
Chapter 6 presents a conflict-aware flight planning algorithm for DAC that can be used by
the candidates to compute conflict-free proposals; and Chapter 7 concludes the thesis with
a discussion on our work and presents potential future directions of work.



CHAPTER 2
PROGRESS IN THE SYNOD CONSENSUS PROTOCOL

2.1 Chapter Introduction
Consensus, which requires a set of agents to reach an agreement on some value, is

a fundamental problem in distributed systems. In autonomous vehicular applications like
Decentralized Admission Control, where there is no centralized coordinator to manage safe
operations, the agents must use distributed consensus protocols for coordination. Any con-
sensus protocol used for safety-critical applications such as DAC must satisfy two important
correctness properties — safety, which implies that only one value will be agreed upon, and
progress, which implies that an agreement will happen.

In [100], Lamport described three variants of a consensus protocol that strongly guar-
antees the safety property that only one value will be chosen:

• The Basic Synod protocol or Synod guarantees safety if one or more agents are allowed
to initiate new proposals for consensus.

• The Complete Synod protocol or Paxos is a variant of Synod in which only a distin-
guished agent (leader) is allowed to initiate proposals [101]. Other agents may only
introduce values through the leader. This is done to guarantee the progress property
that consensus will eventually be achieved.

• The Multi-Decree protocol or Multi-Paxos allows multiple values to be chosen using a
separate instance of Paxos for each value, but using the same leader for each of those
instances.

Both Paxos and Multi-Paxos use Synod as the underlying consensus protocol. However, a
progress guarantee contingent upon a unique leader has several drawbacks from the per-
spective of DAC. First, leader election itself is a consensus problem. Therefore, a progress
guarantee that relies on successful leader election as a precondition would be circular, and
therefore fallacious. Second, the Fischer, Lynch, and Paterson impossibility result (FLP) [60]
implies that unique leadership cannot be guaranteed in asynchronous systems where agents

Portions of this chapter previously appeared as: Paul, S., Agha, G.A., Patterson, S., Varela, C.A.:
Verification of eventual consensus in Synod using a Failure-Aware Actor Model. In: NASA Formal Methods
Symposium (NFM), pp. 249-267 (2021). doi:10.1007/978-3-030-76384-8_16
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may unpredictably fail. In some cases, network partitioning may also erroneously cause mul-
tiple leaders to be elected [6]. Third, airborne networks like the IoP are expected to be highly
dynamic where membership frequently changes. Consensus is used in DAC for agreeing on
only a single candidate, after which the set of owners changes by design. Hence, the benefits
of electing a stable leader that apply for state machine replication [93], where reconfiguration
is expected to be infrequent [105], are not applicable to DAC. Finally, channeling proposals
through a unique leader creates a communication bottleneck and introduces the leader as a
single point of failure: there can be no progress if the specified leader fails. In the absence
of a unique leader, a system implementing Paxos falls back to the more general Synod pro-
tocol. Therefore, in this chapter, we focus on identifying sufficient conditions under which
the fundamental Synod protocol can make eventual progress.

The actor model [1, 85] is a theoretical model of concurrent computation that can
be used for formally reasoning about the properties of distributed algorithms. It assumes
asynchronous communication as the most primitive form of interaction and it also assumes
fairness, which is useful for reasoning about the progress of actor systems. In the context of
DAC, aircraft may experience temporary or permanent communication failures where they
are unable to send or receive any messages. This may be caused by all messages to and from
an aircraft getting delayed because of transmission problems or due to internal processing
delays (or processing failures) in the aircraft. In asynchronous communication, since message
delays are unbounded, it is not possible to distinguish transmission delays from processing
delays or failures. However, our verification of eventual progress in Synod must consider the
possibility of such communication failures in actors.

In this chapter, we first identify a set of sufficient asynchronous conditions under which
it is possible to guarantee eventual progress in Synod without restricting proposal rights to
a distinguished agent (or leader). Then, to support explicit reasoning about temporary
or permanent failures in actors, we introduce a Failure-Aware Actor Model that assumes
predicate fairness [147] in addition to the actor model’s fairness properties. Predicate fairness
states that if a predicate is infinitely often enabled in a given path, then it must be eventually
satisfied. To model failures, FAM incorporates modified semantics of Varela’s dialect [158]
of Agha, Mason, Smith, and Talcott’s actor language AMST [3]. Finally, we use FAM to
model Synod and its progress properties and develop a formal proof of eventual progress
in Synod under the identified set of conditions. Furthermore, in order to ensure that our
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formalization is correct, we machine-check our proof using the Athena proof assistant. At
the time of publication, this is the first machine-checked proof of progress for the Synod
consensus protocol, under completely asynchronous conditions, in the literature.

The rest of the chapter is structured as follows: Section 2.2 informally describes Synod
and presents our set of conditions for eventual progress; Section 2.3 introduces FAM and
discusses some interesting properties of FAM; Section 2.4 presents the formal verification
of eventual progress in Synod using FAM; Section 2.5 discusses prior research related to
our study of consensus and the actor model; and Section 2.6 concludes the chapter with a
summary and presents some potential future directions of work.

2.2 The Synod Protocol
For Synod, we assume an asynchronous, non-Byzantine system model in which agents

can fail and have stable storage that can tolerate failures. Messages can be duplicated, and
have arbitrary transmission times, but cannot be corrupted. We also assume that messages
cannot be lost. The protocol consists of two logically separate sets of agents:

• Proposers - The set of agents that can propose values to be chosen.

• Acceptors - The set of agents that can vote on which value should be chosen.

Synod requires a subset of acceptors, which satisfy a quorum, to proceed. To ensure a
unique agreement, if there is a consensus in one quorum, then there cannot also be another
quorum with a different consensus. For this reason, the safety property of Synod requires
that any two quorums must intersect1. A simple example of a quorum is a subset of the
set of all acceptors which constitutes a simple majority. [86] presents other methods for
determining quorums, including flexible quorums, but in this paper, we only consider fixed
quorums. Additionally, we assume that the set of agents participating in an instance of the
protocol does not change with time.

There are four types of messages in Synod:

• prepare (1a) messages include a proposal number.

• accept (2a) messages include a proposal number and a value.
1This condition is only required for proving safety and is not required for proving progress independently.
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• promise (1b) messages include a proposal number and a value.

• voted (2b) messages include a proposal number and a value.

For each proposer, the algorithm proceeds in two distinct phases [101]:

• Phase 1

(a) A proposer P selects a unique proposal number b and sends a prepare request with
b to a subset Q of acceptors, where Q constitutes a quorum.

(b) When an acceptor A receives a prepare request with the proposal number b, it
checks if b is greater than the proposal numbers of all prepare requests to which
A has already responded. If this condition is satisfied, then A responds to P

with a promise message. The promise message implies that A will not accept any
other proposal with a proposal number less than b. The promise includes (i) the
highest-numbered proposal b′ that A has previously accepted and (ii) the value
corresponding to b′. If A has not accepted any proposals, it simply sends a default
value.

• Phase 2

(a) If P receives a promise message in response to its prepare requests from all mem-
bers of Q, then P sends an accept request to all members of Q. These accept
messages contain the proposal number b and a value v, where v is the value of
the highest-numbered proposal among the responses or an arbitrary value if all
responses reported the default value.

(b) If an acceptor A receives an accept request with a proposal number b and a value
v from P , it accepts the proposal unless it has already responded to a prepare
request having a number greater than b. If A accepts the proposal, it sends P a
voted message which includes b and v [100].

A proposer determines that a proposal was successfully chosen if and only if it receives voted
messages from a quorum for that proposal.

A proposer may initiate multiple proposals in Synod, but each proposal that is initiated
in Synod must have a unique proposal number.
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2.2.1 Safety in Synod

Safety in Synod implies that only one value will be agreed upon by the acceptors. Synod
allows multiple proposals to be chosen. Safety is ensured by the invariant - "If a proposal
with value v is chosen, then every higher numbered-proposal that is chosen has value v" [101].
Therefore, there may be situations where a proposer P proposes a proposal number after one
or more lower-numbered proposals have already been chosen, resulting in some value v being
agreed upon. By design, Synod will ensure that P proposes the same value v in its Phase 2.
Since proposers can initiate proposals in any order and communication is asynchronous, the
only fact that can be guaranteed about any chosen value is that it must have been proposed
by the first proposal to have been chosen by any quorum. From the context of admission
control, it implies that if a candidate P2 successfully completes both phases after another
candidate P1 has completed both phases, then P2 will simply learn that P1 has been granted
admission. So P2 will update its set of owners to include P1, create a new conflict-aware
flight plan, and request admission by starting the Synod protocol again.

2.2.2 Progress in Synod

Progress in Synod implies that eventually, some value will be agreed upon. Some
obvious scenarios in which progress may be affected in Synod are:

• Two proposers P1 and P2 may complete Phase 1 with proposal numbers b1 and b2 such
that b2 > b1. This will cause P1 to fail Phase 2. P1 may then propose a fresh proposal
number b3 > b2 and complete Phase 1 before P2 completes its Phase 2. This will cause
P2 to fail Phase 2 and propose a fresh proposal number b4 > b3 . This process may
repeat infinitely [101] (livelock).

• Progress may be affected even if one random agent fails unpredictably [60].

Paxos assumes that a distinguished proposer (leader) is elected as the only proposer
that can initiate proposals [100]. Lamport states “If the distinguished proposer can commu-
nicate successfully with a majority of acceptors, and if it uses a proposal with number greater
than any already used, then it will succeed in issuing a proposal that is accepted.” [101].
The FLP impossibility result [60] implies that in purely asynchronous systems, where agent
failures cannot be differentiated from message delays, leader election cannot be guaranteed.
Moreover, it is possible that due to network partitioning, multiple proposers are elected
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as leaders [6]. In the absence of a unique leader, a system implementing Paxos falls back
to Synod. Therefore, it is important to identify the fundamental conditions under which
progress can be formally guaranteed in Synod in the absence of a unique leader.

To guarantee progress, it suffices to show that some proposal number b will be chosen.
This will happen if b satisfies the following conditions:

P1 When an acceptor A receives a prepare message with b, b should be greater than all
other proposal numbers that A has previously seen.

P2 When an acceptor A receives an accept message with b, b should be greater than or
equal to all other proposal numbers that A has previously seen.

P1 and P2 simply suggest that for b, there will be a long enough period without prepare
or accept messages with a proposal number greater than b, allowing messages correspond-
ing to b to get successfully processed without being interrupted by messages corresponding
to any higher-numbered proposal.

Since progress cannot be guaranteed if too many agents permanently fail or if too many
messages are lost, Lamport [104] presents some conditions for informally proving progress in
Paxos. A nonfaulty agent is defined as “an agent that eventually performs the actions that it
should”, and a good set is defined as a set of nonfaulty agents, such that, if an agent repeatedly
sends a message to another agent in the set, it is eventually received by the recipient. It is
then assumed that the unique leader and a quorum of acceptors form a good set and that
they infinitely repeat all messages that they have sent. These conditions are quite strong
since they depend on the future behavior of a subset of agents and may not always be true
of an implementation. However, since they have been deemed reasonable for informally
proving progress even in the presence of a unique leader, we partially incorporate them in
our conditions under which progress in Synod can be formally guaranteed in the absence
of a unique leader. Our complete conditions for guaranteeing progress in Synod, therefore,
informally state that “eventually, a nonfaulty proposer must propose a proposal number, that
will satisfy P1 and P2, to a quorum of nonfaulty acceptors, and the Synod-specific messages
between these agents must be eventually received”.

We can see that the conditions for eventual progress in Paxos constitute a special case of
our conditions for progress in Synod where P1 and P2 are satisfied by a proposal proposed by
the unique leader. If the unique leader permanently fails, then the corresponding guarantee
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is only useful if leader re-election is successful. However, if leader election is assumed to
have already succeeded, there will be no need for further consensus, rendering the guarantee
moot. Synod’s eventual progress guarantee remains useful as long as at least one proposer
is available to possibly propose at least one successful proposal, thereby remaining pertinent
even if multiple (not all) proposers arbitrarily fail. Moreover, our conditions do not assume
that consensus (leader election) will have already succeeded.

It is important to note here that a guarantee of eventual progress only states that
eventually, consensus will be achieved. It does not provide any bound on the amount of time
that may be required for consensus. As air traffic data usually has a short useful lifetime
and aircraft have limited time to remain airborne, a guarantee of eventual progress alone is
insufficient for UAM applications. To be useful, a progress guarantee must provide some time
bounds that the aircraft can use to make important decisions. E.g., if there is a guarantee
that consensus will take at most 1 second, then a candidate can decide to only compute
flight plans that start after 1 second [138]. However, a guarantee of eventual progress is a
necessary precondition for providing a bound for the time that may be required for progress,
making our work important for time-critical applications like DAC.

2.3 The Failure-Aware Actor Model (FAM)
Actors are self-contained, concurrently interacting entities of a computing system that

communicate by message passing [2]. We use the actor model to formally reason about even-
tual consensus in Synod since it assumes asynchronous communication and fairness, which
is helpful for reasoning about progress in asynchronous airborne communication networks
like the Internet of Planes [3].

The IoP is an open network in which aircraft may experience permanent or temporary
communication failures that may render them unable to send or receive any messages. This
may be caused by all messages to and from an aircraft getting delayed because of transmission
problems or due to internal processing delays (or processing failures) in the aircraft. In
asynchronous communication, since message delays are unbounded, it is not possible to
distinguish transmission delays from processing delays or failures. However, it is important
to take into account if an actor has failed at any given time, i.e., if it is incapable of sending
or receiving messages. To consider such asynchronous actor failures while reasoning about
progress, we introduce our Failure-Aware Actor Model.



25

e →λ e
′

⟨⟨α, [R ▶ e ◀]a ∥ ᾱ ∥ µ⟩⟩ [fun:a]−→ ⟨⟨α, [R ▶ e′ ◀]a ∥ ᾱ ∥ µ⟩⟩

⟨⟨α, [R ▶ new(b) ◀]a ∥ ᾱ ∥ µ⟩⟩ [new:a,a′]−→ ⟨⟨α, [R ▶ a′ ◀]a, [ready(b)]a′ ∥ ᾱ ∥ µ
a′ fresh

⟩⟩

⟨⟨α, [R ▶ send(a′, v) ◀]a ∥ ᾱ ∥ µ⟩⟩ [snd:a]−→ ⟨⟨α, [R ▶ nil ◀]a ∥ ᾱ ∥ µ ⊎ {⟨a′ ⇐ v⟩}⟩⟩

⟨⟨α, [R ▶ ready(b) ◀]a ∥ ᾱ ∥ {⟨a ⇐ v⟩} ⊎ µ⟩⟩ [rcv:a,v]−→ ⟨⟨α, [b(v)]a ∥ ᾱ ∥ µ⟩⟩

Figure 2.1: Operational semantics for the base-level transition rules.

⟨⟨α, [e]a ∥ ᾱ ∥ µ⟩⟩ [stp:a]−→ ⟨⟨α|dom(α)−{a} ∥ ᾱ, [e]a ∥ µ⟩⟩

⟨⟨α ∥ ᾱ, [e]a ∥ µ⟩⟩ [bgn:a]−→ ⟨⟨α, [e]a ∥ ᾱ|dom(ᾱ)−{a} ∥ µ⟩⟩

Figure 2.2: Operational semantics for the meta-level transition rules.

FAM models two states for an actor at any given time—available or failed. Actors can
switch states as transitions between configurations. From the perspective of message trans-
mission and reception, a failed actor cannot send or receive any messages, but an available
actor can. This allows FAM to formally model communication failures between aircraft in
the IoP. The failure model of FAM also assumes that every actor has a stable storage that
is persistent across failures. In addition to the actor model’s fairness assumptions, FAM
assumes predicate fairness [147], which states that a predicate that is infinitely often enabled
in a given path will eventually be satisfied.

2.3.1 The Semantics of FAM

Varela [158] presents a dialect (AM) of AMST’s lambda-calculus-based actor language [3]
whose operational semantics are a set of labeled transitions from actor configurations to actor
configurations2. An actor configuration κ is a temporal snapshot of actor system compo-
nents, namely the individual actors and the messages “en route”. It is denoted by ⟨⟨α ∥ µ⟩⟩,
where α is a map from actor names to actor expressions, and µ is a multi-set of messages.
An actor expression e is either a value v or a reduction context R filled with a redex r, de-

2Interested readers can refer to section 4.5 of [158] for more details about the language.
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noted as e = R ▶ r ◀. κ1
l−→ κ2 denotes a transition rule where κ1, κ2, and l are the initial

configuration, the final configuration, and the transition label respectively. There are four
possible transitions – fun, new, snd, and rcv. A computation sequence is a finite sequence
of labelled transitions [κi

li−→ κi+1 | i < n] for some n ∈ N. Sequences are partially ordered
by the initial segment relation. A computation path from a configuration κ is a maximal
linearly ordered set of sequences in the computation tree, τ(κ).

To model failures, we modify Varela’s dialect of AMST and categorize its original
transitions (fun, new, snd, and rcv) as base-level transitions. For a base-level transition
in FAM to be enabled to occur for an actor in focus at any time, the actor needs to be
available at that time. To denote available and failed actors at a given time in FAM, we
redefine an actor configuration as ⟨⟨α ∥ ᾱ ∥ µ⟩⟩, where α is a map from actor names to
actor expressions for available actors, ᾱ is a map from actor names to actor expressions for
failed actors, and µ is a multi-set of messages “en route”.

To model actor failure and restart, we define two meta-level transitions stp (stop) and
bgn (begin) that can stop an available actor or start a failed actor in its persistent state
before failure. The stp transition is only enabled for an actor in the available state and the
bgn transition is only enabled for an actor in the failed state. Fig. 2.1 and Fig. 2.2 show the
operational semantics of our actor language as labelled transition rules3,4.

For an actor configuration κ = ⟨⟨α ∥ ᾱ ∥ µ⟩⟩ to be syntactically well-formed in our
actor language, it must conform to the following5:

1. ∀a, a ∈ dom(α) ∪ dom(ᾱ), fv(α(a)) ⊆ dom(α) ∪ dom(ᾱ)

2. ∀m, m ∈ µ, m = ⟨a ⇐ v⟩, fv(a) ∪ fv(v) ⊆ dom(α) ∪ dom(ᾱ)

3. dom(α) ∩ dom(ᾱ) = ∅

2.3.2 Fairness in FAM

FAM assumes a general fairness property called predicate fairness [147]. Predicate
fairness states that “if a predicate is infinitely often enabled in a given path, then eventually

3→λ denotes lambda calculus semantics, essentially beta-reduction. new, send, and ready are actor
redexes. ⟨a ⇐ v⟩ denotes a message for actor a with value v. α, [e]a denotes the extended map α′, which is
the same as α except that it maps a to e. ⊎ denotes multiset union. α|S denotes restriction of mapping α
to elements in set S. dom(α) is the domain of α.

4More details about actor language semantics can be found in [2], [3], and [158].
5fv(e) is the set of free variables in the expression e.
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the predicate must be true” (this is a recursive definition in that the path could begin from
any configuration along the path). To better illustrate predicate fairness, let us assume a
predicate ψ over actor configurations. At any configuration κ in a path, ψ is enabled if
and only if there exists a finite sequence [κi

li−→ κi+1 | i < n] such that if the sequence is
executed with κ0 = κ, then ψ(κn) will be true. Predicate fairness in FAM states that in a
fair computation path, if the predicate ψ is infinitely often enabled, i.e., infinitely often it is
the case that a finite sequence [κi

li−→ κi+1 | i < n | ψ(κn) = true] can potentially happen,
then eventually ψ(κ̄) will be true for some configuration κ̄. Now, any individual base-level
transition can be considered a finite sequence consisting of a single transition. Therefore,
predicate fairness entails the simpler fairness condition that “a base-level transition that is
infinitely often enabled will eventually happen”.

We use predicate fairness in FAM in order to argue that the non-interruption condition
described in Section 2.2.2, which is required for ensuring eventual consensus, can be guaran-
teed in a fair implementation. The condition follows from an assumption that the proposers
will keep retrying with higher-numbered proposals if they fail to get their proposals accepted.
If a nonfaulty proposer p is ready to propose some proposal number b at a configuration κ

such that all prior proposals were lower than b, then there is at least one possible finite
sequence [κi

li−→ κi+1 | i < n]P 1,P 2 (with κ0 = κ) that can cause the non-interruption condi-
tion to be true at κn, thereby enabling the condition. A witness for [κi

li−→ κi+1 | i < n]P 1,P 2

is the sequence in which all proposers except p stop permanently, preventing any higher
proposals in the future. Now, since proposal numbers are unique in Synod, if the nonfaulty
proposers keep retrying, then always, eventually some nonfaulty proposer will become ready
to propose the highest proposal number yet. This will cause our progress conditions to be in-
finitely often enabled in any path. Hence, by predicate fairness, our progress conditions will
eventually be true, allowing some proposal number to eventually get accepted by a quorum
of acceptors.

It should be noted that the fairness assumption of FAM applies only to the base-level
transitions and not to the meta-level transitions. This is because actor failures and restarts
in FAM can be arbitrary and it is not possible to control them programmatically in an
implementation.
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2.3.3 Some Interesting Properties of FAM

We present some interesting properties about the relationship of FAM to AM6.

Theorem 2.1 (FAM subsumes AM) Any valid computation path in AM is a valid path in
FAM.

Proof of Theorem 2.1 -
Let π = [κi

li−→ κi+1 | i < ∞] be a valid computation path in AM. Let F be a function from
configurations in AM to configurations in FAM as follows:

F(⟨⟨α ∥ µ⟩⟩) = ⟨⟨α ∥ ∅ ∥ µ⟩⟩
Then π′ = [F(κi)

li−→ F(κi+1) | i < ∞] is a valid path in FAM by induction on computation
sequences since fun, new, snd, and rcv in FAM are identical to AM transitions without
modifying ᾱ, the map for failed actors, which remains empty throughout π′.
□

Theorem 2.2 (AM can simulate finite paths in FAM) If all the stp and bgn transitions
are removed from a finite computation path in FAM, then the resulting path will correspond
to a valid path in AM.

Proof of Theorem 2.2 -
Let π = [κi

li−→ κi+1 | i < n] be a valid computation path in FAM. Let G be a function from
configurations in FAM to configurations in AM as follows:
G(⟨⟨α ∥ ᾱ ∥ µ⟩⟩) = ⟨⟨α ∪ ᾱ ∥ µ⟩⟩ = ⟨⟨α′ ∥ µ⟩⟩
Given π, we construct a finite path π′ in AM by removing all the stp and bgn transitions from
π. This is a valid path by structural induction on transitions. To show this, let κi

li−→ κi+1

be a transition in π and let κi
li−→ κi+1 = ⟨⟨αi ∥ ᾱi ∥ µi⟩⟩

li−→ ⟨⟨αi+1 ∥ ᾱi+1 ∥ µi+1⟩⟩.
Then there can be two cases:
Case 1: li is of the form [fun : a], [new : a, a′], [snd : a], and [rcv : a, v] in FAM. Then
there exists a transition l′j in π′ such that κ′

j

l′j−→ κ′
j+1 where κ′

j = G(κi), l′j = li, and

κ′
j+1 = G(κi+1) since ⟨⟨α′

j ∥ µ′
j⟩⟩

l′j−→ ⟨⟨α′
j+1 ∥ µ′

j+1⟩⟩ is valid in AM because—(i) a, the
actor in focus is in α′

j = αi ∪ ᾱi, since it is in αi; (ii) α′
j+1(a) = αi+1(a); and (iii) µ′

j+1 = µi+1.
Case 2: li is of the form [stp : a], [bgn : a] in FAM. Then we can remove the transition in

6The mechanical verification of these properties is beyond the scope of this work.
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π′ since G(κi) = G(κi+1) because α, [e]a ∪ ᾱ = α|dom(α)−{a}∪ ᾱ, [e]a for the stp transition
and α ∪ ᾱ, [e]a = α, [e]a ∪ ᾱ|dom(ᾱ)−{a} for the bgn transition.
□

Theorem 2.2 cannot be claimed for infinite paths in FAM. E.g., consider a path in
FAM in which an actor fails permanently. Then all future transitions that are enabled for
the actor will never happen. If the stp transition is removed from this path, then it will be
an unfair path in AM.

2.4 Formal Verification of Eventual Progress in Synod
This section presents our mechanically-verified proof of eventual progress in the Synod

protocol under the conditions described in Section 2.2.2. The behavior of the Synod agents
and all necessary assumptions have been formally expressed using FAM. The logical notations
used in this section have been introduced in Table 2.1 and Table 2.2.

Table 2.1: Set symbols used in our formal specification of Synod.

Symbol Description Symbol Description
A Set of all actors M Set of all messages
P Set of all proposer actors A Set of all acceptor actors
V Set of all values Q Set of all quorums
B Set of all proposal numbers M Set of all sets of messages
C Set of all actor configurations S Set of all transition steps
I Set of all finite computation sequences P Set of all predicates over C
T Set of all fair transition paths N Set of all natural numbers

A message is represented by a tuple ⟨s∈A, r∈A, k∈ξ, b∈B, v∈V⟩ where ξ = {1a, 1b, 2a,
2b}, s is the sender, r is the receiver, k is the type of message, b is a proposal number, and
v is a value. v̄ ∈ V is a null value constant used in 1a (prepare) messages.

The local state of an actor x can be extracted from a configuration κ as a tuple
⟨ηx

κ∈M, βx
κ∈B, vx

κ∈V⟩ where ηx
κ is the set of messages received but not yet responded to, βx

κ is
the highest proposal number seen by an acceptor, and vx

κ is the value corresponding to the
highest proposal number accepted by an acceptor.

Transition paths represent the dynamic changes to actor configurations as a result of
transition steps [127] and have been used to model computation paths. Indexed positions in
transition paths correspond to logical steps in time and are used to express eventuality. κT

i

represents the actor configuration at an indexed point i in a path T .
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Table 2.2: Relation symbols used in our formal specification of Synod.

Symbol Description Input Output
ς Get last configuration T C
ρ Get transition path up to index T × N T
⊺ Transition path constructor T × S T
σ Choose a value to propose based on configuration C × A V
s Construct a snd transition step A × M S
r Construct a rcv transition step A × M S
m Get set of messages “en route” C M
a Actor is in α C × A Bool
ℜ Actor is ready for a step T × A × S Bool
ϕ Proposer has promises from a quorum P × B × Q × C Bool
Φ Proposer has votes from a quorum P × B × Q × C Bool
đ Actor is nonfaulty A Bool
þ Proposal number satisfies P1 and P2 B Bool
Ł A proposer has learned of successful consensus P × B × C Bool
e A predicate is enabled at a configuration C × P Bool
λ A sequence happens at a configuration C × I Bool
φ Nonfaulty proposer ready to propose the highest

proposal number yet to nonfaulty quorum C × P × Q Bool
Some nonfaulty proposer is ready to propose

ψ a proposal number that will not be interrupted C Bool

P ⊂ A and A ⊂ A are the sets of proposers and acceptors respectively and a quorum
is a possibly equal non-empty subset of A, i.e., ∀Q ∈ Q : Q ⊆ A ∧ Q ̸= ∅.

2.4.1 Fairness Assumptions for Actor Transitions

We assume two fairness axioms for the snd and rcv transitions that follow from the
fairness assumptions of FAM. The F-Snd-axm and the F-Rcv-axm state that if a snd or rcv

transition is enabled at some time, it must either eventually happen or eventually, it must
become permanently disabled.

F-Snd -Axm ≡
∀x ∈ A,m ∈ M, T ∈ T , i ∈ N : (ℜ(ρ(T, i), x, s(x,m)) =⇒

((∃j ∈ N : (j ≥ i) ∧ ρ(T, j + 1) = ⊺(ρ(T, j), s(x,m)))
∨ (∃k ∈ N : (k > i) ∧ (∀j ∈ N : (j ≥ k) =⇒ ¬ℜ(ρ(T, j), x, s(x,m))))))

F-Rcv -Axm ≡
∀x ∈ A,m ∈ M, T ∈ T , i ∈ N :
((m ∈ m(ς(ρ(T, i))) ∧ ℜ(ρ(T, i), x, r(x,m))) =⇒
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((∃j ∈ N : (j ≥ i) ∧ ρ(T, j + 1) = ⊺(ρ(T, j), r(x,m)))
∨ (∃k ∈ N : (k > i) ∧ (∀j ∈ N : (j ≥ k) =⇒ ¬(m ∈ m(ς(ρ(T, j))) ∧ ℜ(ρ(T, j), x, r(x,m)))))))

2.4.2 Rules Specifying the Actions of Synod Actors

The Synod protocol is presented in [100] as a high-level abstraction of the behavior
of the agents while leaving out the implementation details to the discretion of the system
developers [131]. We specify rules over actor local states that dictate if an available Synod
actor should become ready to send a message. Since Synod does not specify when a proposer
should send a prepare message, we leave that behavior unspecified. For the proof of eventual
progress under the conditions identified in Section 2.2.2, we will assume that eventually, a
nonfaulty proposer will be ready to send prepare messages to a quorum of nonfaulty acceptors.

Snd -1b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B :
(⟨p, a, 1a, b, v̄⟩ ∈ ηa

ς(ρ(T,i)) ∧ βa
ς(ρ(T,i)) < b ∧ a(ς(ρ(T, i)), a)) =⇒ ℜ(ρ(T, i), a, s(a, ⟨a, p, 1b, b, va

ς(ρ(T,i))⟩))

Snd -2a-Rul ≡
∀p ∈ P, T ∈ T , i ∈ N, b ∈ B, Q ∈ Q :
(ϕ(p, b,Q, ς(ρ(T, i))) ∧ a(ς(ρ(T, i)), p)) =⇒ (∀a ∈ Q : ℜ(ρ(T, i), p, s(p, ⟨p, a, 2a, b, σ(ς(ρ(T, i)), p)⟩)))

Snd -2b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B, v ∈ V :
(⟨p, a, 2a, b, v⟩ ∈ ηa

ς(ρ(T,i)) ∧ βa
ς(ρ(T,i)) ≤ b ∧ a(ς(ρ(T, i)), a))) =⇒ ℜ(ρ(T, i), a, s(a, ⟨a, p, 2b, b, v⟩))

Since the response to a message in Synod is a finite set of actions, if there is a message
in the multi-set for a Synod actor and the actor is also available, then a receive transition is
enabled.

Rcv -Rul ≡
∀s, r ∈ A, T ∈ T , i ∈ N, k ∈ ξ, b ∈ B, v ∈ V :
(⟨s, r, k, b, v⟩ ∈ m(ς(ρ(T, i)) ∧ a(ς(ρ(T, i)), r))) =⇒ ℜ(ρ(T, i), r, r(r, ⟨s, r, k, b, v⟩))

2.4.3 Assumptions About the Future Behavior of Agents

To prove progress in Synod, we borrow some assumptions about the future behavior of
nonfaulty agents used by Lamport for informally proving progress in Paxos [104]. It is worth
noting that being nonfaulty does not prohibit an agent from temporarily failing. It simply
means that for every action that needs to be performed by the agent, eventually the agent
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is available to perform the action and the action happens. In FAM, a nonfaulty actor can
be modeled by asserting that an enabled snd or rcv transition for the actor will eventually
happen. However, given the F-Snd-Axm and F-Rcv-Axm axioms, it suffices to assume that for
a nonfaulty actor, if a snd or rcv transition is enabled, then it will either eventually occur
or it will be infinitely often enabled. As FAM does not model message loss, any message in
the multi-set will persist until it is received.

We introduce a predicate đ to specify an actor as nonfaulty, such that:

• đ(x) implies that x will be eventually available if there is a message “en route” that x
needs to receive.

• đ(x) implies that x will be eventually available if x’s local state dictates that it needs
to send a message.

• đ(x) implies that if a snd or rcv transition is enabled for x, then it will either eventually
occur or it will be infinitely often enabled.

Prp -NF -Axm ≡
∀p ∈ P : đ(p) =⇒

(∀b ∈ B, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, a ∈ A, Q ∈ Q :
(ϕ(p, b,Q, ς(ρ(T, i))) ∨ ⟨a, p, k, b, v⟩ ∈ m(ς(ρ(T, i)))) =⇒

(a(ς(ρ(T, i)), p) ∨ (∃j ∈ N : (j > i) ∧ a(ς(ρ(T, j)), p))))

Acc -NF -Axm ≡
∀a ∈ A : đ(a) =⇒

(∀p ∈ P, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, b ∈ B :
((⟨p, a, 1a, b, v⟩ ∈ ηa

ς(ρ(T,i)) ∧ (βa
ς(ρ(T,i)) < b))

∨ (⟨p, a, 2a, b, v⟩ ∈ ηa
ς(ρ(T,i)) ∧ (βa

ς(ρ(T,i)) ≤ b))
∨ (⟨p, a, k, b, v⟩ ∈ m(ς(ρ(T, i))))) =⇒

(a(ς(ρ(T, i)), a) ∨ (∃j ∈ N : (j > i) ∧ a(ς(ρ(T, j)), a))))

NF -IOE -Axm ≡
∀x ∈ A : đ(x) =⇒
(∀T ∈ T , i ∈ N,m ∈ M :

((m ∈ m(ς(ρ(T, i))) ∧ ℜ(ρ(T, i), x, r(x,m))) =⇒
((∃j ∈ N : (j ≥ i) ∧ ρ(T, j + 1) = ⊺(ρ(T, j), r(x,m)))
∨ (∀k ∈ N : (k > i) =⇒
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(∃j ∈ N : (j ≥ k) ∧ (m ∈ m(ς(ρ(T, j))) ∧ ℜ(ρ(T, j), x, r(x,m)))))))
∧ (ℜ(ρ(T, i), x, s(x,m)) =⇒

((∃j ∈ N : (j ≥ i) ∧ ρ(T, j + 1) = ⊺(ρ(T, j), s(x,m)))
∨ (∀k ∈ N : (k > i) =⇒

(∃j ∈ N : (j ≥ k) ∧ ℜ(ρ(T, j), x, s(x,m))))))

We then introduce a predicate þ that is true of a proposal number if and only if it
satisfies the conditions P1 and P2 described in Section 2.2.2.

P1 -P2 -Def ≡
∀b ∈ B : þ(b) ⇐⇒

(∀p ∈ P, T ∈ T , i ∈ N, v ∈ V, a ∈ A :
((⟨p, a, 1a, b, v̄⟩ ∈ ηa

ς(ρ(T,i)) =⇒ βa
ς(ρ(T,i)) < b)

∧ (⟨p, a, 2a, b, v⟩ ∈ ηa
ς(ρ(T,i)) =⇒ βa

ς(ρ(T,i)) ≤ b)))

Finally, our conditions for formally guaranteeing progress state that – in all fair tran-
sition paths, some nonfaulty proposer p will be eventually ready to propose some proposal
number b, that will satisfy P1 and P2, to some quorum Q whose members are all nonfaulty.

CND ≡
∀T ∈ T :
(∃i ∈ N, p ∈ P, b ∈ B, Q ∈ Q : (đ(p) ∧ þ(b) ∧ (∀a ∈ Q : (đ(a) ∧ ℜ(ρ(T, i), p, s(p, ⟨p, a, 1a, b, v̄⟩))))))

2.4.4 The Proof of Eventual Progress

To prove progress in Synod, it suffices to prove that eventually, at least one proposal
number will be chosen by some quorum (Section 2.2). In our conditions CND, we have assumed
that some proposer p will eventually propose a proposal number b, that will satisfy P1 and
P2, to a quorum Q. Our proof strategy is to show that eventually, p will learn that b has
been chosen by all members of Q. Theorem 2.3 formally states our main progress guarantee
while Lemma 2.1 and Lemma 2.2 state progress in Phase 1 and Phase 2 respectively.

Theorem 2.3 (Eventual progress in Synod) Given CND, in all fair transition paths, eventu-
ally some proposer p will learn that some proposal number b has been chosen.

Theorem -2.3 ≡
CND =⇒ (∀T ∈ T : (∃i ∈ N, p ∈ P, b ∈ B : Ł(p, b, ς(ρ(T, i)))))
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Lemma 2.1 In a fair transition path, if eventually a nonfaulty proposer p becomes ready to
propose a proposal number b, that satisfies P1 and P2, to a quorum Q whose members are
all nonfaulty, then eventually p will receive promises from all members of Q for b.

Lemma -2.1 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :
(đ(p) ∧ þ(b)∧ (∀a ∈ Q : (đ(a) ∧ ℜ(ρ(T, i), p, s(p, ⟨p, a, 1a, b, v̄⟩))))) =⇒

(∃j ∈ N : (j ≥ i) ∧ ϕ(p, b,Q, ς(ρ(T, j))))

Lemma 2.2 In a fair transition path, if eventually a nonfaulty proposer p receives promises
for a proposal number b, that satisfies P1 and P2, from a quorum Q whose members are all
nonfaulty, then eventually p will receive votes from all members of Q for b.

Lemma -2.2 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :

(đ(p) ∧ þ(b) ∧ ϕ(p, b,Q, ς(ρ(T, i))) ∧ (∀a ∈ Q : đ(a))) =⇒
(∃j ∈ N : (j ≥ i) ∧ Φ(p, b,Q, ς(ρ(T, j))))

Given below are the proof sketches of Theorem 2.3, Lemma 2.1, and Lemma 2.2:
Proof of Theorem 2.3 -

(1) By Lemma 2.1 and CND, some nonfaulty proposer p will eventually receive promises
from some quorum Q, whose members are all nonfaulty, for some proposal number b
that satisfies P1 and P2.

(2) By Lemma 2.2, p will eventually receive votes from Q for b and learn that b has been
chosen.
□

Proof of Lemma 2.1 -

(1) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm prepare messages from p will eventually
be sent to all members of Q.

(2) By Acc-NF-Axm, NF-IOE-Axm, F-Rcv-Axm all members of Q will eventually receive the
prepare messages.

(3) By P1-P2-Def, Snd-1b-Rul, and Acc-NF-Axm, each member of Q will eventually be
ready to send promise messages to p.
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(4) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm the promise messages from each member
of Q will eventually be sent.

(5) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm p will eventually receive the promise
messages from all members of Q.
□

Proof of Lemma 2.2 -

(1) By Snd-2a-Rul, and Prp-NF-Axm, p will eventually be ready to send accept messages
to all members of Q with proposal number b.

(2) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm, accept messages from p will eventually
be sent to all members of Q.

(3) By Acc-NF-Axm, NF-IOE-Axm, F-Rcv-Axm all members of Q will eventually receive the
accept messages.

(4) By P1-P2-Def, Snd-2b-Rul, and Acc-NF-Axm, each member of Q will eventually be
ready to send voted messages to p.

(5) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm the voted messages from each member
of Q will eventually be sent

(6) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm p will eventually receive the voted mes-
sages from all members of Q.
□

2.4.5 The Proof of Eventual Progress Under Predicate Fairness

Our fundamental conditions for progress in Synod, which are specified as CND in Sec-
tion 2.4.3, describe a behavior of the system by which in all paths, eventually, some nonfaulty
proposer becomes ready to propose some proposal number that will not be interrupted, to a
quorum of nonfaulty acceptors. In this section, we formally show that under the assumption
of predicate fairness in FAM, it is possible to theoretically guarantee that this behavior will
be eventually true in a set of actors implementing Synod.
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In order to formalize the specification of predicate fairness in FAM, we first define
what it means for a predicate P over actor configurations to be enabled at a configura-
tion. Enabled-Def states that in a path T , a predicate P is enabled at a configuration
κT

i if and only if there exists a sequence I such that if I happens at κT
i , then P will be

true in the consequent configuration κT
j

7.

Enabled -Def ≡

∀T ∈ T , κT
i ∈ C, P ∈ P : e(κT

i , P ) ⇐⇒ (∃I ∈ I : λ(κT
i , I) =⇒ (∃κT

j ∈ C : [κT
i

I
99K κT

j ] ∧ P (κT
j )))

Using the enabling condition, we can now formally specify predicate fairness for FAM
as the statement F-Predicate-Axm.

F-Predicate -Axm ≡
∀T ∈ T , κT

i ∈ C, P ∈ P : e(κT
i , P ) =⇒

(∃κT
j ∈ C : (j ≥ i) ∧ P (κT

j ))
∨(∃κT

k ∈ C : (k > i) ∧ (∀κT
j ∈ C : (j ≥ k) =⇒ ¬e(κT

j , P )))

To show that CND will be satisfied under predicate fairness, let us define a Synod-specific
predicate ψ over configurations such that ψ(κ) is true if and only if at κ, some nonfaulty
proposer is ready to propose a proposal number, that will satisfy the non-interruption con-
dition, to some nonfaulty quorum (Synod-Pred). Clearly, if ψ is eventually satisfied in all
paths, the conditions CND will be satisfied. Using predicate fairness and the behavior of the
proposers, we can show that ψ will be eventually true in all fair paths.

Synod -Pred ≡
∀T ∈ T , κT

i ∈ C :
(ψ(κT

i ) ⇐⇒
(∃p ∈ P, b ∈ B, Q ∈ Q : (đ(p) ∧ þ(b)
∧ (∀a ∈ Q : (đ(a) ∧ ℜ(κT

i , p, s(p, ⟨p, a, 1a, b, v̄⟩)))))))

As previously mentioned in Section 2.3.2, we assume that the proposers can retry with
higher-numbered proposals if their proposals are not chosen. Since proposal numbers are
unique in Synod, no two proposals can be equal. Therefore, if all nonfaulty proposers retry,
then always, eventually, some nonfaulty proposer will become ready to propose the highest
proposal number yet to a nonfaulty quorum. We formalize this property as Prp-Retry, which
states that at any configuration κT

i , if a nonfaulty proposer p becomes ready to propose the

7The symbols e(κT
i , P ), λ(κT

i , I), and [κT
i

I
99K κT

j ] denote that P is enabled at κT
i , I happens at κT

i , and
κT

j is a consequence of I happening at κT
i respectively.
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highest proposal number yet proposed to a nonfaulty quorum8, then either ψ will be satisfied
at some future configuration κT

j , or always, eventually, some nonfaulty proposer will become
ready to propose the highest proposal number yet proposed to a nonfaulty quorum.

Prp - Retry ≡
∀T ∈ T , κT

i ∈ C : (∃p ∈ P, Q ∈ Q : φ(κT
i , p,Q)) =⇒

((∃κT
j ∈ C : (j ≥ i) ∧ ψ(κT

j ))
∨(∀κT

k ∈ C : (k > i) =⇒ (∃κT
j ∈ C : (j ≥ k) ∧ (∃p ∈ P, Q ∈ Q : φ(κT

j , p,Q)))))

Now, at any configuration κT
i , if a nonfaulty proposer p becomes ready to propose

the highest proposal number yet, then there is a possible witness sequence Î such that if
Î happens at κT

i , then ψ will be true at the consequent configuration κT
j . This sequence

Î is the sequence in which all proposers except p fail permanently, preventing any future
proposals. Therefore, we can state that if φ(κT

i , p, Q) is true at any configuration κT
i , then

if Î happens at κT
i , then ψ(κT

j ) will be true at the consequent configuration κT
j (Wit-Seq).

Wit -Seq ≡
∀T ∈ T , κT

i ∈ C :
(∃p ∈ P, Q ∈ Q : φ(κT

i , p,Q)) =⇒

(λ(κT
i , Î) =⇒ (∃κT

j ∈ C : [κT
i

Î
99K κT

j ] ∧ ψ(κT
j )))

Finally, for consensus to happen in Synod, at least one proposal needs to be made by
some nonfaulty proposer. Therefore, we assume that eventually, some nonfaulty proposer
will become ready to propose the highest proposal number yet (Some-Prp-Ready). This will
be trivially satisfied the first time some nonfaulty proposer becomes ready to initiate the
highest-numbered proposal until that time.

Some -Prp -Ready ≡
∀T ∈ T : (∃κT

i ∈ C, p ∈ P, Q ∈ Q : φ(κT
i , p,Q))

Theorem 2.4 states that eventually, the predicate ψ will be satisfied in all fair paths,
which is, by definition, equivalent to the conditions CND.

Theorem 2.4 (CND follows from predicate fairness) In all fair transition paths, eventually,
the predicate ψ will be true at some configuration.

Theorem -2.4 ≡ ∀T ∈ T : ∃κT
i ∈ C : ψ(κT

i )

8The symbol φ(κT
i , p,Q) denotes that p is ready to propose the highest proposal number yet proposed to

Q at κT
i .
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Proof of Theorem 2.4 -

(1) By Some-Prp-Ready, Wit-Seq, and Enabled-Def, ψ will be enabled at least once.

(2) By Prp-Retry, ψ will be infinitely often enabled.

(3) By contradiction with F-Predicate-Axm, ψ will eventually be true.
□

The proofs of Lemma 2.1, Lemma 2.2, Theorem 2.3, and Theorem 2.4 have been
mechanically verified for correctness using Athena. We made use of Athena’s interactive
proof development environment where the high-level structures of the proofs were created
manually in a hierarchical manner consisting of trivial well-connected steps. The SPASS [163]
automatic theorem prover was then guided with appropriate premises for proving each step
(see Appendix B for more details). The proof consists of around 7200 lines of Athena code9.

2.5 Related Work
De Prisco et al. [41] present a rigorous hand-written proof of safety for Paxos along with

an analysis of time performance and fault tolerance. Chand et al. [28] provide a specification
of Multi-Paxos in TLA+ [102] and use TLAPS [33] to prove its safety. Padon et al. [133]
have verified the safety property for Paxos, Vertical Paxos [105], Fast Paxos [104], and Stop-
pable Paxos [114] using deductive verification. Küfner et al. [96] provide a methodology
to develop machine-checkable proofs of fault-tolerant round-based distributed systems and
verify the safety property for Paxos. Schiper et al. [152] have formally verified the safety
property of a Paxos-based totally ordered broadcast protocol using EventML [18] and the
Nuprl [129] proof assistant. Howard et al. [86] have presented Flexible Paxos by introducing
flexible quorums for Paxos and have model checked its safety property using the TLC model
checker [103]. Rahli et al. [148, 149] have used EventML and Nuprl to formally verify the
safety of an implementation of Multi-Paxos. Attiya et al. [10] provide bounds on the time to
reach progress in consensus by assuming a synchronous model with known bounds on mes-
sage delivery and processing time of nonfaulty processes. Keidar et al. [91] consider a partial
synchrony model with known bounds on processing times and message delays and use it to

9Available at https://wcl.cs.rpi.edu/assure
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guarantee progress in a consensus algorithm when the bounds hold. Malkhi et al. [114] intro-
duce Stoppable Paxos, a variant of Paxos for implementing a stoppable state machine and
provide an informal proof of safety and progress for Stoppable Paxos with a unique leader.
McMillan et al. [115] machine-check and verify the proofs of safety and progress properties
of Stoppable Paxos [114] using Ivy [134]. Dragoi et al. [47] introduce PSync, a language that
allows writing, execution, and verification of high-level implementations of fault-tolerant sys-
tems, and use it to verify the safety and progress properties of LastVoting [32]. LastVoting
is an adaptation of Paxos in the Heard-Of model [32] that guarantees progress under the
assumption of a single leader. A machine-checked proof of safety and progress of LastVoting
also appeared in [42]. Hawblitzel et al. [82,83] introduce a framework for designing provably
correct distributed algorithms called IronFleet and use it to prove the safety and progress
properties for a Multi-Paxos implementation called IronRSL by embedding TLA+ specifi-
cations in Dafny [108]. Their proof of progress relies on the assumption that eventually,
all messages will arrive within a maximum network delay and leader election will succeed.
All of the aforementioned work has either analyzed the safety property or both the safety
and progress properties of Synod-related protocols. Where progress has been verified, the
authors have either assumed a unique leader, synchrony, or both.

Field and Varela [59] present transactors, a fault-tolerant programming model for com-
posing loosely-coupled distributed components running in an unreliable environment like the
IoP. Transactors are based on the actor model and can ensure consistency of distributed state
in the presence of some specific types of node and network failures, and message loss. Boc-
chi et al. [20] present a behavioral typing system for higher-ordered timed calculus using
session types. Their type system can check processes against protocols that are not wait-
free, i.e., the time windows for corresponding send and receive actions intersect. Charalam-
bides et al. [30] introduce a novel session type system called System-A that can be used for
the static verification of a large class of asynchronous distributed protocols. Duan et al. [48]
introduce NFVactor, a system for network function virtualization, that is based on the
actor model. NFVactor provides advantages such as lightweight failure resilience, high-
performance flow migration, and transparent resilience. Bainomugisha et al. [11] propose
an actor-based service partitioning model called the resilient actor model. The approach is
based on the actor model and involves decomposing the functionality of an application into
a set of resilient actors at runtime, which are then moved to devices where they can run
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in a distributed manner. The process is user-guided and the resulting partitioned applica-
tion is retractable and resilient to network failures. Charalambides et al. [31] introduce a
simple actor language in which programmers can specify demands for certain types of mes-
sages to be generated during execution. They regard progress as the question of whether
an actor eventually receives all messages included in its typestate and show that their type
system guarantees that in all executions of well-typed programs, all requirements generated
at runtime will result in the corresponding messages being received. Musser and Varela [127]
present a formalization of the actor model in Athena and show that many properties of actor
computation can be expressed and proven at an abstract level, independently of the details
of a particular system of actors. They develop theorems concerning the persistence of actors
and messages, preservation of unique actor identifiers, monotonicity properties of actor local
states, guaranteed message delivery, and general consequences of fairness.

Our work improves upon existing work by identifying fundamental asynchronous con-
ditions under which the Synod consensus protocol can make eventual progress in the absence
of a distinguished proposer. It introduces a failure-aware actor model that can be used for
modeling temporary or permanent failures in aircraft and reasoning about distributed pro-
tocols like Synod in uncertain environments like the IoP. We have also presented the first
machine-checked proof of eventual progress in Synod using Athena.

2.6 Chapter Summary
In this chapter, we have identified a set of sufficient conditions under which the Synod

protocol can make progress, in asynchronous communication settings and in the absence of
a unique leader. Leader election itself being a consensus problem, our conditions generalize
Paxos’ progress conditions by eliminating their cyclic reliance on consensus. Consequently,
our weaker assumptions do not impose a communication bottleneck or proposal restrictions.
We have introduced a failure-aware actor model (FAM), that assumes predicate fairness,
to reason about communication failures in actors. Using this reasoning framework we have
formally demonstrated that eventual progress can be guaranteed in Synod under the identi-
fied conditions and have used Athena to develop the first machine-checked proof of eventual
progress in Synod. Additionally, we have also shown with a mechanical proof that under
predicate fairness in FAM, our conditions for eventual progress will be eventually satisfied.

A potential direction of future work would be to investigate mechanically verified guar-
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antees of timely progress by using data-driven statistical results. Such properties may be
provided by using statistical observations about message transmission and processing delays,
which cannot be deterministically predicted in asynchronous conditions but can be observed
at run-time. Another potential direction of work would be to model message loss in FAM
by introducing additional meta-level transitions. This would allow us to further weaken our
current conditions for eventual progress in Synod by requiring only a subset of messages
to not be lost. To avoid livelocks, it may also suffice to replace predicate fairness with a
weaker assumption that infinitely often enabled finite transition sequences must eventually
occur. Finally, another important future direction would be to investigate how progress can
be guaranteed in the presence of Byzantine agents.



CHAPTER 3
A DISTRIBUTED KNOWLEDGE PROPAGATION

PROTOCOL

3.1 Chapter Introduction
Knowledge is the state of an agent being aware of a fact about the world. Several states

of knowledge arise when analyzing the properties of knowledge relative to a group of agents.
E.g., in a group of agents, there may be the following possible states of knowledge about a
fact ϕ — all agents know ϕ, some agents know ϕ, or no agent knows ϕ. Two important states
of knowledge are common knowledge and distributed knowledge [54]. Common knowledge
implies that everyone knows ϕ, everyone knows that everyone knows ϕ, everyone knows that
everyone knows that everyone knows ϕ, and so on. Distributed knowledge, on the other hand,
implies that the knowledge of ϕ is distributed among all members in a group, i.e., together the
members of the group know ϕ, even though it may be the case that no individual member
knows ϕ by itself. In autonomous multi-agent systems, it is often useful to analyze the
knowledge state of the system in order to determine if the group of agents or each individual
agent has sufficient knowledge to satisfy certain properties or meet certain goals. E.g., for
an aircraft to operate in an airspace with a sense of safety, it must not only have knowledge
of the traffic aircraft but also know that the traffic aircraft have knowledge of it. Therefore,
the study of knowledge states is important for safety-critical multi-aircraft applications like
Decentralized Admission Control where the absence of a centralized coordinator warrants
high situational awareness among the aircraft to ensure safety.

There are several challenges to the analysis of knowledge states for multi-aircraft ap-
plications like DAC. Firstly, different applications may require different states of knowledge.
E.g., a message relaying application may only require that the recipient agent learns of
the message while an emergency-advisory application may require that all traffic aircraft
learn about an emergency aircraft. Therefore, it is important to identify the required state
of knowledge for each application before analysis. Secondly, for different applications, ap-
propriate knowledge propagation protocols must be developed that can be used to attain

Portions of this chapter previously appeared as: Paul, S., Patterson, S., Varela, C.A.: Collaborative
situational awareness for conflict-aware flight planning. In: IEEE/AIAA Digital Avionics Systems Conference
(DASC), pp. 1-10 (2020). doi:10.1109/dasc50938.2020.9256620
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application-specific states of knowledge. Finally, for safety-critical applications, a knowledge
propagation protocol must satisfy some correctness properties. In asynchronous networks
like the Internet of Planes where agents can fail, it is difficult to formally guarantee such
correctness properties unless some required assumptions are made about the system.

In this chapter, we formalize the definition of a safe state of knowledge for DAC using
knowledge logic [54] and present a knowledge propagation protocol called the Two-Phase
Acknowledge Protocol that can be used to achieve this safe state with respect to the new
set of owners after a candidate has been admitted. The protocol allows an aircraft to
propagate a fact among a group of aircraft and learn when the safe state of knowledge has
been successfully achieved. We also identify certain system conditions under which it can
be guaranteed that our protocol will satisfy two important correctness properties — safety
and progress. We use these conditions to provide formal proofs of the correctness properties
that have been mechanically verified using the TLA+ Proof System.

The rest of the chapter is structured as follows: Section 3.2 identifies a safe state
of knowledge required for DAC; Section 3.3 introduces our knowledge propagation proto-
col TAP; Section 3.4 presents the formal verification of the correctness properties of TAP;
Section 3.5 presents related work on the formal analysis of knowledge states in distributed
systems; and Section 3.6 concludes the chapter with a summary and discussion on potential
future directions of work.

3.2 Identifying A Safe State of Knowledge for DAC
Successful knowledge propagation in DAC must ensure a safe state of knowledge that

will allow all aircraft to have a sense of “safety” in the absence of a centralized coordinator.
In knowledge logic [54], the expression kiϕ represents that an agent i knows the fact ϕ and
EGϕ represents that all agents in a group G know ϕ. The expression EGEGϕ (or E2

Gϕ)
represents a higher state of knowledge than EGϕ and implies that every agent in G knows
two facts – (1) ϕ, and (2) EGϕ. In the context of DAC, let G represent the set of new owners
after a new candidate has been admitted and ϕ represent the set of approved flight plans for
the aircraft in G. Since there is no centralized coordinator in DAC, it is our belief that the
absence of E2

Gϕ will create a scenario in which the aircraft will not be able to trust the overall
safety of their decentralized operations. Fagin et al. [54] succinctly explain this concern with
the following example – even if all drivers in a society know the rules for following traffic
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lights and follow them, that is not enough to make a driver "feel safe". This is because unless
a driver knows that everyone else knows the rules and will follow them, then the driver may
consider it possible that some other driver, who does not know the rules, may run a red light.
Therefore, we define a safe state of knowledge for DAC as the state E2

Gϕ.
The problem statement for knowledge propagation in DAC can be stated as — “There is

a set of aircraft K : K ⊂ G in which all aircraft know the same value ϕ and the membership of
G, and each aircraft in K must try to propagate the knowledge of ϕ to attain E2

Gϕ with respect
to G and at least one aircraft in K should eventually learn that E2

Gϕ has been attained."

3.3 The Two-Phase Acknowledge Protocol (TAP)
In this section, we present the Two-Phase Acknowledge Protocol, a distributed knowl-

edge propagation protocol that can be used for propagating a value ϕ to a group of distributed
nodes to eventually achieve E2

Gϕ.
For TAP, we assume an asynchronous, non-Byzantine system model in which agents

can fail and have stable storage that can tolerate failures. Messages can be duplicated, and
have arbitrary transmission times, but cannot be corrupted. We also assume that messages
cannot be lost. There is a non-empty set of propagators, and a logically separate non-empty
set of learners. Each propagator has knowledge of the set of all learners. A single value ϕ is
known to all propagators. E2

Gϕ, in the context of our protocol, implies that all learners know
that all other learners know ϕ. The goal of every propagator is to propagate ϕ and eventually
learn that E2

Gϕ has been achieved. Propagators and learners are logical abstractions and may
be functionally implemented by the same physical node (e.g. – an aircraft) simultaneously.

TAP operates in the following consecutive phases:

• Phase 1

(a) A propagator sends a learn ("1a") message with a value ϕ to all learners.

(b) A learner learns a value ϕ if and only if it receives a learn message with the value
ϕ from a propagator and it replies back to the propagator with a learnt ("1b")
message if and only if it has learnt a value ϕ.

• Phase 2
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(a) A propagator sends an all-know ("2a") message to each learner if and only if it
has received a learnt message from all learners.

(b) A learner learns that all learners know the value ϕ if and only if it receives an
all-know message from a propagator and it replies back to the propagator with an
acknowledgment ("2b") message if and only if it has learnt that all learners know
the value ϕ.

(c) A propagator learns E2
Gϕ if and only if it has received acknowledgement message

from all learners.

3.3.1 Required Correctness Properties

For use in safety-critical aerospace applications like DAC, TAP must satisfy the fol-
lowing correctness properties:

• Safety - This property requires that a propagator can learn that E2
Gϕ has been attained

if and only if all learners know EGϕ. This is important because it ensures that the safe
state of knowledge will be correctly attained.

• Progress - This property requires that the protocol must ensure that eventually, E2
Gϕ

is attained. This is important for applications where an eventual outcome is necessary.

3.3.2 Some Important Observations About TAP

The system model of TAP is not sufficient to guarantee that the required correctness
properties will be satisfied – e.g., if even one learner fails, the protocol will never be able to
make progress. Therefore, to guarantee the correctness properties, we need to make certain
additional assumptions about the system. We list some important observations that will be
helpful for identifying such assumptions.

• All the propagators try to commit the same value, removing the competition for votes.
Therefore, a learner can respond to "1b" and "2b" messages from multiple propagators,
even if they have already committed a value.

• The non-Byzantine behavior of available agents directs that some sets of operations
are atomic in nature – e.g., a propagator has to send "2a" messages if it has received
"1b" messages from all learners and it has to receive "1b" messages from all learners to
send "2a" messages.
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• If an agent receives messages that had not been sent, then its non-Byzantine behavior
cannot ensure correctness – e.g., if a learner receives "2a" messages that had not been
sent, it will incorrectly learn that all learners know a value and respond with "2b"
messages, affecting safety.

• Since successful propagation requires a value to be replicated in all learners, the pro-
tocol cannot tolerate the permanent failure of even one learner.

• Since successful propagation requires a propagator to learn about E2
Gϕ, at least one

propagator must eventually learn about E2
Gϕ.

We will use the above observations to identify some assumptions that we will then use
to prove the correctness guarantees for TAP.

3.3.3 Conditions for Guaranteeing Correctness

The following general condition about the availability of agents can be useful for proving
the correctness of most distributed protocols under asynchronous settings:

G1 All agents are always eventually available.

In asynchronous communication, message transmission and processing delays can be
arbitrarily long. This makes it impossible to differentiate temporary agent failures from
message processing delays. As a result, stating that an agent is “always eventually available”
is equivalent to stating that the agent is “always available”10, since temporary agent failures
can be subsumed under processing delays. Therefore, in our analysis of TAP, we assume
a simple model of asynchronous communication where temporary agent failures cannot be
detected in isolation from message delays. Under this model, we can identify the following
correctness requirements:

G1a At least one propagator is always available.

G1b All learners are always available.

Following are some important observations about the identified conditions:
10“always” here only implies a period of time that is sufficient to ensure that the protocol will make progress.

It does not imply that the agent must be available “endlessly”, even after the protocol has terminated.
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• For the protocol to make progress, there must be some propagator to send "1a" and "2b"
messages and to eventually learn of E2

Gϕ. G1a ensures that at least one propagator is
always available.

• The protocol cannot make progress in each phase unless a propagator receives "1b" and
"2b" messages from all learners. G1b ensures that all learners are always available.

We can see that the conditions identified are necessary for proving correctness under
our system model. It is difficult to prove that these conditions are the weakest conditions
required because there may be multiple equally-weak sets of conditions under which the
proofs can be completed. Proving the weakest set, therefore, requires formalizing the meaning
of "weakness" in the context of these conditions. Moreover, the strong guarantees provided
by mechanically-verified proofs justify the possibly-conservative conditions in the context of
safety-critical applications. Therefore, for now, we are satisfied with the informal analysis
of the necessity of the conditions and will consider the set {G1a,G1b} to be one of the
weakest sets of conditions required for proving correctness under our system model.

TAP is a general-purpose distributed knowledge propagation protocol that can be used
in asynchronous systems. In line with their definitions, propagators and learners are logical
abstractions and a particular physical node may functionally implement both abstractions
simultaneously. If the protocol is used in a scenario where the physical nodes exclusively
implement either a propagator or a learner, but not both, then the system can withstand the
failure of multiple propagators as long as G1a holds. However, in the particular use case of
DAC, the set of aircraft K, which are responsible for propagating a value ϕ, may not have
any knowledge about the membership of the set K, making it difficult to physically separate
the set of propagators and learners. Therefore, this application necessitates the pessimistic
implementation of the protocol where all aircraft in the set G functionally implement a
learner and all aircraft in the set K functionally implement both a propagator and a learner.
As a consequence, the set of physical nodes implementing propagators will be a subset of
the physical nodes implementing learners. Under such circumstances, the condition that all
learners are always available will imply that all propagators are always available. Since the set
of propagators and learners are non-empty, G1b will imply G1a under such circumstances.
Nevertheless, we will still use the weaker condition G1a for our proofs because this will
allow the proofs to be pertinent, without loss of generality, even for applications where the
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implementation may not necessarily warrant G1b to imply G1a.

3.4 Formal Verification of the Correctness Properties of TAP
In this section, we will formally specify some correctness properties for our protocol

under the identified conditions and the assumed system model.
Our formal specification represents a distributed system as a distributed state ma-

chine [153] that has a current state at any given time and changes its state by performing
some action. The temporal dimension is logically represented by natural numbers. Each
message in the system is a tuple ⟨ρ ∈ C, δ ∈ R, ν ∈ V , and γ ∈ ξ⟩ where ξ = {1a, 1b, 2a, 2b},
ρ is a propagator ID, δ is a learner ID, and ν is a fact. For any state of the system, µ
represents the set of all messages in the state and τ represents the time at which the state
was recorded. Assuming that the fact that needs to be propagated using the protocol is ϕ,
further notations used in our formal model can be found in Table 3.1 and Table 3.2.

Table 3.1: Set symbols for the formal specification of knowledge propagation.

Symbol Description
C The set of all propagators
R The set of all learners
V The set of all facts
T The set of all logical time steps
M The set of all possible messages

3.4.1 The Assumptions Required for Correctness

Given below are some assumptions that are direct logical implications of the system
model and the conditions required for correctness.

A1 By G1a there is a propagator which is always available.

A1 ≡ ∃c ∈ C : ∀t ∈ T : α(c, t)

A2 By G1b all learners are always available.

A2 ≡ ∀r ∈ R : ∀t ∈ T : α(r, t)

A3 All messages which are sent must be eventually added to the channel.

A3 ≡ ∀ts ∈ T : ∀m ∈ M : (§(m, ts) =⇒ ∃td ∈ T : (td > ts) ∧ ¶(m, td))
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Table 3.2: Relation symbols for the formal specification of knowledge
propagation.

Symbol Description Input Output
κ The learner knows the fact R × V Bool
ε̇ Learner knows that all learners know the fact R × V Bool
ε̈ Propagator knows that all

learners know that all learners know the fact C × V Bool
Φ1a There is a message of type “1a” with

the value and the propagator ID C × V Bool
Φ1b There is a message of type “1b” with

the value and the learner ID R × V Bool
Φ2a There is a message of type “2a” with

the propagator ID C Bool
Φ2b There is a message of type “2b” with

the learner ID and the propagator ID R × C Bool
∆0 The state contains no messages T Bool
∆1a The system state contains "1a" messages

from the propagator T × C Bool
∆1b The system state contains "1b" messages

from the propagator T × C Bool
∆2a The system state contains "2a" messages

from the propagator T × C Bool
∆2b The system state contains "2b" messages

from the propagator T × C Bool
§ The message has been sent at the time M × T Bool
¶ The message has been delivered at the time M × T Bool
α The agent is available at the time C|R × T Bool
E The agent knows about ϕ at the time C|R × T Bool
Ė The agent knows that all

agents know about ϕ at the time C|R × T Bool
Ë The agent knows that all agents know that all

agents know about ϕ at the time C|R × T Bool

A4 Since messages cannot be corrupted, if at any time a message is added to the channel,
there must have been a time when it was sent.

A4 ≡ ∀td ∈ T : ∀m ∈ M : (¶(m, td) =⇒ ∃ts ∈ T : (td > ts) ∧ §(m, ts))

We split these assumptions into two sets Ac = {A2,A4} and Ap = {A1,A2,A3} and
use them separately for proving safety and progress respectively.
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3.4.2 Some Important Correctness Lemmas

We present some important lemmas that will later be used to formally prove the re-
quired correctness properties for TAP.

Lemma 3.1 Given Ap, for all propagators, if there exists a time such that the propagator
c is available it has not received "1b" messages from all learners, then "1a" messages from c

will eventually be delivered.

Lemma 3.1 ≡
Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ α(c, t) ∧ ¬(∀r ∈ R : Φ1b(r, c)))

=⇒ (∃t2 ∈ T : τ = t2 ∧ (∃v ∈ V : Φ1a(c, v))))

Lemma 3.2 Given Ap, for all propagators, if there exists a time such that "1a" messages
from a propagator c have been delivered, then "1b" messages from all learners will eventually
be delivered.

Lemma 3.2 ≡
Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ (∃v ∈ V : Φ1a(c, v)))

=⇒ (∃t2 ∈ T : τ = t2 ∧ (∀r ∈ R : Φ1b(r, c))))

Lemma 3.3 Given Ap, for all propagators, if there exists a time such that the propagator c
is available and it has received "1b" messages from all learners, then "2a" messages from c

will eventually be delivered.

Lemma 3.3 ≡
Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ α(c, t) ∧ (∀r ∈ R : Φ1b(r, c)))

=⇒ (∃t2 ∈ T : τ = t2 ∧ (∃v ∈ V : Φ2a(c))))

Lemma 3.4 Given Ap, for all propagators, if there exists a time such that "2a" messages
from a propagator c have been delivered, then "2b" messages from all learners will eventually
be delivered.

Lemma 3.4 ≡
Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ (∃v ∈ V : Φ2a(c)))

=⇒ (∃t2 ∈ T : τ = t2 ∧ (∀r ∈ R : Φ2b(r, c))))
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Lemma 3.5 Given Ap, there will be a propagator c such that ∆1a(c, t) will eventually be
true .

Lemma 3.5 ≡
Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆1a(c, t))

Lemma 3.6 Given Ap, there will be a propagator c such that ∆1b(c, t) will eventually be
true.

Lemma 3.6 ≡
Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆1b(c, t))

Lemma 3.7 Given Ap, there will be a propagator c such that ∆2a(c, t) will eventually be
true.

Lemma 3.7 ≡
Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆2a(c, t))

Lemma 3.8 Given Ap, there will be a propagator c such that ∆2b(c, t) will eventually be
true.

Lemma 3.8 ≡
Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆2b(c, t))

Lemma 3.9 Given Ac, always, if an available propagator c knows E2
Gϕ, then all learners

will know EGϕ.

Lemma 3.9 ≡
Ac =⇒ (∀t ∈ T : ∀c ∈ C : ((τ = t ∧ α(c, t) ∧ Ë(c, t)) =⇒ (∀r ∈ R : Ė(r, t))))

Lemma 3.10 Given Ac, always, if an available learner r knows EGϕ, then all learners will
know ϕ.

Lemma 3.10 ≡
Ac =⇒ (∀t ∈ T : ∀r ∈ R : ((τ = t ∧ α(r, t) ∧ Ė(r, t)) =⇒ (∀r ∈ R : E(r, t))))
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3.4.3 The Correctness Properties

The safety property (Theorem 3.1) states that a propagator will know E2
Gϕ if and only

if all learners know both EGϕ and ϕ.

Theorem 3.1 (Safety of TAP) Given Ac, if an available propagator knows about E2
Gϕ, then

all learners know about ϕ and EGϕ.

Theorem 3.1 ≡
Ac =⇒ (∀t ∈ T : ∀c ∈ C : ((τ = t ∧ α(c, t) ∧ Ë(c, t)) =⇒ (∀r ∈ R : E(r, t) ∧ Ė(r, t))))

In order to prove safety, it must be shown that a propagator can know E2
Gϕ if and only

if all learners know both EGϕ and ϕ. Lemma 3.9 and Lemma 3.10 can be used to prove that
the safety property, represented by Theorem 3.1, is satisfied by our protocol at all times.
The lemmas can be proven directly by using the proposed system model and the set of safety
assumptions Ac.

The eventual progress property (Theorem 3.2) states that eventually E2
Gϕ will be at-

tained. Since there is no external agent that can monitor the state of the system, it will be
necessary and sufficient to show that eventually, at least one propagator will learn E2

Gϕ.

Theorem 3.2 (Eventual Progress in TAP) Given Ap, eventually, a propagator will know
about E2

Gϕ.

Theorem 3.2 ≡
Ap =⇒ ∃t ∈ T : ∃c ∈ C : Ë(c, t)

In order to prove eventual progress, we use the set of assumptions Ap and the system
model to show that eventually, at least one propagator will learn E2

Gϕ. Lemma 3.1 to
Lemma 3.4 state some temporal guarantees about how the protocol will proceed under
some system conditions. By A1 , there is at least one propagator which is always available.
Using A1 , Lemma 3.5 to Lemma 3.8 can be used to show that at least one propagator will
eventually receive "2b" messages from all learners, thereby learning E2

Gϕ by non-Byzantine
behavior. Lemma 3.5 to Lemma 3.8 are proven with the help of Lemma 3.1 to Lemma 3.4.
Lemma 3.8 is then used to prove Theorem 3.2.
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3.4.4 The Proofs of Correctness

The detailed proof sketches for the lemmas and the theorems are given below.
Proof of Lemma 3.1 -

(1) By non-Byzantine behavior of propagators, an available propagator will eventually
send "1a" messages.

(2) By (1) and A3 , eventually "1a" messages from the propagator will be delivered.
□

Proof of Lemma 3.2 -

(1) By A2 , all learners are always available.

(2) By non-Byzantine behavior of learners, an available learner will eventually send "1b"
messages.

(3) By (1), (2), and A3 , eventually "1b" messages from all learners will be delivered.
□

Proof of Lemma 3.3 -

(1) By non-Byzantine behavior of propagators, an available propagator will eventually
send "2a" messages.

(2) By (1) and A3 , eventually "2a" messages from the propagator will be delivered.
□

Proof of Lemma 3.4 -

(1) By A2 , all learners are always available.

(2) By non-Byzantine behavior of learners, an available learner will eventually send "2b"
messages.

(3) By (1), (2), and A3 , eventually "2b" messages from all learners will be delivered.
□
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Proof of Lemma 3.5 -

(1) By A1 , a propagator is always available.

(2) ∃t ∈ T : ∆0(t) since µ = {} in the initial state.

(3) By (1), (2), and Lemma 3.1, eventually "1a" messages from a propagator will be
delivered.
□

Proof of Lemma 3.6 -

(1) By Lemma 3.5, eventually "1a" messages from an available propagator will be delivered.

(2) By (1) and Lemma 3.2, eventually "1b" messages from all learners will be delivered.
□

Proof of Lemma 3.7 -

(1) By A1 , a propagator is always available.

(2) By Lemma 3.6, eventually "1b" messages from all learners will be delivered to the
propagator.

(3) By (1), (2), and Lemma 3.3, eventually "2a" messages from the propagator will be
delivered.
□

Proof of Lemma 3.8 -

(1) By Lemma 3.7, eventually "2a" messages from an available propagator will be delivered.

(2) By (1) and Lemma 3.4, eventually "2b" messages from all learners will be delivered.
□

Proof of Lemma 3.9 -

(1) By non-Byzantine behavior of propagators, an available propagator can only learn E2
Gϕ

if it has received "2b" messages from all learners.
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(2) By A4 , if "2b" messages from all learners have been received, they must have been
sent by the learners.

(3) By non-Byzantine behavior of available learners, a learner can only send "2b" messages
if it knows EGϕ.

(4) By A2 , all learners are always available.

(5) By (1), (2), (3), and (4), all learners know EGϕ.
□

Proof of Lemma 3.10 -

(1) By non-Byzantine behavior of learners, an available learner can only learn EGϕ if it
has received "2a" messages from a propagator.

(2) By A4 , if "2a" messages from a propagator have been received, they must have been
sent by the propagator.

(3) By non-Byzantine behavior of available propagator, a propagator can only send "2a"
messages if it has received "1b" messages from all learners.

(4) By non-Byzantine behavior of available learners, a learner can only send "1b" messages
if it knows ϕ.

(5) By A2 , all learners are always available.

(6) By (1), (2), (3), (4), and (5), all learners know ϕ.
□

Proof of Theorem 3.1 -

(1) Trivially by Lemma 3.9 and Lemma 3.10.
□

Proof of Theorem 3.2 -

(1) By non-Byzantine behavior of available propagator, a propagator will learn about E2
Gϕ

if it has received "2b" messages from all learners.
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(2) By Lemma 3.8, an available propagator will eventually receive "2b" messages from all
learners.

(3) By (1) and (2) an available propagator will eventually know E2
Gϕ.

□

We have used TLA+ to specify our formalizations and TLAPS to mechanically verify all
the proof sketches presented above11. Since TLAPS does not currently support first-order
temporal logic we have incorporated time explicitly in our specification using first-order
temporal logic12. The specification includes some additional temporal axioms required for
the proofs. The proofs and specifications consist of about 1500 lines of TLA+ code.

3.5 Related Work
There exists prior work in the literature on reasoning about knowledge states in dis-

tributed multi-agent systems. Halpern and Fagin [71] present a formal model to capture
the interaction between knowledge and action in distributed systems by modeling the dis-
tributed system as a set of runs. They define a run as a function from time to global states
of the system. They define knowledge based protocols where a process’ actions depend on its
knowledge and can be used to describe high-level descriptions of a process’ behavior depend-
ing on its local state. Ksehmkalyani [95] examines the feasibility of achieving Enϕ for n > 1
and uses a restricted distributed messaging framework to explore the possibility of achieving
Enϕ in asynchronous systems by using only logical clocks. They also explore the use of
different types of logical clocks for attaining concurrent common knowledge by using their
framework. Fagin and Halpern [53] provide a model for explicitly incorporating probability
in knowledge logic formulas to reason about knowledge and probability. They introduce a
probabilistic variant of common knowledge in multi-agent systems and provide fundamental
axioms for reasoning about the same. Fagin and Vardi [56] investigate a model of distributed
communication and provide a logical formalization of runs. They also analyze the logic of
implicit knowledge, which is the knowledge that can be attained by combining the knowledge
of a group. Their work explores the dependence of knowledge in a distributed system on the
way processes communicate with one another. Guzmán et al. [69] introduce the theory of

11Complete TLAPS proofs available at https://wcl.cs.rpi.edu/assure
12TLAPS 1.4.5. as of June 2020 only supports propositional temporal logic
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group space functions to reason about the information distributed among the members of a
potentially infinite group. They develop the semantic foundations and algorithms to reason
about knowledge in multi-agent systems and analyze the properties of distributed spaces
for reasoning about the knowledge of such systems. Matteo [89] analyzes the use of Data-
log [52] to reason about the knowledge of a group of distributed nodes and develop Knowlog,
which is a variant of Datalog that can express nodes’ state of knowledge using a set of epis-
temic modal operators. Their approach abstracts the modes of communication exchange
from states of knowledge so that reasoning is simplified. They use an implementation of the
Two-Phase Commit protocol to analyze their approach. Fagin et al. [55] present a formal
model for the analysis of attainable knowledge states in distributed systems under certain
assumptions. Their model can be used to formalize assumptions about distributed systems,
such as whether they are deterministic or non-deterministic and whether the knowledge is
cumulative or non-cumulative. They also provide a complete axiomatization of knowledge
for some important cases of interest. Van Der Mayden [157] establishes the completeness
of a logic of knowledge and time for all classes of systems that satisfy the perfect recall
property which is true if, at all times, a processor’s state includes a record of its previous
states. They also provide an abstract characterization of systems with perfect recall that
can be used to prove completeness. Kuznets et al. [98] propose a framework for reasoning
about knowledge in multi-agent asynchronous systems with Byzantine fault failures. Their
framework combines epistemic and temporal logic for specifying distributed protocols and
their behaviors. The modularity of their approach allows modeling of any timing and syn-
chrony properties of distributed systems. Knight et al. [94] propose a logic for reasoning
about epistemic messages in asynchronous distributed systems where knowledge is true at
the start of announcement and agents can predict messages that have been sent, but not
yet received. They extend the Public Announcement Logic in which announcements from
an external source can be used to model messages broadcast by agents within the system.
Halpern [70] presents a survey of formalizations of knowledge in asynchronous and unreliable
distributed systems, and provides examples to argue why this formalization of knowledge is
important for analyzing distributed systems. Dwork et al. [50] present a general framework
for formalizing and reasoning about knowledge in distributed systems. They formalize the
relationship between common knowledge, global knowledge, and other states of knowledge,
and show that in real-life distributed systems, common knowledge cannot be attained. They
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also investigate other weaker states of knowledge that are practically attainable. Halpern
et al. [72] present a categorization of epistemic and temporal logic along two dimensions:
the language used and the assumptions about the underlying distributed systems. They use
these categorizations to introduce ninety-six logics, which they investigate by characterizing
their complexity and their dependence on parameter combinations. However, none of this
work has presented any mechanically-verified knowledge propagation protocols.

Previous work on formal verification of atomic-commit protocols has been limited to
model checking. Popovic et al. [144] have presented a model checking-based approach for
analysis of distributed transaction management protocols using the SMV formal verification
tool and have used their approach for the verification of the Two-Phase Commit protocol.
Atif [8] has presented an analysis of the Two-Phase Commit protocol and its variant, the
Three-Phase Commit protocol, by using the process algebra mCRL2 and modal µ-calculus.
They have model checked both variants of the protocol under different communication set-
tings to analyze their behavior in practical distributed networks. None of the above work has
presented any mechanically-verified theorems that can guarantee that correctness properties
will hold in infinite input states.

We improve upon prior work by presenting a formally-verified distributed knowledge
propagation protocol that can be used to attain a safe state of knowledge for multi-agent
distributed applications like DAC and providing machine-checked formal proofs of some
correctness guarantees necessary for safety-critical aerospace applications.

3.6 Chapter Summary
In this chapter, we have formalized a safe state of knowledge required for our Decen-

tralized Admission Control approach and presented a distributed knowledge propagation
protocol TAP for attaining the safe state of knowledge. We have specified two correctness
properties for TAP — safety and progress, and identified a set of system conditions under
which these correctness properties can be guaranteed. The set of conditions we have iden-
tified is practical and sufficient and we have informally discussed that this may be one of
the weakest sets of conditions that will be required for guaranteeing the relevant correctness
properties. Using TLAPS, we have developed mechanically-verified proofs to show that the
properties can be guaranteed under the identified conditions, thereby making our protocol
suitable for safety-critical aerospace applications.
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Since aircraft have limited time to remain airborne and air-traffic data has a short
useful lifetime, aircraft must be able to make operational decisions within some time bounds.
Therefore, a guarantee of eventual progress alone is not sufficient under such circumstances.
A potential future direction of work would be to investigate the development of guarantees of
timely progress that can be more useful. This can be done by using statistical observations
about message delays in the IoP. Our current protocol also relies on the assumption that all
aircraft are non-Byzantine, requiring them to be cooperative and "well behaved". This is a
strong assumption and does not consider pilot errors and other uncertainties presented by
real-world applications. Therefore, another potential direction of work would be to expand
our system model to accommodate Byzantine and adversarial behavior of aircraft.



CHAPTER 4
REASONING ABOUT PROBABILISTIC PROPERTIES OF

DISTRIBUTED COORDINATION ALGORITHMS

4.1 Chapter Introduction
In Chapter 2 and Chapter 3, we have provided formal guarantees of eventual progress

for distributed consensus and knowledge propagation algorithms useful for our Decentralized
Admission Control approach. However, a guarantee of eventual progress does not provide
any bound on the amount of time that may be required for a distributed algorithm to achieve
its goal. As air traffic data usually has a short useful lifetime and aircraft have limited time
to remain airborne, a guarantee of eventual progress alone is insufficient for time-critical
UAM applications like DAC. To be useful, a progress guarantee must provide some time
bounds that the aircraft can use to make important decisions. E.g., if there is a guarantee
that consensus will take at most 1 second, then a candidate can decide to only compute
flight plans that start after 1 second.

The total clock time that is required for successful completion of a distributed al-
gorithm is dependent on three factors — message transmission delays, message processing
delays, and the number of messages involved. In asynchronous communication networks
like the IoP, message delays are unbounded, making it impossible to provide deterministic
bounds on the total time that may be required for a distributed algorithm to make progress.
In the absence of deterministic time bounds, it is possible to provide probabilistic bounds for
the timely progress of distributed algorithms by modeling the factors affecting total time
as stochastic processes. This can be done by probabilistically reasoning about the message
delays and developing appropriate guarantees of probabilistic properties of timely progress
for distributed algorithms. E.g., if a timely progress property states that “Knowledge prop-
agation will take at most 5 seconds with a probability 99.99999999%", then an aircraft can
choose to only compute flight plans that start after 5 seconds to ensure that the plans don’t
become obsolete by the time that they are successfully propagated.

In this chapter, we introduce machine-checked guarantees of probabilistic properties

Portions of this chapter previously appeared as: Paul, S., Patterson, S., Varela, C.A.: Formal guarantees
of timely progress for distributed knowledge propagation. In: Formal Methods for Autonomous Systems
(FMAS), pp. 73-91 (2021). doi:10.4204/EPTCS.348.5
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of timely progress for distributed algorithms (assuming eventual progress) by using theories
apposite to low-altitude platforms (LAP) [25] of airborne communication such as VANETs.
Particularly, we formalize the theory of the Multicopy Two-Hop Relay (MTR) protocol [112]
to model message transmission delays in VANETs and the M/M/1 queue system [110] to
model message processing delays. We then use the probabilistic bounds on these delays to
provide a sufficiently high-level guarantee of timely progress for the knowledge propagation
algorithm TAP (Chapter 3) that can be used for DAC. Furthermore, we showcase the devel-
opment of a formal library in Athena, that is tailored towards reasoning about probabilistic
properties of timely progress for distributed algorithms deployed over VANETs.

The rest of the chapter is structured as follows: Section 4.2 presents our approach of
developing probabilistic properties of timely progress for distributed coordination algorithms;
Section 4.3 showcases the development of a formal proof library in Athena tailored towards
reasoning about probabilistic properties of distributed algorithms deployed over VANETs
like the IoP; Section 4.4 presents prior work related to progress analysis and formalization
of relevant mathematical theories; and Section 4.5 concludes the chapter with a summary
and presents some potential future directions of work.

4.2 Probabilistic Properties of Timely Progress for Distributed

Algorithms
For any distributed algorithm, if eventual progress is guaranteed, then the total time

taken for successful propagation is dependent on the following:

1. message transmission delays (TDm),

2. message processing delays (TDm), and

3. the total number of messages involved (Nm).

In the absence of deterministic properties, it is possible to employ a probabilistic approach
for providing formal guarantees of timely progress. This can be done by probabilistically
reasoning about the message delays using either theoretical models or data-driven models. In
contrast to theoretical models that are based on analytical results about system characteris-
tics, data-driven models are usually based on real-time or historical statistical observations
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about a system. This chapter focuses on using theoretical models for reasoning about timely
progress of distributed coordination algorithms.

For UAM applications, it is desirable to choose theoretical models that are appropriate
for VANETs like the IoP. Through the IoP, aircraft should be able to not only communicate
their own information but also relay received information from other aircraft using a multi-
hop ad-hoc approach [162]. Moreover, an aircraft can be viewed as a single server where
messages arrive, wait for some time until they are processed, and take some time to be
processed. This makes it appropriate to use queueing theory [110] to reason about message
processing delays. The M/M/1 system is an elementary queue system that consists of a
single server that processes all messages which are received, making it a reasonable choice
for modeling message processing with respect to a single aircraft. The M/M/1 system also
provides some useful analytical properties that make it possible to formally reason about the
message processing delays. Therefore, to develop formal probabilistic properties of timely
progress for distributed algorithms deployed over VANETs, we assume the following:

• all aircraft use the MTR protocol for message transmission between each other,

• each aircraft independently implements an M/M/1 queue to process the messages that
it receives,

• the transmission delays of the messages are independent and identically distributed (IID),

• the processing delays of the messages are IID, and

• the transmission delays are independent of the processing delays.

4.2.1 Modeling the Message Transmission Delays in VANETs

n+1 hops

DestinationSource Relay 1 Relay 2 Relay n

Figure 4.1: Message transmission via relaying.

Relaying (Fig. 4.1), for data transmission between a source and a destination when the
two nodes are not within transmission range, has been proposed to be an efficient mode of
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communication in VANETs [68]. Relaying has also been considered to be appropriate for
VANETs like the IoP where two communicating aircraft may not always be within direct
transmission range [162]. Therefore, to ensure that our assumptions about message trans-
mission delays in VANETs are consistent with prior work in the literature, we use the theory
of the MTR protocol. For this, we partially base our specification of MTR on the description
of the protocol presented by Al Hanbali et al. [4].

In the basic two-hop relay protocol, there are a set of M + 1 mobile nodes whose
trajectories are IID [68]. If a source node wants to transfer a message to a destination
node, it can either transmit it directly to the destination, if the destination is within its
transmission range, or, it can transmit copies of the message to one or more relay nodes. A
relay node can transmit a copy of a message directly to the destination node if the two are
within the transmission range of the relay node. A relay node, however, cannot transmit a
copy of a message to another relay node. Each message, therefore, makes a maximum of two
hops—it is either transmitted directly from the source to the destination, or it is transmitted
through one intermediate relay node.

In the MTR protocol [4], transmission delay TDm is the time taken for the destination
to receive a message m or a copy of m for the first time. Two nodes meet when they come
within the transmission range of one another and inter-meeting time is the time interval
between two consecutive meetings of a given pair of nodes. The inter-meeting times of all
pairs of nodes are IID with the common cumulative distribution function (CDF) G(t). The
source can only transmit a message to a relay that does not already hold a copy. Message
transmission between two nodes within range is instantaneous. Each copy of a message has
a time-to-live (TTL), which is the time after which a relay has to drop the copy if it has not
been transmitted by the relay yet.

To derive a probabilistic bound on the time taken to transmit a message using MTR,
we make the following assumptions:

• the TTLs for all messages are unrestricted, i.e., a message can be held by a relay node
until it can transmit it,

• the inter-meeting times of the mobile nodes are exponentially distributed with the rate
parameter λMT R,

• since delivery is instantaneous when the nodes meet and TTLs are unrestricted, the
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inter-meeting time between the source and the destination (Tsd) or between a relay i

and the destination (Trid) also represents the time taken by the source or the relay to
directly deliver a message to the destination, and

• the source node transmits the copy of a message to all M − 1 relay nodes. A message
(or a copy) can, therefore, be delivered to the destination by the source or any of the
relay nodes. Hence, the actual time taken to deliver the message will be the minimum
of {Tsd, Tr1d, ..., TrM−1d} (Eq. 4.1).

TDm = min({Tsd, Tr1d, ..., TrM−1d}) (4.1)

By using the above assumptions and necessary theories from probability, random variables,
and exponential distributions, we have formally derived the following probabilistic bound on
the time taken to deliver a message m using MTR:

P (TDm ≤ t) = 1 − e−λMT RMt (4.2)

Now, the derivative of the above expression conforms to the probability density func-
tion (PDF) of an exponential distribution with rate parameter λMT RM . Therefore, we can
conclude that TDm is exponentially distributed with a rate parameter λDm = λMT RM .

4.2.2 Modeling the Message Processing Delays in VANETs

Waiting line Server(s)

Total processing time

Waiting time Service time

Processed
message

Incoming
messages

Message
interarrival

time
Figure 4.2: A typical queuing system.

Queueing theory (Fig. 4.2) has been extensively used in the literature for modeling
throughput in VANETs [97, 161, 164, 166]. An aircraft communicating using the IoP can be
considered to be a single server where messages arrive, wait some time in a queue until they
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are processed, and take some time to be processed. Therefore, for modeling the message
processing delays in the aircraft, we use the theory of queues, particularly the M/M/1 queue
system [110]. We choose the M/M/1 queue system because it provides elegant analytical
properties for computing the total time TPm required for a message m to be processed.
This processing time includes the time spent in the queue and the time spent in actually
processing the message. An important property of TPm in the M/M/1 queue system is that
TPm is exponentially distributed [16].

The M/M/1 queue system consists of a single server where customers arrive according
to a Poisson process [106]. It has the following characteristics [16]:

• the interarrival times of messages in the queue are exponentially distributed with a
rate parameter λa,

• the service time of messages, which is the time spent in actually processing a message,
is exponentially distributed with a mean 1/µs,

• the queue is managed by a single server, and

• the number of message arrivals in an interval of length τ follows a Poisson distribu-
tion [109] with a parameter λaτ .

To probabilistically model TPm , we use Little’s theorem [111], which is an important
fundamental result in queueing theory. If Nq and Tp represent the average number of mes-
sages and the mean processing delay (queueing delay + service delay) respectively13, then
Little’s Theorem states the useful relationship conveyed in Eq. 4.3.

Nq = λaTp (4.3)

A proof of Little’s Theorem has been presented in [16], which we have formalized in Athena14.
The proof uses N(τ), α(τ), and T (i) to represent the number of messages in the system at
time τ , the number of messages that arrived in the interval [0, τ ], and the average time spent
in the system by message i respectively. The average arrival rate over the time period [0, t]

13Note that Tp = E [TPm
] is the mean or the expected value of TPm

.
14We present the detailed proof described in [16] to clearly highlight the deficiencies in the Athena for-

malization of the proof in version 0.1 of our proof library.
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is then given by:
λt = α(t)

t
(4.4)

Similarly, the average processing delay of the messages that arrived in the interval [0, t] is
given by:

Tt =
α(t)∑
i=1

T (i)
α(t) (4.5)

The average number of messages in the system in the interval [0, t] is given by:

Nt = 1
t

∫ t

0
N(τ)dτ (4.6)

Now, the graphical analysis of a FIFO system reveals the following [16]:

1
t

∫ t

0
N(τ)dτ = 1

t

α(t)∑
i=1

T (i) (4.7)

Using Eq. 4.4 to Eq. 4.7, it can be shown that:

Nt = λtTt (4.8)

Assuming that the limits Nq = limt→∞ Nt, λa = limt→∞ λt, and Tp = limt→∞ Tt exist, we
can now obtain Eq. 4.3 to prove Little’s Theorem.

Now, using the properties of the Poisson distribution, it has been shown in [16] that:

Nq = λa

µs − λa

(4.9)

Again, from Eq. 4.9 and Eq. 4.3, we can obtain the following relationship:

Tp = 1
µs − λa

(4.10)

Finally, since TPm is exponentially distributed, its rate parameter λPm can be obtained as15:

λPm = 1
E [TPm ] = 1

Tp

= µs − λa (4.11)

15For an exponentially distributed random variable, the rate parameter is the reciprocal of the mean.
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4.2.3 Use Case: Timely Progress for the Two-Phase Acknowledge Protocol

We had introduced the distributed knowledge propagation protocol TAP in Chapter 3.
In TAP, from the perspective of a propagator, successful propagation involves a deterministic
number of messages — for each learner, 4 messages are required, so for R learners, the total
number of messages required for successful propagation is 4 × R. If eventual progress is
guaranteed, then in the worst-case, when there is no concurrency in message transmission or
processing, the total time (TS) taken for successful propagation can be calculated by using
the total number of messages that are involved (NM), and the transmission delay (TDm) and
the processing delay (TPm) of each message m. The total time for the worst-case scenario
can, therefore, be obtained using Eq. 4.12.

TS =
NM∑
m=1

TDm +
NM∑
m=1

TPm (4.12)

Using the rate parameters λDm and λPm for the exponentially distributed message
transmission and processing delays, we can now provide a probabilistic bound on the worst-
case time for progress TS. For that, let

TD =
NM∑
m=1

TDm & TP =
NM∑
m=1

TPm (4.13)

From Eq. 4.12 and Eq. 4.13, for any two real numbers x and y, we can state:

((TD ≤ x) ∧ (TP ≤ y)) =⇒ (TS ≤ (x+ y)) (4.14)

Now, for two events, A and B, the following statement holds [117]:

(A =⇒ B) =⇒ (P (B) ≥ P (A)) (4.15)

Therefore, from Eq. 4.14 and Eq. 4.15, we get:

P (TS ≤ (x+ y)) ≥ P ((TD ≤ x) ∧ (TP ≤ y)) (4.16)

Since the processing delays are independent of the transmission delays, by the product rule
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of independent events [63] we have16:

P ((TD ≤ x) ∧ (TP ≤ y)) = P (TD ≤ x) × P (TP ≤ y) (4.17)

From Eq. 4.16 and Eq. 4.17 we have:

P (TS ≤ (x+ y)) ≥ P (TD ≤ x) × P (TP ≤ y) (4.18)

Now, both TD and TP are sums of IID exponential random variables. Therefore, TD

and TP follow two different Erlang distributions [109], each of which are parameterized by
a shape parameter (which is NM in both cases) and a rate parameter (λDm for TD and λPm

for TP ). The CDF of an Erlang distribution with shape parameter k and rate parameter λ
is given by:

FEr(t, k, λ) = 1 −
k−1∑
n=0

1
n!e

−λt(λt)n (4.19)

This can be used to compute the delay probabilities as follows:

P (TD ≤ x) = 1 −
NM −1∑

n=0

1
n!e

−λDm x(λDmx)n = FEr(x,NM , λDm) (4.20)

P (TP ≤ y) = 1 −
NM −1∑

n=0

1
n!e

−λPm y(λPmy)n = FEr(y,NM , λPm) (4.21)

From Eq. 4.18, Eq. 4.20, and Eq. 4.21, we can state the required bound on TS for TAP:

P (TS ≤ (x+ y)) ≥ FEr(x,NM , λDm) × FEr(y,NM , λPm) (4.22)

where NM = 4 ×R, λDm = λMT RM and λPm = µs − λa.
We have mechanically verified all the equations described in this section in Athena

by using theory from limits, distributions, real numbers, and other domains. However,
version 0.1 of our library lacks the theory required to reason about Poisson distributions
and graphical analysis. Therefore, we have taken Eq. 4.7 and Eq. 4.9 as conjectures for our
formal proofs. Both these equations are established results from queuing theory that have
been borrowed from Bertsekas et al. [16] and we plan to prove them in future work.

16The product rule states that for independent events A and B, P (A ∧B) = P (A) × P (B).
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4.3 A Formal Library for Reasoning About Distributed Algo-

rithms
Autonomous decentralized operations of mobile agents are complex in nature. Such

operations involve many interlinked aspects such as the mobility of the agents, the character-
istics of the communication network, the internal computational capabilities of the agents,
and the interaction between the agents. Therefore, to formally reason about such opera-
tions, it is necessary to holistically consider all these important aspects. Achieving this in
a machine-verifiable manner requires access to formal constructs, that are sufficiently ex-
pressive to correctly and completely specify such aspects, in some machine-readable formal
language. Developing such expressive formal constructs in a machine-readable language is a
challenging task since it requires domain knowledge of all aspects of the system that needs
to be specified, strong knowledge of formal logic and reasoning techniques, experience and
familiarity with the language in which the constructs are to be specified, and a significant
amount of time and effort. In the absence of a pre-existing library that provides the neces-
sary formal constructs to express a system, every time high-level properties of the system
need to be verified, engineers have to develop the required formalizations from the ground
up, often making the task of verification expensive.

For verifying the correctness of distributed algorithms deployed over VANETs, it is
oftentimes necessary to prove complex high-level properties of the algorithms. To specify
such high-level timely progress properties for TAP using the theory of the MTR protocol
and the M/M/1 queue system, we required theories in Athena to express constructs such
as networks, mobility models, communication models, inter-agent interactions, queues, and
distributed algorithms. For this reason, we have created the foundation for a formal library in
Athena that is tailored towards reasoning about high-level probabilistic properties of timely
progress for distributed algorithms deployed over VANETs17.

Athena provides a language for "proof programming" which relies on a fundamental
technique called method call. Method calls in Athena represent logical inference rules that
can accept arguments of arbitrary types and are higher-order. Successful evaluation of a
method call results in a theorem, which is then added to the assumption base. The assumption
base is a set of sentences that have either been proven to be correct by using inference rules

17Complete Athena code available at https://wcl.cs.rpi.edu/assure
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or have been asserted to be correct. Athena provides the soundness guarantee that any
proven theorem will be a direct consequence of sentences in the assumption base.

Athena allows the use of modules that can be used to organize, partition, and encapsu-
late theories into multiple logically separate namespaces. Modules are dynamic in the sense
that they can be extended at any time and additional content can be added to them using
the extend-module command (Fig. 4.3). This feature allows theories, which are logically
separate from one another, to be categorized and structured for brevity. It also makes it
easy to generalize theories for use in different contexts by importing them as required.� �

# Module Prob being extended by module PrbIndRv
load " Athena_LibDDDAS /math/Prob/Prob.ath"
extend-module Prob {

module PrbIndRv {
# contents of module PrbIndRv
...
}� �

Figure 4.3: Extending modules in Athena.

We have used our Athena library for distributed coordination algorithms to formalize
and verify all the high-level properties and theorems mentioned in Section 4.2.3. For this
purpose, we have formalized theories necessary to reason about distributed coordination
algorithms in VANETs by adding constructs that can be used to specify the properties of
interest. E.g., we have created a domain of distributed algorithms called DistProt that
has properties which represent the characteristics of the operational environment such as
dpTotTim (the total time for progress), msGetTd (the message transmission delays) and
msGetTp (the message processing delays). The Athena code for Eq. 4.16, which uses these
constructs to define the probabilistic relationship between the total processing delay, the
message transmission delays, and the message processing delays, is given in Fig. 4.4.� �

# The relationship between total time for progress and message delays
define THEOREM-P-TS >= P-TD&TP :=
( forall DP r1 r2 .

(( Prob. probE (Prob. consE Prob .<= ( dpTotTim DP) (r1 + r2)))
>=
(Prob. probE

(Prob. cons2E
(Prob. consE Prob .<= ( Random .SUM ( msGetTd ( dpGetMsgs DP))) r1)
(Prob. consE Prob .<= ( Random .SUM ( msGetTp ( dpGetMsgs DP))) r2)))))� �

Figure 4.4: The representation of Eq. 4.16 in Athena.

Similarly to DistProt, we have specified a domain of networks called Network, a do-



71

main of network protocols called PrtType that can represent protocols like MTR, a domain of
queues called Queue to represent queuing models like M/M/1, and other specialized theories
to reason about distributed algorithms deployed over VANETs.� �

# Expected value of message processing delays in M/M/1 queue
conclude THEOREM-mean-T-value
...
let{

...
N_d :=

( (Dist. ratePar ( Random .pdf ( srvcTm Q))) # mu_s
-
(Dist. ratePar ( Random .pdf ( cstArRat Q))) # lambda_a

);
...

}
( !chain [ T

= (N * (1.0 / L)) [T= N-x-inv-L ]
= ((L / N_d) * (1.0 / L)) [N= L-by-N_d ]
= (1.0 / N_d) [ conn-2-a-by-d-x-b-by-a ]
])� �

Figure 4.5: A snippet from the proof of Eq. 4.10 in Athena.

Athena supports the use of tactics for interactively guiding the proof development of
higher-level proof obligations from lower-level facts in the assumption base. There are built-
in methods in Athena that can be used to implement tactics for both forward and backward
reasoning. E.g., Fig. 4.5 shows the use of the built-in chain method for deriving the proof
of Eq. 4.10 using forward reasoning, where T represents Tp and N_d represents µs − λa. In
the future, we aim to define specialized methods that can be used as tactics for reasoning
about distributed algorithms.� �

# The relationship between cdf and probability
define cdf-prob-conjecture :=
( forall x R . (( Random .cdf x R) = ( probE ( consE <= x R))))� �

Figure 4.6: The relationship between CDF and probability defined as a
conjecture in Athena.

One of our goals while developing the library in Athena was reusability. As the proofs
of different independent high-level properties are often dependent on common fundamental
theories, it becomes beneficial to design the common theories in a manner that makes them
reusable in different contexts. E.g., the statement cdf-prob-conjecture (Fig. 4.6), which
defines that the CDF GX(x) of a random variable X is the probability that X ≤ x for
all reals x, has been used in various contexts throughout our formalization of the results
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presented in Section 4.2 (Fig. 4.7).� �
# Proof of P(min[X1 ,X2 ,...] <= y) = 1 - (1- G(X))^N
conclude THEOREM-probability-MIN- <= -IID-RVS-Gx
...

conn-to-cdf-prob := ( !uspec ( !uspec cdf-prob-conjecture ( Random . rvSetIdElmnt rvSet )) R)
...

# Probabilistic bound on customer delay for M/M/1 queue
conclude THEOREM-cstDly-prob
...

conn-2-cdf-prob-conjecture := ( !uspec ( !uspec Prob. cdf-prob-conjecture ( cstDly Q)) r)
...� �

Figure 4.7: Some instances where the cdf-prob-conjecture has been reused.

Version 0.1 of our Athena library for distributed algorithms consists of 71 axioms and
27 theorems, including the high-level properties of distributed algorithms and other domains
described in this chapter. It is composed of theories from four primary domains — general
mathematics, probability, networks, and distributed systems. Within each domain, there
are theories from various related sub-domains. E.g., under the domain of networks, we have
theories from VANETs and queues. Fig. 4.8 depicts the hierarchy of version 0.1 of our Athena
library and the dependencies between the various modules representing the different logical
domains and sub-domains. As our primary goal was to develop high-level probabilistic
progress properties of TAP that can be directly useful for UAM, we adopted a top-down
approach of proof development where we only developed the lower-level theories that were
required to support the higher-level properties of interest to us.

During the development of our high-level formal guarantees of timely progress for TAP
in Athena, we have tried to use only fundamental facts from the various domains as axioms
However, in version 0.1 of our library, there are instances where we have taken some well-
established results from the domains as conjectures which we have not formally verified in
Athena (e.g. – Eq. 4.9, cdf-prob-conjecture). We believe that this does not invalidate the
results we have presented in the chapter or diminish their importance in any way. This is
because all the conjectures we have used are well-established facts in the literature of the
respective domains and have been informally proven beyond a reasonable doubt. Since our
primary goal was to verify the higher-level properties of timely progress for TAP that we
have presented in Section 4.2.3, in the interest of time, we decided to take some of these
well-established theories as foundations for developing our higher-level guarantees because
version 0.1 of our library lacks the necessary formal theory to mechanically verify them. We
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Figure 4.8: Hierarchy of version 0.1 of our Athena library for reasoning about
distributed algorithms deployed over VANETs.

aim to develop the proofs of these theories in Athena from just the fundamental axioms of
the corresponding domains in the future.

We have developed most of the symbols, domains, and relationships necessary to com-
prehensibly express all the assumptions and specifications using the capabilities of Athena’s
many-sorted first-order logic. We have tried to make the specifications reusable to different
contexts so that further expansion of the library can be aided by using the existing specifi-
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cations as building blocks rather than requiring to redevelop them for use in other contexts.
In our experience, efficiently designing reusable formal structures to express interconnected
theories requires several iterations where the specifications need to be improved to be more
general as new contexts for application are identified. Another challenge is the meaningful
modularization of the developed theories into appropriate categories to make it easy to im-
port them independently in different contexts. This is important because when theories are
imported during proof development, they are automatically added to the assumption base.
Well-defined modules allow theories to be imported only as needed without making the as-
sumption base unnecessarily large. This is an evolving project and we are certain that as
more theory is added to the library, many of the formalizations in version 0.1 of the library
will need to be redesigned in order to make them more general and better organized.

To the best of our knowledge, at the time of publication, our Athena library for dis-
tributed algorithms is the only library that provides a tailored formal foundation for reason-
ing about autonomous distributed coordination in VANETs based on the theory of relaying
and queuing systems. Therefore, we believe that our contribution will make the task of rea-
soning about properties of other distributed coordination algorithms, which are implemented
using the MTR protocol and the M/M/1 queue system, in Athena easier in the future as
a significant amount of reusable formal constructs to express useful properties have already
been developed. Nonetheless, additional theories will be required to reason about distributed
algorithms involving a non-deterministic number of messages (e.g. – the Synod consensus
protocol [136]). Our eventual goal is to expand the library by adding additional theories
from distributions, queues, vehicular networks, message sequences, and other necessary do-
mains to support reasoning about a variety of distributed algorithms that can be employed
for autonomous decentralized UAM applications like DAC.

4.4 Related Work
There is existing work in the literature on the informal analysis of timely progress

of consensus. Attiya et al. [10] provided lower-bounds on the time for progress in round-
based [44] consensus protocols. Attiya et al. [9] analyzed the time complexity of solving
distributed decision problems. Berman et al. [15] studied the number of message rounds
involved in various consensus protocols.

Existing work on machine-verified guarantees has mainly analyzed eventual progress.
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McMillan et al. [115] have proven eventual progress of Stoppable Paxos [114] in Ivy [134].
Dragoi et al. [47] and Debrat et al. [42] have proven eventual progress in LastVoting [32].
Hawblitzel et al. [82, 83] have proven eventual progress for a Multi-Paxos implementation
using Dafny [108]. In [136], we have mechanically verified eventual progress in the Synod
consensus protocol using Athena.

Formalization of mathematical theories also exists in the literature. Hasan [75] pre-
sented formalizations of statistical properties of discrete random variables in the HOL The-
orem Prover [67]. Hasan et al. have formalized properties of the standard uniform random
variable [76], discrete and continuous random variables [77,79], tail distribution bounds [78],
and conditional probability [80]. Mhamdi et al. [120,121] have extended Hasan et al.’s work
by formalizing measure theory and the Lebesque integral in HOL. HOL formalizations of the
Poisson process, continuous chain Markov process, and M/M/1 queue have been presented
in [29]. Qasim [146] has used Mhamdi et al.’s work to formalize the standard normal variable.

In contrast to the existing work, we have developed formal theories tailored towards
machine-verifiable timely progress guarantees for distributed algorithms using models ap-
propriate for VANETs and have presented the timely progress guarantee of a knowledge
propagation protocol that can be used for autonomous decentralized UAM applications.

4.5 Chapter Summary
In this chapter, we have presented an approach for developing formal probabilistic

properties of timely progress for distributed algorithms deployed over VANETs by using the-
ories from the Multi-copy Two-Hop Relay protocol and the M/M/1 queue system to reason
about the non-deterministic message delays. Since probabilistic progress properties provide
useful probabilistic bounds on the time that may be required to make progress, they are more
useful than simply guarantees of eventual progress for time-critical UAM applications like
DAC. We have also showcased the development of a formal library in Athena that is tailored
towards mechanically reasoning about probabilistic properties of distributed coordination
algorithms deployed over VANETs. In the future, autonomous UAM applications will re-
quire participating aircraft to employ different types of distributed algorithms for achieving
different operational goals such as maintaining safe separation, autonomously coordinating
operations through a shared airspace, etc. Our proof library has, therefore, been tailored
to be reusable for reasoning about the probabilistic properties of a variety of distributed
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algorithms that can be used for such autonomous UAM applications.
Version 0.1 of our Athena library has some high-level conjectures since the version

lacks the theories required to formally verify them. In the future, we plan to formalize
the necessary fundamental theories required to prove these conjectures as theorems. The
library also does not support the complete formalization of timely progress if the number
of messages is non-deterministic. Therefore, another potential direction of future work is
to add additional theories to the library to allow reasoning about distributed algorithms
that involve a non-deterministic number of messages, such as the Synod consensus protocol.
In the future, we would also like to model other routing protocols suitable for VANETs
in addition to MTR so that appropriate guarantees can be provided depending on actual
implementations.



CHAPTER 5
DATA-DRIVEN RUNTIME VERIFICATION OF

DISTRIBUTED COORDINATION ALGORITHMS

5.1 Chapter Introduction
Distributed algorithms, that are deployed over VANETs like the Internet of Planes for

applications such as Decentralized Admission Control, are expected to operate under highly
uncertain and dynamic conditions. In Chapter 4, we had shown how formal guarantees
of probabilistic properties can be developed for such algorithms using theoretical models.
However, during operation, the uncertain factors affecting the probabilistic properties, such
as the message delays, may not conform to the initial theoretical assumptions. Under such
circumstances, formal proofs of guarantees that have been developed in the pre-deployment
stages may cease to be relevant after deployment as the assumptions made during proof de-
velopment may no longer be true at runtime. This creates the need for developing techniques
that can allow mechanically verified formal proofs of the correctness properties of distributed
algorithms to be useful in the face of dynamic operating conditions at runtime.

In the presence of dynamic operating conditions that violate theoretical assumptions,
data-driven statistical observations can be used to provide useful formal guarantees for dis-
tributed algorithms at runtime. This can be done by monitoring the operating conditions at
runtime to learn about possible violations of existing machine-checked properties and then
generating new formal properties that are true with respect to the real-time observations.
However, several significant challenges must be overcome to successfully achieve such theo-
rem proving-based runtime verification of distributed algorithms. Firstly, to detect violations
of the existing formal guarantees, the operating conditions must be analyzed accurately at
runtime with respect to the assumptions of the latest proofs. Secondly, it must be possible
to dynamically generate new formal properties at runtime, that are relevant with respect to
the real-time conditions and are machine verifiable. Addressing these challenges is a difficult
task because developing machine-verifiable formal proofs of non-trivial properties takes a
considerable amount of skill, expertise, and time. Therefore, it is not feasible to develop

Portions of this chapter previously appeared as: Paul, S., Kopsaftopoulos, F., Patterson, S., Varela,
C.A.: Dynamic data-driven formal progress envelopes for distributed algorithms. In: Dynamic Data-Driven
Application Systems (DDDAS), pp. 245-252 (2020). doi:10.1007/978-3-030-61725-7_29
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them from scratch at runtime to keep up with the dynamic operating conditions.
In this chapter, we propose some novel techniques to aid in the theorem proving-based

verification of dynamic distributed applications. First, we propose formal progress envelopes
for distributed algorithms that can be used to discretize the operational state space into
distinct regions where a formal proof of progress may or may not hold. Next, we introduce
parameterized proofs, a class of formal proofs that can be instantiated at runtime with
runtime-observable parameters which represent the real-time operating conditions. Finally,
using progress envelopes and parameterized proofs, we propose a DDDAS-based approach
that can be used to generate new formal guarantees at runtime. This approach utilizes
a formal DDDAS feedback loop to instantiate mechanically verified parameterized proofs
at runtime, thereby extending the practicality of mathematically rigorous formal theorem
proving techniques beyond the pre-deployment stages of dynamic distributed applications.

The rest of the chapter is structured as follows: Section 5.2 describes formal progress
envelopes; Section 5.3 introduces parameterized proofs; Section 5.4 presents our DDDAS-
based approach for the runtime verification of distributed algorithms; Section 5.5 discusses
related work; and Section 5.6 concludes the chapter with a discussion on future work.

5.2 Formal Progress Envelopes for Distributed Algorithms
A formal progress envelope for a distributed algorithm is a computable subset of the

system state space where the formal proof of a progress property holds. The envelope is
defined by a set of logical constraints parameterized by the system’s operational conditions.
To illustrate formal progress envelopes, let us consider a hypothetical distributed protocol
deployed in the IoP. Assume that there is a progress guarantee that the protocol will make
progress in under 8 ms with 99.999999% probability if the message delays are exponentially
distributed with a rate parameter λ. Now, at runtime, the message delays are observed
over two different time intervals — [t0, t1] and [t1, t2]. It is seen that the message delays do
not follow exponential distribution in [t0, t1] but follow an exponential distribution with rate
parameter λ in [t1, t2]. Therefore, we can say that the first interval is outside the progress
envelope while the second interval is inside the envelope (Fig. 5.1).

Since the parameters that define formal progress envelopes can be quantified and mea-
sured, the envelopes can be analyzed against real-time data. A correctness sentinel is a
runtime-accessible program that can monitor real-time data-streams to detect if the data
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Figure 5.1: A simple binary progress envelope for message delays x.

conforms to progress envelope constraints [21]. Like any software for safety-critical systems,
the sentinels must be verified to ensure that they can monitor the real-time data correctly.
To ensure their correctness, sentinels can be generated directly from the formal specifica-
tions of the envelopes and some underlying physical models of uncertainty or be designed in
a domain-specific language amenable to verification.

5.3 Parameterized Formal Proofs
Mathematically rigorous formal proofs of correctness can be developed manually in the

pre-deployment stages of dynamic distributed systems. In order to make these proofs useful
at runtime, it is possible to design them as functions of the progress envelope parameters
that can be quantified and measured in real-time. E.g., instead of a static proof that states:
"The probability that round-trip message transmission latency will be at most 0.9 seconds is
99.99999%", a parameterized proof would state: "If the one-way message transmission and
processing delays follow Gaussian distributions N (µX , σ

2
X) and N (µY , σ

2
Y ), then the proba-

bility that the round-trip message latency will be at most t seconds is G(µX , σX , µY , σY , t)",
where G is the CDF of the combined Gaussian distribution N (µX +µY , σ

2
X +σ2

Y ). Modeling
the statistical reasoning allows the proofs to be instantiated with real-time parameters at
runtime in order to generate properties that are both dynamically useful and formally rig-
orous. It should, however, be noted, that proofs that are not designed as functions of only
runtime observable parameters, cannot be classified as parameterized proofs as they cannot
be instantiated using real-time observations.
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5.4 Runtime Verification of Distributed Algorithms Using DDDAS
The DDDAS paradigm allows a system to dynamically incorporate new data to enhance

an existing model [40]. DDDAS enables an application to influence the data collection and
measurement processes in real-time and give way to more effective collection and measure-
ment of data, thus leading to a better quality of data specifically suited for the application.
This paradigm involves the use of a feedback loop which is used to update an existing ap-
plication model with better quality data in real-time to create a more accurate model. We
present a DDDAS-based approach for the runtime instantiation of parameterized proofs with
real-time observations to generate new formal guarantees at runtime.

5.4.1 Formal DDDAS Feedback Loop

Proof
Refinement

Sentinels

Model
Refinement

Live
System

Real-Time
Proof

Envelope

Real-Time
Proof

Parameters

Real-Time
Proof

Envelope

Updated
System
Model
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Real-Time
GuaranteesHard
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Figure 5.2: Formal DDDAS feedback loop.

Our formal DDDAS feedback loop consists of the following components (Fig. 5.2):

• The proof refinement component receives a parameterized proof with a set of initial
parameters and real-time inputs from the sentinels. If possible, it refines the proofs
with the real-time parameters and provides new envelopes.

• The model refinement component receives real-time envelopes from the proof refine-
ment component and an initial system model. It updates the system model according
to the latest envelopes.

• The sentinels analyze the real-time operating conditions of the system against the
latest envelopes. If the conditions do not conform to the envelopes, they send real-
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time parameters to the proof refinement component and inform the live system about
guarantees that hold in real-time.

• The live system uses the updated system model from the model refinement component.

The DDDAS feedback loop dynamically updates the formal proofs with parameters
that reflect the runtime operating conditions of a system, thereby allowing the development
of highly adaptive provably correct applications that can adapt to properties that hold at
runtime. In the case of systems that are dynamic in nature, this feedback loop can be used
by developing suits of model-specific parameterized proofs that can change dynamically
depending on the model that is being used at runtime. If there is a set of models M, then
for each model M in M, there can be a set of parameterized proofs S(M). If the DDDAS
system updates its model to any model M in M at runtime, the corresponding set of proofs
S(M) can be used to provide guarantees. This approach, however, has its limitations as only
a finite number of models and corresponding sets of proofs can be developed in advance. If
the system chooses a model M ′ ̸∈ M at runtime, then no guarantees can be generated.

5.4.2 Simulation of the Feedback Loop

To illustrate the working of the formal DDDAS feedback loop, we developed a simple
simulation with synthesized data18. Details of the simulation setup are given below:

• The proof refinement component has the following pre-proven parameterized property:

The probability that a random variable X following a Gaussian distribution fX will
take values of at most v is

∫ z
−∞

1√
2π
e−x2/2dx, where z = v−µX

σX
is the standard score and

µX and σX are the mean and standard deviation of fX .

• The runtime-observable parameter is the one-way message transmission delay TPm .

• The live system is concerned with finding the round-trip delay 2 × TPm .

• The model refinement component chooses the value to use for TPm as a model for the
live system’s calculations.

• The sentinel monitors an incoming stream of synthesized transmission delays at run-
time. The parameters monitored are the mean and standard deviation, and a check
for normality. The hard constraint for the simulation is P (TPm ≤ 15 ms) ≥ 99.9%.

18A video of the simulation can be found at https://wcl.cs.rpi.edu/assure
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The simulation proceeded as follows (Fig. 5.3):

1. Initially, there was an assumption that TPm follows a Gaussian distribution fT with
µT = 5 and σT = 1.

• The proof refinement component used this to calculate two initial properties:

A P (TPm ≤ 10 ms) = 99.99997%

B P (TPm ≤ 15 ms) = 99.99999%

• As P (TPm ≤ 10 ms) > 99.9%, the model refinement component selected TDm = 10
ms and the live system computed a round-trip delay of 20 ms.

2. The synthesized data was augmented to increase σT .

• The change in σT was detected by the sentinel and it sent the new value of σT ≈ 3.1
to the proof refinement component.

• The proof refinement component recomputed the properties A and B as follows:

A P (TPm ≤ 10 ms) = 94.41874%

B P (TPm ≤ 15 ms) = 99.92945%

• Now, the model refinement component selected TDm = 15 ms and the live system
computed a round-trip delay of 30 ms.

3. We further augmented the synthesized data to increase σT .

• The sentinel detected the new value σT ≈ 4.7 to the proof refinement component.

• The proof refinement component recomputed the properties A and B as follows:

A P (TPm ≤ 10 ms) = 86.13408%

B P (TPm ≤ 15 ms) = 98.45359%

• The sentinel detected the violation of the hard constraint and responded to the
live system with a message saying that useful proofs could no longer be provided.
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Figure 5.3: Screenshot from the formal DDDAS feedback loop simulation.

5.5 Related Work
Runtime monitoring of formal properties has been previously investigated. Mitsch

and Platzer [122] have presented ModelPlex, a runtime validation tool that can compare
the behavior of a system observed at runtime against a verified model and detect non-
compliance. Pike et al. [142] present Copilot, a language and compiler that can be used
to generate runtime monitors for real-time distributed systems. Dutle et al. [49] have used
Copilots to generate executable runtime monitors from temporal logic specifications that
have been used in NASA’s ICAROUS [38] project. Bocchi et al. [19] propose a runtime
monitoring discipline for distributed systems using session types that allows processes to be
independently verified, either statically during deployment, or dynamically during execution.
Formal safety envelopes for stochastic state identification have been proposed in [21] and [39]
that can be analyzed against real-time data using safety sentinels.

Our work improves upon previous work by proposing techniques to extend the practi-
cality of machine verifiable theorem proving methods beyond the pre-deployment stages of
dynamic distributed applications. This allows the generation of formally rigorous guaran-
tees of correctness at runtime when the dynamic operating conditions do not conform to the
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theoretical models used during proof development.

5.6 Chapter Summary
In this chapter, we have presented a DDDAS-based technique for the runtime verifica-

tion of dynamic distributed applications that may not conform to theoretical models during
operation. Our approach allows the instantiation of mechanically verifiable parameterized
proofs at runtime using a formal DDDAS feedback loop. The new guarantees generated are,
therefore, logically sound. This allows the mathematical rigor of formal theorem proving
methods to be useful beyond the pre-deployment stages of dynamic distributed applications.

Real-life data is seldom perfect – e.g., normality of sensor data may only be tested up to
some significant level and may also be affected by pre-processing. It is also computationally
expensive to effectively estimate the tail bounds of distributions in real-time. Future direc-
tions of work, therefore, include investigating the development of formally-verified runtime
sentinels that can find accurate and meaningful estimates from data. Another important di-
rection is the extensive experimental analysis of the formal DDDAS feedback loop to evaluate
its efficiency with regard to real-life applications.



CHAPTER 6
A CONFLICT-AWARE FLIGHT PLANNING APPROACH FOR

DECENTRALIZED ADMISSION CONTROL

6.1 Chapter Introduction
For our Decentralized Admission Control approach, the candidate aircraft must have

the capability to detect potential conflicts with the flight plans of the owners and then com-
pute proposal flight plans that are free from conflicts. Since aircraft flight plans can be
composed of non-trivial flight paths, such as a collection of four-dimensional waypoints, ex-
isting technologies like the Traffic Collision Avoidance System [57], which can detect pairwise
conflicts in straight line flight paths and recommend tactical avoidance maneuvers, cannot be
used for DAC. Other approaches for strategic conflict management such as the distributed
consensus-based merging technique for UAS presented by Balachandran et al [12] can be
applicable for DAC, but their technique has not been formally verified. Colbert et al. [37]
have presented PolySafe, a formally verified strategic algorithm that can be used to de-
tect conflicts between polynomial trajectories, but this approach cannot be used to generate
conflict-free flight plans for DAC. This creates the need for developing a formally verified
strategic conflict detection and avoidance approach that can be used by the candidates in
DAC to compute conflict-free proposals with respect to the owners.

In this chapter, we present a formally verified approach for strategic conflict-aware
flight planning. We define a flight plan as a tuple consisting of a start time and an ordered
collection of waypoints in three-dimensional space that an aircraft is expected to follow. Each
waypoint has an associated configuration that expresses the aircraft’s position, velocity, and
the expected course of flight to the next waypoint. Given a set of flight plans for traffic
aircraft, a set of waypoints, an initial flight plan for the ownship, and a set of discrete values
of allowed ground speed for the ownship, our approach generates, when feasible, a conflict-
free flight plan for the ownship with respect to the traffic flight plans. Conflict detection is
based on the assumption that aircraft follow constant-velocity, straight-line segments between
consecutive waypoints and that the set of flight plans for traffic aircraft is immutable.

Portions of this chapter previously appeared as: Paul, S., Patterson, S., Varela, C.A.: Conflict-aware
flight planning for avoiding near mid-air collisions. In: IEEE/AIAA Digital Avionics Systems Conference
(DASC), pp. 1-10 (2019). doi:10.1109/dasc43569.2019.9081658
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In our approach, the 3D heading of the velocity vector between waypoints is not
changed and the only changes observed in the solution flight plan are the times of arrival for
the waypoints. To generate a conflict-free plan for the ownship, suitable values of ground
speed are assigned to the flight segments between each consecutive pair of waypoints in the
ownship’s initial plan. This can be advantageous in situations where spatial deviation from
the original waypoints is restricted by lateral and/or vertical constraints that may be im-
posed by terrain, restricted airspace, weather, or airspace capacity. This is usually true for
terminal areas where aircraft are appointed standard terminal arrival routes (STAR) just
before the final approach and urban environments that usually provide little room for lateral
and vertical maneuvers. Our approach is therefore highly suitable for UAS integration into
the urban air-traffic management airspace using DAC.

The rest of the chapter is structured as follows: Section 6.2 describes the problem
statement for strategic conflict-aware flight planning and our algorithm for computing a
conflict-free flight plan; Section 6.3 presents the formal correctness properties of our ap-
proach; Section 6.4 describes simulation-based evaluations of our approach; Section 6.5 dis-
cusses prior work on conflict detection and avoidance techniques; and Section 6.6 concludes
the chapter with a summary and potential future directions of work.

6.2 Conflict-Aware Flight Planning
In this section, we present the formal foundation of our conflict-aware flight planning

approach. We introduce important definitions and terms, the problem statement, and the
strategy for computing valid conflict-aware flight plans. Our geometrical model of the conflict
detection problem is based on a flat-Earth assumption with a global frame of reference. We
also assume that aircraft are capable of sending and receiving multi-segment flight plans
with configuration information for each waypoint.

Table 6.1: Semantic domains used in specifying the flight planning problem.

Type Specification Set Domain
Configuration ⟨sx, sy, sz, vg, λ, vz⟩ C R3 × R ≥ 0 × [0, 2π) × R

State ⟨sx, sy, sz, vx, vy, vz⟩ S R6

Flight plan ⟨t,Cn⟩ F R ≥ 0 × Cn∈N
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6.2.1 Definitions of Some Important Terms

• The configuration of an aircraft is a vector ⟨sx, sy, sz, vg, λ, vz⟩ where sx, sy, and sz are
the coordinates in the x, y, and z dimensions, vg is the ground speed, λ is the course
or actual direction of motion of the aircraft with respect to the ground, and vz is the
vertical speed. The set C is the set of all configurations (Table. 6.1).

• The state of an aircraft is a vector ⟨sx, sy, sz, vx, vy, vz⟩ where sx, sy, and sz are the
coordinates and vx vy, and vz are the components of the velocity vector in the x, y,
and z dimensions. The set S is the set of all states (Table. 6.1).

• A waypoint is a position in 3D space and is represented by ⟨sx, sy, sz⟩ where sx, sy,
and sz are the coordinates in the x, y, and z dimensions.

• A segment is the 3D straight-line flight segment between two consecutive waypoints.
A segment is represented by its initial and final waypoints.

• A flight plan is a pair ⟨t,Cn⟩ containing a start time t and a vector of configurations
Cn that represent n waypoints in the flight plan. Two consecutive waypoints in a flight
plan are connected by a segment. In a flight plan with n waypoints, there are always
n− 1 segments. The set F is the set of all flight plans (Table. 6.1).

6.2.2 Detecting Conflict Between Two Flight Plans

Given the states of two aircraft a and b at time t0 as Sa,t0 and Sb,t0 , their 2D horizontal
position vectors and 2D horizontal velocity vectors can be computed as as sxy,a,t0 and sxy,b,t0 .

Sa,t0 = ⟨sx,a,t0 , sy,a,t0 , sz,a,t0 , vx,a,t0 , vy,a,t0 , vz,a,t0⟩ (6.1)

Sb,t0 = ⟨sx,b,t0 , sy,b,t0 , sz,b,t0 , vx,b,t0 , vy,b,t0 , vz,b,t0⟩ (6.2)

sxy,a,t0 = ⟨sx,a,t0 , sy,a,t0⟩ (6.3)

sxy,b,t0 = ⟨sx,b,t0 , sy,b,t0⟩ (6.4)

vxy,a,t0 = ⟨vx,a,t0 , vy,a,t0⟩ (6.5)

vxy,b,t0 = ⟨vx,b,t0 , vy,b,t0⟩ (6.6)
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The relative position and relative velocity of the two aircraft in the horizontal (xy) and
vertical dimensions (z) at time t0 can now be obtained by the following equations:

sxy,t0 = sxy,a,t0 − sxy,b,t0 (6.7)

vxy,t0 = vxy,a,t0 − vxy,b,t0 (6.8)

sz,t0 = sz,a,t0 − sz,b,t0 (6.9)

vz,t0 = vz,a,t0 − vz,b,t0 (6.10)

Assuming that both aircraft will maintain constant velocity flights, their relative horizontal
and vertical positions at any time t ≥ t0 can be computed as:

sxy,t = sxy,t0 + (t− t0)vxy,t0 (6.11)

sz,t = sz,t0 + (t− t0)vz,t0 (6.12)

We will be using s and v to denote sxy and vxy in the rest of the chapter.
The well-clear volume (WCV) [107] is defined as a cylinder of diameter D and height H

around the center of an aircraft, where D is the horizontal separation threshold and H is the
vertical separation threshold (Fig. 6.1). Two aircraft a and b are said to be in a conflict or an
NMAC at time t if their well-clear volumes intersect (Fig. 6.2), i.e., their horizontal distance
is less than D and vertical distance is less than H simultaneously at time t. Therefore, if
there is a conflict at time t, both Eq 6.13 and Eq 6.14 are satisfied for t:

∥st∥< D (6.13)

|sz,t|< H (6.14)

Conflict detection by using Eq 6.13 and Eq 6.14 is applicable only when the states of
two aircraft a and b at a time t0 are available as Sa,t0 and Sb,t0 , along with a known period of
interest during which both aircraft are expected to maintain constant-velocity flights. Given
two flight plans Fa and Fb, it is, therefore, necessary to discretize the temporal dimension
into discrete periods of interest. This can be done by creating a non-decreasing vector T
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D

H

Figure 6.1: Well-clear volume around an aircraft.

Well-clear volume

Near mid-air collision

Figure 6.2: An NMAC between two aircraft.

Figure 6.3: Periods of interest for two flight plans.
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(which ranges over Rn) of the times corresponding to the waypoints comprising the flight
plans. The times between consecutive temporal points in T can then be used as discrete
periods of interest for conflict detection. E.g., in Fig. 6.3, which shows the top-view of two
flight plans, the times corresponding to the waypoints in Fa are t1, t4, t7, and t9, and the
times corresponding to the waypoints in Fb are t0, t2, t3, t5, t6, and t8. The non-decreasing
vector of times can be written as T = ⟨t0, t1, t2, t3, t4, t5, t6, t7, t8, t9⟩. Each pair of consecutive
times in T has been used to discretize the temporal dimension (represented by the dotted
line) into periods of interest. It should be noted that periods of interest are only valid if two
flight plans have temporal overlap during that period. For example, in Fig. 6.3, the periods
t0 to t1 and t8 to t9 are not valid periods of interest.

Table 6.2: Functions used in the specification of our flight planning protocol.

Function Input Output
check-safety {0, 1}n×m × F × Fk × Rm × R2 Bool

complete {0, 1}n×m Bool
conflict F2 × R2 Bool

exists-violation R2 × F2 × R2 Bool
get-all-times F2 Rn

get-config R × F C
get-index Rm × R N

plan {0, 1}n×m × F × Rm F
safe Fk × R2 Bool
set {0, 1}n×m × N2 {0, 1}n×m

solve {0, 1}n×m × N × F × Fk × Rm × R2 F
T-violation Rn × F2 × R2 Bool
unassigned {0, 1}n×m N

valid {0, 1}n×m × N × F × Fk × Rm × R3 Bool

Given two flight plans Fa and Fb, a horizontal threshold D, and a vertical threshold
H, the conflict(Fa, Fb, D,H) function can check if a possible conflict exists between the
two flight plans (Fig. 6.4). It first uses the function get-all-times(Fa, Fb) to generate a
non-decreasing vector of times corresponding to the waypoints in FA and FB as T . confli

ct returns True if T-violation(T, Fa, Fb, D,H) returns True.
The function T-violation(T, Fa, Fb, D,H) recursively checks for possible conflicts in

the period of interest between every pair of consecutive times in T and returns True if a
conflict is detected (Fig. 6.5).

The exists-violation(t1, t2, Fa, Fb, D,H) function returns True if there exists a time
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t : t1 < t ≤ t2 & ∥s(t)∥< D & |sz(t)|< H. It uses the get-config(t, F ) function to get the
configurations of aircraft a and b at time t1 as Ca,t1 = ⟨sx,a,t1 , sy,a,t1 , sz,a,t1 , vg,a,t1 , λa,t1 , vz,a,t1⟩
and Cb,t1 = ⟨sx,b,t1 , sy,b,t1 , sz,b,t1 , vg,b,t1 , λb,t1 , vz,b,t1⟩. Then the x and y components of the
velocity vectors of a and b at time t1 are computed as:

vx,a,t1 = vg,a,t1 × cosλa,t1 (6.15)

vy,a,t1 = vg,a,t1 × sin λa,t1 (6.16)

vx,b,t1 = vg,b,t1 × cosλb,t1 (6.17)

vy,b,t1 = vg,b,t1 × sin λb,t1 (6.18)

Therefore, their initial states for the period of interest t1 to t2, are given by:

Sa,t1 = ⟨sx,a,t1 , sy,a,t1 , sz,a,t1 , vx,a,t1 , vy,a,t1 , vz,a,t1⟩ (6.19)

Sb,t1 = ⟨sx,b,t1 , sy,b,t1 , sz,b,t1 , vx,b,t1 , vy,b,t1 , vz,b,t1⟩ (6.20)

Now equations (6.13) and (6.14) can be used to determine if a violation of the well-clear
volumes of the two aircraft is possible between t1 and t2. exists-violation returns True

if a possible violation is detected (Fig. 6.6).
conflict (Fa, Fb, D,H):

Let
T = get -all -times(Fa, Fb)

in
if T- violation (T, Fa, Fb, D,H)

return True
else

return False
endif

Figure 6.4: Logic of the conflict function.

6.2.3 The Problem Statement

Given a set of flight plans Φ (which ranges over Fk, k ∈ N), the set is considered to
be safe if there exists no conflict between any pair of elements in Φ. The safe(Φ, D,H)
function returns True if for all Fi, Fj ∈ Φ, conflict(Fi, Fj, D,H) returns False (Fig. 6.7).
Thus, safe(Φ, D,H), implies that the set Φ is safe.
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T- violation (T, Fa, Fb, D,H):
Let
T = ⟨t1, t2, T ′⟩

in
if T == Null

return False
else

if exists - violation (t1, t2, Fa, Fb, D,H)
return True

else
return T- violation(⟨t2, T ′⟩, Fa, Fb, D,H)

endif
endif

Figure 6.5: Logic of the T-violation function.

exists - violation (t1, t2, Fa, Fb, D,H):
Let

⟨sx,a,t1 , sy,a,t1 , sz,a,t1 , vg,a,t1 , λa,t1 , vz,a,t1⟩
= get - config (t1, Fa)

⟨sx,b,t1 , sy,b,t1 , sz,b,t1 , vg,b,t1 , λb,t1 , vz,b,t1⟩
= get - config (t1, Fb)

vx,a,t1 = vg,a,t1 × cosλa,t1

vy,a,t1 = vg,a,t1 × sinλa,t1

vx,b,t1 = vg,b,t1 × cosλb,t1

vy,b,t1 = vg,b,t1 × sinλb,t1

Sa,t1 = ⟨sx,a,t1 , sy,a,t1 , sz,a,t1 , vx,a,t1 , vy,a,t1 , vz,a,t1⟩
Sb,t1 = ⟨sx,b,t1 , sy,b,t1 , sz,b,t1 , vx,b,t1 , vy,b,t1 , vz,b,t1⟩
sa,t1 = ⟨sx,a,t1 , sy,a,t1⟩
sb,t1 = ⟨sx,b,t1 , sy,b,t1⟩
va,t1 = ⟨vx,a,t1 , vy,a,t1⟩
vb,t1 = ⟨vx,b,t1 , vy,b,t1⟩
st1 = sa,t1 − sb,t1

vt1 = va,t1 − vb,t1

st = st1 + (t− t1)vt1

sz,t1 = sz,a,t1 − sz,b,t1

vz,t1 = vz,a,t1 − vz,b,t1

sz,t = sz,t1 + (t− t1)vz,t1

in
if ∃ t . ∥st∥< D & |sz,t|< H & t1 < t ≤ t2

return True
else

return False
endif

Figure 6.6: Logic of the T-violation function.
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safe(Φ, D,H):
if ∀Fi, Fj ∈ Φ : ¬conflict (Fi, Fj , D,H)

return True
else

return False
endif

Figure 6.7: Logic of the safe function.

The problem statement can now be expressed as: Given a set of immutable traffic flight
plans Φ, a horizontal threshold D, a vertical threshold H, and a proposal flight plan Fa such
that safe(Φ, D,H) but ¬safe(Φ∪{Fa}, D,H), the goal is to find a valid solution flight plan
F̄a such that safe(Φ ∪ {F̄a}, D,H).

6.2.4 The Strategy for Computing a Conflict-Free Flight Plan F̄a

We have shown how conflicts between two given flight plans can be detected using
the conflict function and how the safe function can determine if a set of flight plans is
safe. As expressed in the problem statement, the goal is to find a solution flight plan F̄a

given a safe set of immutable flight plans Φ and a proposal Fa. Since the flight plans in Φ
are immutable, only the proposal flight plan Fa may be adjusted to find a solution. Let us
consider an aircraft a that proposes Fa to be the ownship and another traffic aircraft b such
that Fb ∈ Φ. For the well-clear volumes of a and b to intersect, there needs to exist a time
t such that equations (6.13) and (6.14) are simultaneously satisfied. Therefore, our strategy
for avoiding conflicts between a and b is to assign suitable values of ground speed (vg) to the
different segments of Fa, such that the intersection of the well-clear volumes of a and b can be
avoided. Our algorithm takes as input a vector ξair (which ranges over Rn, n ∈ N) of discrete
values of airspeed that the ownship can fly with. Given the horizontal wind vector w, a
corresponding vector ξ = ξair(w) (which ranges over Rn, n ∈ N) of values of ground speed
for the ownship can be computed. The algorithm assigns a value of ground speed vg ∈ ξ

to each segment in the ownship’s flight plan to create a solution F̄a such that ¬conflict

(F̄a, Fb, D,H). The vertical speed for each segment is then adjusted accordingly to ensure
that the 3D profile of F̄a is similar to that of the original flight plan Fa. We assume that
aircraft can change their ground speed and vertical speed instantaneously. This pairwise
strategy for conflict avoidance is extended to the set Φ so that a valid F̄a will avoid conflict
with every Fb ∈ Φ, i.e., ∀Fb ∈ Φ : ¬conflict(F̄a, Fb, D,H). Our solution space is limited
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to different permutations of vg ∈ ξ in the segments comprising Fa. Therefore, it should be
noted that this conservative approach may not always be able to compute a solution flight
plan.

Since the heading of the velocity is not changed in a segment, only two components
of the velocity vector are altered – the ground speed and the vertical speed. This restricts
the introduction of new waypoints in the solution flight plan. Thus, for a flight plan Fa =
⟨t, ⟨C1, C2, ..., Cn⟩⟩, where Ci = ⟨sx, sy, sz, vg, λ, vz⟩, a valid solution F̄a = ⟨t, ⟨C ′

1, C
′
2, ..., C

′
n⟩⟩

satisfies the condition that C ′
i = ⟨sx, sy, sz, vg

′, λ, v′
z⟩.

There are two steps involved in the computation of a solution flight plan:

1. Finding a value of ground speed vg ∈ ξ for every segment L ∈ Fa.

2. Adjusting the vertical speed to maintain the 3D profile of the flight plan

In the next section, we will present the algorithm for computing a valid assignment of ground
speed for the segments, that has been formally verified to result in a conflict-free flight plan
if a solution is found.

When the ground speed in a flight segment between two consecutive waypoints is
changed from vg to vg

′ , in order to maintain the 3D profile of the flight segment, the vertical
speed vz for that flight segment needs to be adjusted 6.8. The angle that the straight-line

Figure 6.8: Vertical flight path angle.

flight path makes with the horizontal is given by the following equation:

γ = tan−1 ∆h
∆x = vz

vg

(6.21)
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For the vertical profile to remain same, the angle γ needs to remain unchanged. Therefore,
the required vertical speed v

′
z for a segment can be computed by using equation 6.22.

v
′

z = vg
′ × vz

vg

(6.22)

6.2.5 Algorithm for Computing the Ground Speed Assignments in F̄a

In this section, we present an algorithm for assigning a discrete value of ground speed
to each segment of a flight plan Fa to create a valid solution flight plan F̄a. We also describe
certain desirable correctness properties of the algorithm.

The assignment of ground speed to the segments can be arranged as an assignment
matrix M of dimension n × m where n ∈ N is the number of segments in Fa and m ∈ N

is the number of discrete values of ground speed in ξ (M ranges over {0, 1}n×m). Each row
r represents a segment of F̄a and each column c represents a value of ground speed in ξ.
Initially, all the cells of M are marked with 0’s. A matrix comprised of only 0’s is represented
by M0. When a value of ground speed corresponding to column c is assigned to a segment
corresponding to row r, the cell M [r, c] is marked with a 1. An example assignment matrix is
given in Fig. 6.9. It represents a flight plan with 5 segments that have been assigned ground
speeds of 140, 200, 120, 140, and 240 kts respectively.

Figure 6.9: Example assignment matrix for a solution flight plan.

An algorithm that solves the above matrix assignment problem should satisfy the
following properties:
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• Safety - The algorithm should return an assignment matrix M if and only if adding
the corresponding flight plan F to the given set of traffic flight plans Φ creates a safe
set of flight plans Φ ∪ {F}.

This property ensures that if a solution flight plan is found, the resulting set of flight
plans in the airspace is safe.

• Completeness - If there is a value of ground speed that can be assigned to a segment
such that it leads to a valid solution, then the algorithm will not return M0.

This property ensures that if a valid permutation of values of ground speed exists, the
algorithm will find the corresponding assignment matrix and not incorrectly terminate
by returning M0.

We propose a backtracking algorithm for finding the assignment matrix M correspond-
ing to a valid F̄a. It returns a solution only if it can find an assignment matrix such that the
corresponding flight plan can be safely added to the set of traffic flight plans. It returns M0

if no such solution exists.
complete (M ):

if ∀ row ∈ M : assigned (row)
return True

else
return False

Figure 6.10: Logic of the complete function.

check - safety (M,Fa,Φ, ξ,D,H):
Let
F = plan(M,Fa, ξ)

in
if safe(Φ ∪ {F}, D,H)

return True
else

return False
endif

Figure 6.11: Logic of the check-safety function.

Our algorithm makes use of four primary functions:

• The complete function takes as input an assignment matrix M and returns True only
if all the rows of M have a ground speed assignment (Fig. 6.10). An assignment matrix
M is complete if complete(M) returns True and incomplete otherwise.
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valid(v,M,Fa,Φ, ξ,D,H):
Let
M ′ = set(M ,unassigned (M ),getindex (ξ, v))
safety = check - safety (M ′, Fa,Φ, ξ,D,H)
succeeding = solve(M ′, Fa,Φ, ξ,D,H)

in
if ( safety & succeeding ̸= M0)

return True
else

return False
endif

Figure 6.12: Logic of the valid function.

solve(M,Fa,Φ, ξ,D,H):
if complete (M ) & check - safety (M,Fa,Φ, ξ,D,H)

return M
endif
if complete (M ) & ¬check - safety (M,Fa,Φ, ξ,D,H)

return M0
endif
if ¬complete (M )&∃v : v ∈ ξ&valid(v,M,Fa,Φ, ξ,D,H)

Let
M ′ = set(M ,unassigned (M ),getindex (ξ, v))

in
return solve(M ′, Fa,Φ, ξ,D,H)

endif
if ¬complete (M )&¬(∃v : v ∈ ξ&valid(v,M,Fa,Φ, ξ,D,H))

return M0
endif

Figure 6.13: Logic of the solve function.

• The check-safety function can determine if the flight plan corresponding to an assign-
ment matrix M can be safely added to Φ (Fig. 6.11). It takes as input an assignment
matrix M , the proposal flight plan Fa, a set of traffic flight plans Φ, a vector ξ of
discrete values of ground speed for aircraft a, and the thresholds D and H. It uses the
plan function to create a flight plan F corresponding to M and returns True only if
the set Φ ∪ {F} is safe.

• An assignment for a row is valid if and only if both the following conditions are satisfied:

– The corresponding intermediate flight plan can be safely added to the set Φ.

– The assignment allows assignments of ground speed for succeeding rows.

The valid function can be used to check the validity of an assignment (Fig. 6.12). It



98

takes as input a value of ground speed v, an assignment matrix M , the proposal flight
plan Fa, a set of traffic flight plans Φ, a vector ξ of discrete values of ground speed
for aircraft a, and the thresholds D and H. It returns True if the assignment of v to
the first unassigned row satisfies the two conditions for a valid assignment and False

otherwise.

• The solve function takes as input an assignment matrix M , the proposal flight plan
Fa, a set of traffic flight plans Φ, a vector ξ of discrete values of ground speed for
aircraft a, and the thresholds D and H (Fig. 6.13). It tries to assign a value of ground
speed to the first unassigned row of M (given by unassigned(M)). solve returns the
assignment matrix M if it is complete and check-safety returns True for M . If M is
incomplete, then solve checks if a valid assignment of ground speed is possible for the
first unassigned row. If a valid assignment of ground speed v can be found for the first
unassigned row, then the current assignment matrix M is updated to a new matrix
M ′ using the set function. The set function assigns 1 to the cell [unassigned(M),
getindex(ξ, v)], where the function getindex(ξ, v) returns the index of v in ξ. sol

ve then proceeds to make an assignment to the first unassigned row in the updated
assignment matrix M ′. If no valid assignment of ground speed can be found for the
first unassigned row of M , then solve exits by returning the empty matrix M0.

6.3 Formal Verification of the Flight Planning Algorithm
In this section, we present some important correctness properties of the specifications

introduced in Section 6.2. We also present the formal specifications of safety and complete-
ness properties.

Lemma 6.1 exists-violation returns True if and only if a violation of minimum hori-
zontal separation D and minimum vertical separation H between time t1 and t2 exists.

Lemma 6.1 ≡
∀D,H, t1, t2 ∈ R, Fa, Fb ∈ F :

exists-violation(t1, t2, Fa, Fb, D,H) ⇐⇒ ∃t ∈ R : ∥sxy,t∥< D & |sz,t|< H & t1 < t ≤ t2

Lemma 6.2 T-violation recursively checks for possible conflicts between pair of consecu-
tive times in a vector of times ⟨t1, t2, T ⟩ and returns True if a conflict is detected between
two consecutive times t1 and t2.
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Lemma 6.2 ≡
∀D,H, t1, t2 ∈ R, n ∈ N, T ∈ Rn, Fa, Fb ∈ F :

(exists-violation(t1, t2, Fa, Fb, D,H) =⇒ T-violation(⟨t1, t2, T ⟩, Fa, Fb, D,H))
& (¬exists-violation(t1, t2, Fa, Fb, D,H) =⇒

T-violation(⟨t1, t2, T ⟩, Fa, Fb, D,H) = T-violation(⟨t2, T ⟩, Fa, Fb, D,H))

Lemma 6.3 conflict function returns True if and only if a conflict is detected at any time
between two given flight plans.

Lemma 6.3 ≡
∀D,H ∈ R, Fa, Fb ∈ F :

T-violation(get-all-times(Fa, Fb), Fa, Fb, D,H) ⇐⇒ conflict(Fa, Fb, D,H)

Lemma 6.4 safe returns True if and only if there is no conflict between any two flight
plans in the given set of flight plans.

Lemma 6.4 ≡
∀D,H ∈ R, k ∈ N,Φ ∈ Fk :

¬(∃Fi, Fj ∈ Φ : conflict(Fi, Fj , D,H)) ⇐⇒ safe(Φ, D,H)

safe(Φ, D,H)=True guarantees that the set of flight plans Φ is safe with respect to
the horizontal and vertical thresholds D and H.

Lemma 6.5 check-safety returns True for an assignment matrix M if and only if adding
the corresponding flight plan to the set of traffic flight plans Φ results in a safe set of flight
plans

Lemma 6.5 ≡
∀D,H ∈ R, n,m, k ∈ N,M ∈ {0, 1}n×m, F ∈ F,Φ : Fk, ξ ∈ Rm :

safe(Φ ∪ plan(M,F, ξ), D,H) ⇐⇒ check-safety(M,F,Φ, ξ,D,H)

Lemma 6.6 complete returns True if and only if every row in the matrix M has been
assigned a value of ground speed.

Lemma 6.6 ≡
∀n,m ∈ N,M ∈ {0, 1}n×m :

(∀r ∈ M : assigned(r)) ⇐⇒ complete(M)
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Lemma 6.7 valid returns True if and only if the assignment of v to the first unassigned
row satisfies the two required conditions for a valid assignment.

Lemma 6.7 ≡
∀D,H, v ∈ R, n,m, k ∈ N,M ∈ {0, 1}n×m, Fa ∈ F,Φ ∈ Fk, ξ ∈ Rm :

valid(v,M,F,Φ, ξ,D,H) ⇐⇒
(check-safety(set(M, unassigned(M), getindex(ξ, v)), F,Φ, ξ,D,H)
&¬(solve(M,F,Φ, ξ,D,H) = M0))

6.3.1 The Safety Property

Theorem 6.1 (solve is safe) If solve returns a complete assignment matrix M , then
adding the flight plan F corresponding to M to the set of traffic flight plans Φ produces a
safe set of flight plans.

Theorem 6.1 ≡
∀D,H ∈ R, n,m, k ∈ N,M ∈ {0, 1}n×m, Fa ∈ F,Φ ∈ Fk, ξ ∈ Rm :

complete(M) =⇒
((solve(M,F,Φ, ξ,D,H) = M) ⇐⇒ safe(Φ ∪ plan(M,F, ξ), D,H))

6.3.2 The Completeness Property

Theorem 6.2 (solve is complete) If solve returns the empty assignment matrix M0, then
there does not exist a valid assignment of ground speeds M such that adding its corresponding
flight plan F to the set of traffic flight plans Φ would produce a safe set of flight plans.

Theorem 6.2 ≡
∀ D,H ∈ R, n,m, k ∈ N,M ∈ {0, 1}n×m, Fa ∈ F,Φ ∈ Fk, ξ ∈ Rm : ¬complete(M) =⇒

((∃ v : v ∈ ξ & valid(v,M,F,Φ, ξ,D,H)) ⇐⇒ ¬(solve(M,F,Φ, ξ,D,H) = M0))

All the lemmas and theorems presented in this section have been verified using the
Athena proof assistant19.

6.4 Experimental Evaluation of the Protocol
We developed a reference implementation of our approach in Python that closely follows

the specifications that were used to verify the properties in Athena. We created a proposal
19Complete Athena code available at: https://wcl.cs.rpi.edu/assure
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flight plan Fa for an ownship a and a set of traffic flight plans Φ. Initially, Φ contained only
one traffic flight plan Fb that had a conflict with Fa. We then incrementally added two more
traffic flight plans Fc and Fd that were designed such that a solution flight plan F̄a would
not exist for the proposal. All our experiments assume a Euclidean 3D coordinate system
(with 100 feet = 1 unit on both axes). We used a value of 1 nautical mile for the horizontal
threshold (D) and 1000 feet for the vertical threshold (H). All the flight plans were at a
constant altitude of 5000 feet. The details of the flight plans are given below:

• Fa had a starting time of 0.00 seconds and was comprised of the waypoints ⟨−60, 100, 50⟩,
⟨−55, 65, 50⟩, ⟨5, 5, 50⟩, and ⟨125, 5, 50⟩ with a proposed ground speed of 240 kts in ev-
ery segment.

• Fb had a starting time of 0.00 seconds and was comprised of the waypoints ⟨125, 5, 50⟩,
⟨5, 5, 50⟩, and ⟨−55,−55, 50⟩ with a ground speed of 240 kts in every segment.

• Fc had a starting time of 61.23 seconds and was comprised of the waypoints ⟨69,−85, 50⟩,
⟨71,−55, 50⟩, and ⟨121, 5, 50⟩ with a ground speed of 200 kts in every segment.

• Fd had a starting time of 63.66 seconds and was comprised of the waypoints ⟨3,−55, 50⟩,
⟨123, 65, 50⟩, and ⟨160, 70, 50⟩ with a ground speed of 174 kts in every segment.

• The vector of ground speeds for aircraft a was ξ = ⟨ 100, 120, 140, 160, 180, 200, 220, 240⟩
(all in kts).

Fig. 6.14 depicts the first scenario where Φ contains one traffic flight plan Fb. a has a
possible conflict with aircraft b in the third segment of Fa between the waypoints ⟨5, 5, 50⟩
and ⟨125, 5, 50⟩. Our algorithm computed the assignment matrix given in Fig. 6.15 that
corresponded to a solution flight plan F̄a.

In the second scenario depicted in Fig. 6.16, we added a new traffic flight plan Fc to
Φ (Φ′ = Φ ∪ {Fc}) such that aircraft a has a conflict with aircraft c if it follows the solution
flight plan F̄a created from the assignment matrix in Fig. 6.15. In this case, our algorithm
computed the assignment matrix given in Fig. 6.17 that can be used to create a solution
flight plan F̄a

′

that maintains standard separation from both aircraft b and c.
For the third scenario, we added a fourth traffic aircraft d to the airspace (Fig. 6.18).

Adding the new flight plan Fd to Φ′ (Φ′′ = Φ∪{Fd}) created a situation where no permutation
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H]

Figure 6.14: Top view of a scenario where an aircraft a is in conflict with a
traffic aircraft b (aircraft markers represent the direction of flight
plans and not actual positions).

Figure 6.15: An assignment matrix for the scenario in Fig. 6.14.

of ground speed in the three segments of Fa could generate a solution that is conflict-free
from all three traffic aircraft. However, on introducing an additional value of 60 kts ground
speed in ξ, our algorithm could compute the assignment matrix for a solution flight plan F̄a

′′

as given in Fig. 6.19.
It is evident from the experiments that our approach can be effectively used for generat-

ing conflict-free flight plans. The third scenario where a flight plan was not initially possible
but could be generated after a new discrete value of ground speed was allowed clearly shows
that given a start time, ξ is an important variable in determining the possibility of a solution.
Since ξ is a function of the allowed values of airspeed for an aircraft and the wind vector w,
it is obvious that the wind conditions can significantly impact solutions.
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Figure 6.16: Top view of a scenario where an aircraft a is in conflict with two
traffic aircraft b and c (aircraft markers represent the direction of
flight plans and not actual positions).

Figure 6.17: An assignment matrix for the scenario in Fig. 6.16.

6.5 Related Work
Pairwise conflict detection and avoidance have been previously investigated. Pritch-

ett et al. [145] have presented a decentralized algorithm for aircraft conflict resolution that
is based on negotiated bargaining. The resolutions proposed by them are multi-dimensional,
i.e., an aircraft can either move up, down, right/left, or increase or decrease its velocity.
They associate a cost to each type of resolution and find the solution that entails the least
cost. They do this by using the game theory concept of bargaining. Since both aircraft
maneuver in this approach, the total cost of maneuvers is divided between the ownship and
the traffic aircraft, reducing the cost involved for each individual aircraft. Dowek et al. [46]
have proposed a formally verified pairwise coordinated technique for conflict avoidance in
which only one component of the velocity vector is modified. Their solutions are coordinated
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Figure 6.18: Top view of a scenario where an aircraft a is in conflict with three
traffic aircraft b, c, and d (aircraft markers represent the direction
of flight plans and not actual positions).

Figure 6.19: An assignment matrix for the scenario in Fig. 6.18.

such that the ownship and the traffic aircraft independently choose different directions for
their conflict avoidance maneuvers. This makes sure that if either one or both the aircraft
maneuver, then the potential conflict is avoided. Galdino et al. [62] have proposed an opti-
mization over of Dowek et al.’s work by considering maneuvers in the horizontal plane that
include combined modifications of the ground speed and heading of the ownship. In both
these approaches, the ownship’s course is modified so that it deviates from its original path.
Balachandran et al. [12] have presented an approach for scheduling multiple uncrewed aerial
vehicles (UAV) moving towards an intersection in an urban environment. In this approach,
UAVs can adjust their time of arrival by modifying their speed and using lateral deviations.
The RAFT consensus algorithm [131] is used to synchronize information across all vehicles
and a scheduling algorithm is used to compute a compatible schedule for the UAVs. Alejo et
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al. [5] have proposed a technique for finding collision-free trajectories for autonomous quadro-
tors or helicopters whose minimum speed can be zero. Their approach involves adding new
waypoints to a proposed trajectory and changing the speeds of the UAVs. They initially
find a non-optimal solution and then use particle swarm optimization [143] to find better
solutions. In contrast to the above work, the solutions generated by our approach do not
include lateral or vertical deviations in order to resolve conflicts. Therefore, making it suit-
able in situations where additional waypoints cannot be added due to restrictions imposed
by terrain, weather, or airspace capacity.

Work has been done by NASA on formally verified sense and avoid systems for inte-
gration of UAS in the NAS [125, 128]. Muñoz et al. [124] have presented an enhancement
of the TCAS conflict detection and resolution system. They provide a formally verified al-
gorithm for predicting the issuance of TCAS resolution advisories so that pilots and UAS
flight computers can take preventive actions to avoid the issuance of TCAS resolution ad-
visories. Given a look-ahead interval, they detect resolution advisories instead of conflicts.
NASA’s DAIDALUS [126] suite of algorithms is aimed at increasing situational awareness of
UAS pilots. DAIDALUS contains algorithms for detecting possible violations of well-clear
volumes and alerting the pilots. It also includes algorithms for providing maneuvering guid-
ance to successfully avoid conflicts. These algorithms are integral components of NASA’s
ICAROUS [13] and DANTi [26] systems. Colbert et al. [37] have presented a formally-
verified algorithm called PolySafe that can detect conflicts between polynomial trajectories
but cannot generate resolutions to avoid these conflicts.

A very similar formally-verified flight planning approach for UAS has been presented
by Balachandran et al. [14] which accommodates real-time traffic and geofence constraints.
Their approach is different from our approach as it assumes that all traffic aircraft travel
with a constant velocity, while our approach only assumes that traffic aircraft travel with
constant velocities between consecutive waypoints. Moreover, their algorithm assumes that
the original flight operational constraints are defined only by a starting and an ending point
which allows them to generate conflict-free trajectories by identifying possible waypoints in
the 3D space as required. This is different from our approach which assumes that the original
flight operational constraints are defined by a series of waypoints, spatial deviations from
which may not be allowed or possible. In theory, Balachandran et al.’s algorithm can be
used by an ownship to generate the initial input flight plan for our conflict-aware algorithm.



106

6.6 Chapter Summary
In this chapter, we have presented a strategic conflict-aware flight-planning algorithm

that can be used by an ownship to detect and resolve conflicts with multi-segment flight
plans of multiple traffic aircraft. Our algorithm has been formally verified to satisfy certain
desired correctness properties, making it suitable for safety-critical aerospace applications
like DAC. The conflict resolutions generated by our algorithm do not deviate an aircraft
from its intended 3D spatial trajectory, making our approach suitable for situations where
spatial deviations may be restricted by traffic, weather, or other factors. This protocol can
be used by aircraft participating in DAC to compute conflict-free proposals.

Currently, our approach can only generate a flight plan for an ownship given a set
of immutable traffic flight plans. If a solution cannot be found, no changes are made to
the traffic flight plans in order to accommodate the ownship. Moreover, it assumes that
the aircraft will maintain constant-velocity flight paths between a fixed set of waypoints.
Therefore, interesting future directions of work would involve expanding the approach to
develop a formally verified and efficient protocol that can mutate the flight plans of the
traffic aircraft in case no trajectories are possible with the given set of flight plans, and to
support other types of aircraft flight paths such as polynomial paths.



CHAPTER 7
DISCUSSION AND FUTURE WORK

In this thesis, we have presented a formal analysis of distributed coordination algorithms for
safety-critical autonomous multi-agent systems, with a focus on aerospace applications. We
have proposed novel techniques that can aid in the verification of distributed applications
under uncertain and dynamic operating conditions. In this chapter, we present some relevant
discussion on our methods along with some potential future directions of work.

7.1 Analysis of Decentralized Multi-Agent Coordination

Assumption of non-Byzantine behavior

In our analysis of distributed coordination algorithms, we have assumed that the agents
will be non-Byzantine and non-adversarial in nature. In the presence of Byzantine or adver-
sarial actions, it is challenging to provide accurate correctness guarantees as the properties
that are deemed to be valid under non-Byzantine conditions may no longer be valid. In
particular, consensus-based distributed algorithms are particularly susceptible to adversarial
behavior, making it challenging to issue security and safety concerns in such applications.
E.g., if there are a majority of adversarial acceptors in Synod, these acceptors can for-
ever refuse to accept any proposal, thereby impeding progress. Therefore, for safety-critical
applications, it is important to identify the assumptions under which correctness can be
guaranteed for distributed protocols in the presence of Byzantine and/or adversarial agents.

The failure-aware actor model

Predicate fairness in our failure-aware actor model is a strong fairness property that
can be used for reasoning about different types of progress properties in different types of
distributed protocols, depending on how the predicates are defined. In Chapter 2, we have
formally shown that predicate fairness can be used to theoretically guarantee our conditions
for eventual progress in Synod if the proposers keep retrying with higher proposal numbers.
However, it is important to note that predicate fairness is not necessary for our conditions
for progress in Synod to be satisfied as the conditions may eventually be true even in a
system that is not predicate fair. In fact, it may be possible to replace predicate fairness
with a weaker fairness property that can still be sufficient to claim the conditions required
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for progress in Synod. Additionally, the current fairness assumptions of FAM do not allow
modeling message loss, even though for guaranteeing eventual progress in Synod it suffices
to guarantee the eventual delivery of only a subset of the messages.

Representation of “knowledge” and ”belief” in multi-agent systems

In this work, we have assumed that autonomous agents will share information with
each other in order to coordinate in the absence of a decentralized coordinator. For our
analysis, we have defined knowledge as the state of an agent being aware of a fact, where a
fact can be any truth about the real world. However, in some situations, it may be the case
that agents only have some “beliefs” about the world that may not be true. E.g., based on
erroneous calculations, an aircraft may believe that a set of flight plans is conflict-free, while
in reality, that may not be the case. This can lead to situations where agents can receive
inconsistent information, which may be a combination of facts and beliefs, from other agents.
In such conditions, the agents may be required to adjudicate such inconsistent information
to derive meaningful operational or ethical conclusions [22]. Our analysis does not consider
such possibilities in which the information propagated for coordination may include beliefs
of the individual agents instead of only consistent facts about reality.

7.2 Verification of Stochastic and Dynamic Distributed Systems

Probabilistic properties of progress for distributed algorithms

We have introduced probabilistic properties of timely progress for distributed algo-
rithms that can be useful when deterministic guarantees of timely progress cannot be pro-
vided. To do that, we have used some probabilistic assumptions about system conditions,
such as message transmission and processing delays. A question may arise that, if there is a
known probabilistic bound on the message delays, then why use algorithms like Synod, that
are designed for use in purely asynchronous settings? A known bound on message delays
makes it possible to probabilistically detect agent failures, making it possible to use other
methods for coordination, such as broadcast, that can rely on partial synchrony. We believe
that both probabilistic properties of timely progress and deterministic properties of eventual
progress have their own sets of benefits for safety-critical applications. Probabilistic proper-
ties of timely progress can provide useful time bounds that can be used for decision-making
in practical scenarios, but they cannot guarantee progress with certainty. On the other hand,
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deterministic properties of eventual progress can provide theoretically elegant guarantees of
progress with certainty, but do not provide any useful time bounds. Since the two types
of properties are not related by logical entailment, it is our belief that for the theoretical
analysis of safety-critical systems, it is important to investigate eventual progress under
purely asynchronous conditions. For this reason, algorithms that do not assume any form
of synchrony can be studied to identify the theoretical limitations on deterministic eventual
progress. Probabilistic properties of timely progress can be used in practical implementations
of systems when the systems have to make operational decisions in real-time.

The formal DDDAS feedback loop for runtime verification

Our DDDAS-based approach for the runtime verification of dynamic systems using
machine-checked theorems presents a novel technique to extend the practicality of formal
proofs beyond the pre-deployment stages. It allows systems to generate new properties dy-
namically at runtime without sacrificing the mathematical rigor of formal theorem proving
principles. However, in its current form, the technique is limited by the number of pa-
rameterized proofs that can be pre-developed to effectively model possible subsets of the
dynamic operating conditions. Generating accurate and correct sentinels from the formal
specification of the envelopes is also a challenge. Therefore, this approach must be further
investigated and the various components must be refined in order to make it robust and
scalable to real-world dynamic systems.

7.3 Autonomous Multi-Agent Aerospace Operations

Decentralized Admission Control

Our decentralized admission control approach can be used for autonomous air traf-
fic management for well-defined four-dimensional airspaces in the absence of a centralized
controller. In this thesis, we have only studied a subset of the challenges involved in de-
centralized multi-agent coordination in DAC, but there are several open challenges to the
practical and efficient implementation of DAC for UAM operations. Since aircraft may have
temporal overlaps in sections of their flight plans, with respect to different sets of flight
plans, the same three-dimensional airspace may have different four-dimensional instances in
different temporal periods. Therefore, the discretization of four-dimensional airspaces for
DAC in a meaningful way is an important challenge. Moreover, the initialization of DAC
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for every four-dimensional airspace is an important problem because, in the absence of any
owner, some uniform approach must be identified to admit the first owner in the presence
of multiple candidates. Another challenge is deciding how to implement DAC when aircraft
have to pass through multiple airspaces — situations may arise when aircraft may be admit-
ted to some airspace, but not to the succeeding airspace. In such cases, a fixed-wing aircraft
may need to execute a holding pattern until it can get authorization to proceed to the next
airspace. For this reason, autonomous ATM techniques like DAC must consider airspace
operational capacities at both local and global scales. Further research is needed to address
such intricate challenges involved in the practical realization of DAC for UAM operations.

Dynamic Data-Driven Aerospace Systems

DDDAS techniques integrated into aerospace systems can be known as dynamic data-
driven aerospace systems. For aerospace applications, where the operating conditions can be
highly-dynamic both at the system level and the component level, DDDAS techniques can
be employed to ensure highly-adaptive systems. E.g., in a distributed aerospace application
like DAC, an example of system-level conditions can be the dynamic message delays, which
can be used by the formal DDDAS feedback loop in an aircraft to generate new progress
guarantees at runtime; and an example of component-level conditions can be the dynamic
operational intents or flight plans of the traffic aircraft, which can be used by the candidates
to compute their conflict-free proposals using the DDDAS loop given in Fig. 7.1.

NMAC
Detection
Algorithm

Signal
Receivers/

Broadcasters

Flight Planning
Algorithm

Traffic Flightplans

Safe Flightplans

Unsafe Flightplans

Traffic Flightplans

Safe Proposal IoP

Candidate

Figure 7.1: DDDAS feedback loop for high-fidelity conflict resolution in DAC.

There is significant scope for further investigation into the robust use of the DDDAS
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paradigm for the formal verification of stochastic aerospace systems. The DDDAS-based
runtime verification approach that has been proposed in this thesis can be used for other
aerospace applications apart from multi-aircraft coordination. E.g., it may be possible to use
the formal DDDAS feedback loop for generating formal properties at runtime with respect
to data-driven stochastic state estimation applications [39].

7.4 Applications of the Proposed Techniques Beyond Aerospace
Apart from aerospace systems, multi-agent coordination can find direct applications in

many other safety-critical areas such as autonomous cars [155], autonomous power grids [45],
and industrial robots [87]. As an example, let us consider autonomous cars — in order to
operate safely in the presence of one another, the cars have to collaboratively decide their
operations. For this, they must make use of distributed coordination protocols for collab-
orative decision-making and operation planning. Similarly, the power loss, voltage devia-
tion, and cost of the reactive power generation functions of distributed power generators
can be optimized by using decentralized optimization techniques [92]. As all of these do-
mains require distributed coordination among spatially separated and/or mobile agents, the
techniques presented in this thesis for the verification of decentralized coordination in au-
tonomous multi-agent systems are applicable for the verification of safety-critical properties
of multi-agent coordination in all such domains.

7.5 Future Work
We discuss some potential future directions of work with regard to the verification of

dynamic and stochastic systems, the verification of distributed algorithms, and the practical
realization of our techniques for the verification of real-world applications.

Formal Verification of Dynamic and Stochastic Systems

First-class tool support for probabilistic properties Mechanically reasoning about
probabilistic properties in proof assistants that are based on some form of predicate logic
(e.g. – Athena) requires one to express probabilistic statements using predicate logic con-
structs. Rules of inference, such as modus ponens, are then used to construct proofs that
can be mechanically checked by proof assistants to guarantee the logical entailment of a
sentence S by a set of sentences θ. This approach of reasoning works well for situations
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when logical statements can have only Boolean values, but it creates an additional overhead
when expressing and reasoning about probabilistic statements. This creates the need to de-
velop proof systems that have first-class support for expressing probabilistic statements and
reasoning about probabilistic properties without having to first express them in an ad-hoc
manner using predicate logic constructs and then use predicate logic inference rules for proof
engineering. It may be possible to create a proof system that uses a generalization of pred-
icate logic where a sentence can have values ranging from 0 to 1 instead of Boolean values,
which can be viewed as the probability of the sentence. Such a probabilistic logic can enable
the mechanical determination of the probability of an arbitrary sentence S given a set Θ
of sentences and their probabilities by probabilistic entailment [130]. Therefore, one impor-
tant direction of future work is to investigate the development of proof systems that have
first-class support for expressing and reasoning about probabilistic properties of stochastic
safety-critical systems.

Learning-assisted runtime verification of dynamic systems In this thesis, we pre-
sented a formal DDDAS feedback loop that can be used by applications to update appropriate
parameterized proofs at runtime, allowing the properties to retain the rigor of interactive
theorem proving techniques. However, this approach is limited by the set of parameterized
proofs that can be pre-developed before deployment – if the operating conditions change be-
yond the envelopes for the pre-developed proofs, then no guarantees can be provided. One
potential approach to deal with such limitations of the framework proposed in this thesis can
be to use statistical learning algorithms [81] that can generate parameterized properties by
using runtime-observable parameters. It may be possible to verify such properties generated
by learning algorithms on the basis of some fundamental axioms from the relevant domains.
As ATPs can function without human interaction, they can be used to verify such gener-
ated properties at runtime in a completely autonomous manner. The approach can take the
following general form — first, the sentinels observe real-time data to infer some attributes
about the operating conditions, then these attributes can be fed to a learning algorithm to
generate a system property. Finally, the generated properties can be fed to an ATP (or to
multiple ATPs for sanity checking) along with a set of fundamental axioms to verify if the
property is a logical consequence of the set of axioms. If successful, this approach will allow
the generation of arbitrary properties at runtime, thereby resolving the scalability issues of
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the approach based on parameterized proofs. Therefore, investigating the development of
such runtime verification techniques based on statistical learning algorithms and ATPs is an
interesting future direction of work.

Provably Correct Distributed Multi-Agent Systems

Byzantine agents, message loss, and additional failure models The presence of
Byzantine agents in a system creates significant challenges in verifying the correctness prop-
erties of distributed algorithms because the behavior of such agents cannot be modeled in
advance. Moreover, if the agents have adversarial intentions, they may actively try to sabo-
tage the correctness of distributed systems by strategically performing actions to that end.
Message loss can also affect correctness since the eventual progress of most distributed al-
gorithms relies on a certain set of messages being eventually delivered. If a system is prone
to message loss, it can also affect the system’s fairness conditions, making it necessary to
identify some additional assumptions for proving progress. Another factor that can affect
the correctness of distributed algorithms is agent failure, which can cause the topological
structure of a distributed network to change, affecting the connectivity among agents. Our
Failure-Aware Actor Model supports a certain type of failure where agents can temporarily
or permanently get disconnected from the entire network, but not failures in which agents
may only get disconnected from a subset of the network. Therefore, a potential direction
of future work would be to investigate more flexible models of distributed computing that
can be used for the verification of the correctness properties of distributed algorithms in the
presence of Byzantine agents, message loss, and arbitrary agent failures.

Coordination in the presence of inconsistent and uncertain information In com-
pletely autonomous distributed multi-agent systems, it may be the case that during coordi-
nation, an agent receives a set of beliefs about some operational variable from other agents.
Since beliefs are subjective in nature, such a set of beliefs may consist of arguments that
reflect different views about the operational variable from the perspective of different agents.
E.g., in the case of autonomous ATM, an aircraft may receive conflicting information about
the trajectory of a non-communicating aircraft, obtained through visual or radar inspection,
from two other aircraft. Moreover, each of these arguments may have associated likelihoods
with regard to some operational or ethical principles [65]. E.g., if an aircraft receives incon-
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sistent trajectory projections for a non-communicating aircraft from two other aircraft, each
trajectory projection can have some associated likelihood of possible NMACs with respect
to known traffic aircraft. In such situations, the recipient agent must adjudicate these argu-
ments to derive a conclusion [64] for the purpose of coordination. One interesting direction
of work is, therefore, the investigation of provably correct decentralized coordination algo-
rithms that can be used when agents must adjudicate inconsistent and uncertain information
received from other agents to derive some conclusion for safety-critical applications.

Morphable distributed computing informed by runtime verification Algorithms
running over heterogenous airborne VANETs like the IoP will need to be adaptive in order to
produce accurate computations from real-life data. Due to the dynamic nature of VANETs
and the operational environments of mobile aircraft, it is important to judiciously determine
how to efficiently run distributed algorithms over such networks. To address this, morphable
algorithms can be designed to provide multiple computational approaches that can be used
interchangeably according to the real-time operational conditions. These algorithms can be
run inside of morphable geo-spatial actors, an abstraction to perform distributed computation
over spatial regions – sections of actor-networks can be assigned specific parts of an airspace.
At runtime, formal guarantees for dynamic conditions, such as probabilistic bounds on the
round-trip message delays in a particular section of a network, can be used to automatically
change the computation approach using morphable algorithms, thereby leading to more
accurate real-time computation choices that are informed by real-time formal guarantees.
As an example, let us assume that there are two algorithms available for use — C1, which is
centralized, and C2, which is decentralized. Initially, C2 is chosen for coordination as there
is an assumption that the coordinator in C1 will be a bottleneck. At runtime, there is a
formal proof that the system conditions may not cause a bottleneck in the coordinator if C1

is used. So, informed by this property, the system may choose to switch from C2 to C1 at
runtime. Therefore, the investigation of how the formal runtime verification approaches can
be used for morphable distributed computing is an interesting future direction of work.

Timely progress for non-deterministic distributed algorithms In Chapter 4, we
have provided the theoretical foundation to reason about timely progress in distributed
algorithms deployed over VANETs by stochastically modeling non-determinism in the oper-
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ating conditions such as message transmission and processing delays. However, version 0.1
of our library does not have the theory to reason about non-determinism in the algorithms
themselves. E.g., in the Synod consensus protocol, since there is no restriction on when
proposers can initiate new proposals, there may be cases where lower-numbered proposals
are interrupted by higher-numbered proposals (see Chapter 2). Such interruptions can hap-
pen a finite number of times or can continue happening indefinitely. In the latter case, it
is impossible to guarantee even eventual progress as the protocol will be stuck in a livelock
scenario. Under the assumption of eventual progress, to probabilistically bound the time
required for progress, the number of message rounds involved must be modeled. This can
be done by making additional assumptions on the behavior of agents that can allow the
number of message rounds to be probabilistically bounded (e.g – assuming that the pro-
posers follow some retransmission algorithm like exponential backoff whose performance can
be modeled [99]). Such assumptions may also enable the generation of more specific progress
properties, such as exactly which proposer’s proposal will be eventually chosen in the case of
Synod. Therefore, one potential direction of future work is to investigate formal guarantees
of timely progress for non-deterministic coordination algorithms and add additional theory
to the Athena library to mechanically reason about such guarantees.

Bridging the gap between specifications and implementations Formal specifica-
tions of distributed algorithms developed for verification can often leave out important im-
plementation details. E.g., our proof of progress for Synod (Chapter 2) uses Lamport’s
high-level denotational specification of Synod to represent the behavior of the concurrent
agents. The proof uses Lamport’s strong assumptions about the behavior of non-faulty
agents (e.g. – for a subset of agents, it assumes that implementations will not run into issues
like infinite loops during local processing). It is a known issue that there are gaps in Lam-
port’s specification of Synod which leaves out important implementation details. Therefore,
different developers often make implementation choices for Synod that are widely different,
especially when deciding when agents should retry. This results in unproven implementations
that may not comply with the formally verified specification. It may be possible to create
complete specifications that concretely define all implementation details in order to ensure
that the implementations can follow the specifications. E.g., the RAFT consensus algorithm
assumes partial synchrony and specifies a complete implementation that uses timeouts to
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decide when agents should retry [131]. Therefore, one direction of future work is to inves-
tigate how specifications for distributed algorithms can be created that are both verifiable
and complete, allowing the correctness properties to hold for the implementations.

From Theory to Practice

Verifiable runtime sentinels for monitoring real-life data streams Real-life data is
seldom perfect – e.g., the normality of sensor data may only be tested up to some significant
level and may also be affected by pre-processing. Assuming normality of sensor data, it is
also computationally expensive to effectively estimate the tail bounds of distributions in real-
time. Therefore, it is important to investigate the development of formally-verified runtime
sentinels that can find accurate and meaningful estimates from real-life data. Athena is a
good candidate for this purpose because it has been demonstrated by Vargun et al. [159] that
a code-carrying theory (CCT) approach can be used in Athena for generating executable code
directly from a set of assertions and proofs by using a tool called CODEGEN. Therefore, once
the proof refinement component generates new proofs during runtime, it may be possible
to generate executable sentinel codes directly from the proofs. One potential direction of
future work is, therefore, the investigation of techniques to generate executable sentinel
codes directly from the specifications of high-level properties in our Athena library so that
the properties can be accurately monitored against real-life data streams.

Generation of high-level assurance artifacts for certification Safety-critical soft-
ware systems require rigorous certification procedures to verify their correctness and relia-
bility. Certification agencies like the Federal Aviation Administration rely on specifications
and requirements outlined in documents such as the DO-178C, Software Considerations in
Airborne Systems and Equipment Certification [151], for certifying UAS operations. For-
mal theorem proving can be extremely effective in the rigorous verification of such systems,
but typically theorem proving works at a very abstract level, and the artifacts generated
by theorem proving techniques require specialization to comprehend. Therefore, it is nec-
essary to bridge the gap between such formally rigorous techniques and requirement-level
terminologies used by certification authorities. Assurance cases are artifacts for conveying
system requirements that provide a structural argument that a system satisfies some desired
safety, security, or reliability properties and are used as compelling high-level arguments for



117

system certification [84]. It has been demonstrated that assurance cases can be designed in
specialized languages that are amenable to verification [118] and can be automatically gen-
erated from the evidence produced by traditional verification tools like model checkers [119].
One potential future direction of work is to investigate approaches to automatically generate
assurance case fragments for certification directly from the lower-level proof artifacts ob-
tained from Athena’s proof checking environment. This will provide the capability to utilize
Athena’s theorem proving techniques to provide higher-level evidence for certification that
can be directly comprehended by the certification authorities.

Trusted and transparent automated theorem proving Automated theorem provers
like SPASS are powerful verification tools that can be used for automatically checking if cor-
rectness properties are consequences of a given set of statements. They enable the utilization
of mathematical theorem proving techniques for the analysis of real-world complex systems
without having to interactively develop the proofs. Because of their automatic nature, they
can be used to aid in the verification of properties that can involve a large number of interme-
diate proof obligations. However, one common issue with using ATPs for proof generation is
that if an inconsistent set of statements is provided to the ATP as a context to prove a proof
obligation, the ATP will always succeed in generating a proof, even if the proof obligation
is not true. For this reason, in order to be able to trust the result of an ATP, it must be
ensured that the context sent to the ATP is consistent. This creates additional overhead on
the part of users since proof systems like Athena or TLAPS do not have any mechanism to
automatically check for the consistency of the contexts that are sent to the back-end ATPs.
In the case of significantly complex contexts, checking for consistency is impossible, which
makes it challenging to use ATPs with complex contexts in a trusted manner. Moreover, in
our experience, once an ATP successfully proves an obligation, Athena or TLAPS do not
have any mechanism to obtain the actual logical proof of the property that was proven by
the ATP. Therefore, another important direction of future work is to investigate techniques
that can allow the use of ATPs in a more trusted and transparent manner for aiding in
large-scale verification tasks involving theorem proving.

Experimental evaluation of theoretical results In this thesis, we have presented a
theoretical analysis of decentralized coordination algorithms for vehicular systems. We have
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also proposed a data-driven approach for the runtime verification of dynamic distributed
applications to extend the practicality of formal theorem proving techniques beyond the pre-
deployment stages. Before these concepts can be practically realized in real-world systems,
significant experimental evaluation of these techniques is necessary to determine their effi-
ciency and feasibility for use in the face of real-life uncertainties. Therefore, an important
direction of future work is the development of appropriate platforms for the evaluation of the
decentralized coordination algorithms and the formal DDDAS feedback loop by using either
software-based simulation or actual deployment of the algorithms over airborne drones.
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APPENDIX A
DEVELOPING MATHEMATICAL PROOFS IN ATHENA

Athena provides a framework for writing proofs and mechanically verifying their correctness.
In addition to support for basic proof methods such as modus ponens, proof by induction,
case analysis, and proof by contradiction, Athena provides several syntactic constructs that
can aid in the intuitive development of mathematical proofs. We present a brief overview
of how a mathematical proof can be developed using Athena’s constructs by illustrating our
Athena proof of Eq. 4.10 (Athena identifier: THEOREM-mean-T-value) as an example.� �

1 define THEOREM-mean-T-value :=

2 ( forall t Q .

3 (

4 ( (( qTyp Q) = MM1)

5 & (( Dist.mean ( Random .pdf ( numCst Q)))

6 = ( Function . limit t RealExt .INFY ( Function . consUF N_ t)) )

7 & (( Dist.mean ( Random .pdf ( cstArRat Q)))

8 = ( Function . limit t RealExt .INFY ( Function . consUF L_ t)) )

9 & (( Dist.mean ( Random .pdf ( cstDly Q)))

10 = ( Function . limit t RealExt .INFY ( Function . consUF T_ t)) )

11 )

12 ==>

13 (

14 (Dist.mean ( Random .pdf ( cstDly Q))) # T

15 = ( 1.0

16 /

17 ( (Dist. ratePar ( Random .pdf ( srvcTm Q))) # mu

18 -

19 (Dist. ratePar ( Random .pdf ( cstArRat Q))) # lambda

20 )

21 )

22 )

23 )

24 )

25

26 conclude THEOREM-mean-T-value

27 pick-any t

28 pick-any Q

29 assume

30 ( (( qTyp Q) = MM1)

31 & (( Dist.mean ( Random .pdf ( numCst Q)))

32 = ( Function . limit t RealExt .INFY ( Function . consUF N_ t)) )

33 & (( Dist.mean ( Random .pdf ( cstArRat Q)))

34 = ( Function . limit t RealExt .INFY ( Function . consUF L_ t)) )

35 & (( Dist.mean ( Random .pdf ( cstDly Q)))
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36 = ( Function . limit t RealExt .INFY ( Function . consUF T_ t)) )

37 )

38 let{

39 assum :=

40 ( (( qTyp Q) = MM1)

41 & (( Dist.mean ( Random .pdf ( numCst Q)))

42 = ( Function . limit t RealExt .INFY ( Function . consUF N_ t)) )

43 & (( Dist.mean ( Random .pdf ( cstArRat Q)))

44 = ( Function . limit t RealExt .INFY ( Function . consUF L_ t)) )

45 & (( Dist.mean ( Random .pdf ( cstDly Q)))

46 = ( Function . limit t RealExt .INFY ( Function . consUF T_ t)) )

47 );

48 rhs :=

49 (

50 (Dist.mean ( Random .pdf ( cstDly Q))) # T

51 = ( 1.0

52 /

53 ( (Dist. ratePar ( Random .pdf ( srvcTm Q))) # mu

54 -

55 (Dist.mean ( Random .pdf ( cstArRat Q))) # lambda

56 )

57 )

58 );

59 N_d := # denominator of N from Eq 3.24

60 ( (Dist. ratePar ( Random .pdf ( srvcTm Q))) # mu

61 -

62 (Dist. ratePar ( Random .pdf ( cstArRat Q))) # lambda

63 );

64 Q-is-mm1 := ( !left-and assum );

65 N := (Dist.mean ( Random .pdf ( numCst Q)));

66 L := (Dist.mean ( Random .pdf ( cstArRat Q)));

67 T := (Dist.mean ( Random .pdf ( cstDly Q)));

68 L-Not-0 := ( !left-and (!mp ( !uspec MM1-denominators-not-zero Q) Q-is-mm1 ));

69 N_d-Not-0 := ( !right-and (!mp ( !uspec MM1-denominators-not-zero Q) Q-is-mm1 ));

70 L-Not-0 + N_d-Not-0 := ( !both L-Not-0 N_d-Not-0 );

71 conn-2-Little := ( !uspec ( !uspec LITTLES-THEOREM t) Q);

72 N=LT := (!mp conn-2-Little ( !right-and assum )) ;

73 conn-2-commu := ( !uspec ( !uspec RealExt . prod-commutative-axiom T) L);

74 N=TL := ( !chain [ N

75 = (L * T) [N=LT]

76 = (T * L) [ conn-2-commu ]

77 ]);

78 TL=N := ( !chain [ (T * L)

79 = N [N=TL]

80 ]);

81 conn-2-a-x-b = c-axiom := ( !uspec ( !uspec ( !uspec RealExt . a-x-b = c-axiom T) L) N);

82 T= N-x-inv-L := (!mp ( !left-iff ( !left-and conn-2-a-x-b = c-axiom )) TL=N);

83 conn-2-mean-numCst-axiom := ( !uspec mean-numCst-axiom Q);

84 N= L-by-N_d := (!mp conn-2-mean-numCst-axiom Q-is-mm1 );
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85 conn-2-a-by-d-x-b-by-a-axiom := (!mp ( !uspec ( !uspec ( !uspec RealExt .

a-by-d-x-b-by-a-axiom L) N_d) 1.0) L-Not-0 + N_d-Not-0 )

86 }

87 ( !chain [ T

88 = (N * (1.0 / L)) [T= N-x-inv-L ]

89 = ((L / N_d) * (1.0 / L)) [N= L-by-N_d ]

90 = (1.0 / N_d) [ conn-2-a-by-d-x-b-by-a-axiom ]

91 ])� �
Athena provides the top-level directive define that allows users to assign a unique

name to an Athena phrase. With respect to formal proofs, define can be used to specify a
formal property. E.g., on line 0 in the code snippet above, the THEOREM-mean-T-value has
been specified using the define directive.

The conclude construct in Athena allows specifying a proof of the form “p follows
from D”, written as conclude p D, where p is a conclusion and D is a deduction. E.g., on
line 26, the conclude construct has been used to initiate the proof of THEOREM-mean-T-val

ue, which is the desired conclusion.
The let keyword allows users to create and name intermediate results that can be used

further ahead in a proof. E.g., a let expression begins on line 38 in the snippet above that
contains several intermediate results like assum, rhs, and N_d, that have been used further
down in the proof of THEOREM-mean-T-value. Apart from naming intermediate results, let

expressions can also contain the proofs of those results, such as the proof of N=TL on line 74.
Athena provides many built-in methods such as mp for modus ponens (line 69), uspec

for universal specialization (line 71), left-and/right-and for conjunction elimination (line
68 and 69), both for conjunction production (line 70), and chain for equality chaining (line
87) that can be used for applying the proof methods. Among these, the chain method,
which allows equality chaining, is particularly helpful for constructing mathematical proofs
because equality chaining is a widely-used technique in mathematical computations. This
enables the development of formal proofs that closely resemble their informal counterparts,
making the proofs intuitive and human-readable.



APPENDIX B
USING SPASS WITH ATHENA FOR AIDING WITH LARGE

PROOFS

Athena is integrated with ATPs like Vampire and SPASS that can be invoked seamlessly like
primitive procedures. For our proof of eventual progress in Synod, we have divided the proof
into a series of hierarchical proof obligations that are well-connected by trivial operations
like modus ponens, conjunction elimination, case analysis, etc. However, the complexity of
the statements involved makes it cumbersome and time-consuming to write the proofs for
these obvious steps using the Athena proof semantics, making the task of completing the
entire proof extremely time-intensive. For this reason, we use the SPASS ATP to generate
the proofs of the trivial operations that connect one proof obligation to the next obligation
in the proof chain. We present a discussion on our use of SPASS with Athena.

Let us consider the example of IOE->Fair-Rcv-Causes-Theorem, which is an interme-
diate theorem that states that for a nonfaulty actor, if a receive transition is enabled for a
message at a time, then the message will eventually be in the set of unresponded messages
in the actor’s local state.� �

1 define Fair-Rcv-Causes-Theorem :=

2 ( forall x m T i .

3 ( nonfaulty x)

4 ==>

5 (

6 (( inMSet m (mu ( config (rho T i))))

7 & ( ready-to (rho T i) x ( receive x m)))

8 ==>

9 ( exists j . (i N.<= j)

10 & ( inMSet m (amu (als ( config (rho T j)) x))))

11 )

12

13 )� �
To prove IOE->Fair-Rcv-Causes-Theorem, we use four facts which have been previ-

ously added to the assumption base — S3, which states that every natural number is either
less than or equal to its successor; transitive, which states the transitive rule correspond-
ing to the less-than or equal to relationship of natural numbers; IOE->Fair-Rcv-Theorem,
which states that for a nonfaulty actor, if a receive transition is enabled at some time, then
it will eventually occur; and rcv-affect, which simply states that if a receive transition
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happens, then the corresponding message exists in the set of unresponded messages in the
recipient’s new local state.� �

1 define S3 := ( forall n . n <= S n)

2

3 define transitive := ( forall x y z . x <= y & y <= z ==> x <= z)

4

5 define rcv-affect :=

6 ( forall x m T i j .

7 (= (rho T i) (then (rho T j) ( receive x m)))

8 ==>

9 ( inMSet m (amu (als ( config (rho T i)) x)))

10 )

11

12 define IOE- > Fair-Rcv-Theorem :=

13 ( forall x m T i .

14 ( nonfaulty x)

15 ==>

16 (

17 (( inMSet m (mu ( config (rho T i))))

18 & ( ready-to (rho T i) x ( receive x m)))

19 ==>

20 ( exists j . (i N.<= j)

21 & (= (rho T (S j)) (then (rho T j) ( receive x m))) )

22 )

23 )� �
We can see that to obtain IOE->Fair-Rcv-Causes-Theorem from the four facts, it is

a simple application of rcv-affect to IOE->Fair-Rcv-Theorem, to show that the message
will be received and added to the local state, followed by applications of S3 and transi

tive. There are many ways to develop the proof interactively in Athena, but due to the
complexity of the logical expression of IOE->Fair-Rcv-Causes-Theorem, it becomes a very
convoluted task to develop the proof interactively using Athena tactics, even though the
logic is straightforward. Given below is one possible interactive Athena proof:� �

1 conclude

2 ( forall x m T i .

3 ( nonfaulty x)

4 ==>

5 (

6 (( inMSet m (mu ( config (rho T i))))

7 & ( ready-to (rho T i) x ( receive x m)))

8 ==>

9 ( exists j . (i N.<= j)

10 & ( inMSet m (amu (als ( config (rho T j)) x))))

11 )
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12

13 )

14 pick-any x: Actor

15 pick-any m: Message

16 pick-any T:TP

17 pick-any i:N

18 assume

19 ( nonfaulty x)

20 assume

21 ( ( inMSet m (mu ( config (rho T i))))

22 & ( ready-to (rho T i) x ( receive x m)))

23 let{

24 IOE- > FAIR-Rcv := ( !uspec ( !uspec ( !uspec ( !uspec IOE- > Fair-Rcv-Theorem x) m) T) i);

25 mp1 := (!mp

26 IOE- > FAIR-Rcv

27 ( nonfaulty x)

28 );

29 exst-j := (!mp

30 mp1

31 ( ( inMSet m (mu ( config (rho T i))))

32 & ( ready-to (rho T i) x ( receive x m)))

33 );

34 i <= Si := ( !uspec N.Less =. S3 i);

35 trueforSj := conclude ( exists z .

36 (i N.<= z)

37 & ( inMSet m (amu (als ( config (rho T z)) x))))

38 pick-witness j for exst-j

39 let{

40 exst-j-sttmnt := ( (i N.<= j)

41 & (= (rho T (S j)) (then (rho T j) ( receive x m))));

42 Sj := (S j);

43 j <= Sj := ( !uspec N.Less =. S3 j);

44 i <=j := ( !left-and exst-j-sttmnt );

45 trnstv-sttmnt := ( !uspec ( !uspec ( !uspec N.Less =. transitive i) j) Sj);

46 i <=j&j <= Sj := ( !both i <=j j <= Sj);

47 rcv-efctSj := ( !uspec ( !uspec ( !uspec ( !uspec ( !uspec rcv-affect x) m) T) Sj)

j);

48 i <= Sj := (!mp

49 trnstv-sttmnt

50 i <=j&j <= Sj

51 );

52 i <= Sj& Sjthen := ( !both i <= Sj ( !right-and exst-j-sttmnt ));

53 Sjinmset := conclude ( inMSet m (amu (als ( config (rho T (S j))) x)))

54 let{

55 implies := ( !chain [ (= (rho T (S j)) (then (rho T j) ( receive x m))

)

56 ==> ( inMSet m (amu (als ( config (rho T (S j))) x))) [

rcv-efctSj ]

57 ])
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58 }

59 (!mp implies ( !right-and exst-j-sttmnt ));

60 i <= Sj& Sjinmset := ( !both i <= Sj Sjinmset )

61 }

62 ( !egen

63 ( exists j . (i N.<= j)

64 & ( inMSet m (amu (als ( config (rho T j)) x))))

65 (S j)

66 )

67 }

68 ( !claim trueforSj )� �
Developing proofs in a completely interactive manner gives confidence about the logi-

cal soundness of the proof steps involved. However, in significantly large projects, like our
verification of eventual progress in Synod, which involve a significant number of intermediate
proof obligations, the process of interactively developing the proofs of all steps, even the ones
which are trivial, can make the task of verification expensive. Under such circumstances,
interactive methods can be employed in conjunction with automated methods to aid in the
proof development effort. Therefore, we have used SPASS to discharge the simple proposi-
tions in our proofs while the structures of the proofs have been developed manually. For this,
we have decomposed the proof of each intermediate lemma into a series of hierarchical proof
obligations that are well connected by trivial operations such as modus ponens, conjunction
elimination and case analysis. SPASS can be invoked within Athena by using a statement of
the form (!prove p L) where p is the statement to be proven and L is a list of statements
already in the assumption base that SPASS must use as a premise for proving p. If SPASS
can successfully derive p, then p is added as a theorem into the assumption base. In many
cases though, SPASS may be unable to derive the conclusion from the premises passed to
it, causing it to timeout and exit. If the conclusion cannot be derived from the supplied
premises, SPASS informs the same instead of timing out.

In our verification of progress in Synod, we have divided complicated proof obligations
into smaller obligations that are well-connected by trivial steps and then used SPASS to
prove each intermediate step. Below, we show an example of this approach by using the
proof of IOE->Fair-Rcv-Causes-Theorem which has been broken down into three obvious
steps. Each step was proven by calling SPASS with the required premises.
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� �
1 define Fair-Rcv-Causes-Theorem-step1 :=

2 ( forall x m T i .

3 ( nonfaulty x)

4 ==>

5 (

6 (( inMSet m (mu ( config (rho T i))))

7 & ( ready-to (rho T i) x ( receive x m)))

8 ==>

9 ( exists j k . (i N.<= j)

10 & (j N.<= k)

11 & (= (rho T k) (then (rho T j) ( receive x m)))

12 & (= (rho T (S j)) (then (rho T j) ( receive x m))))

13 )

14 )

15

16 ( !prove Fair-Rcv-Causes-Theorem-step1 [IOE- > Fair-Rcv-Theorem N.Less =. S3 ])

17

18 define Fair-Rcv-Causes-Theorem-step2 :=

19 ( forall x m T i .

20 ( nonfaulty x)

21 ==>

22 (

23 (( inMSet m (mu ( config (rho T i))))

24 & ( ready-to (rho T i) x ( receive x m)))

25 ==>

26 ( exists j k . (i N.<= j)

27 & (j N.<= k)

28 & (= (rho T k) (then (rho T j) ( receive x m)))

29 & (= (rho T (S j)) (then (rho T j) ( receive x m)))

30 & ( inMSet m (amu (als ( config (rho T k)) x))))

31 )

32 )

33

34 ( !prove Fair-Rcv-Causes-Theorem-step2 [ Fair-Rcv-Causes-Theorem-step1 rcv-affect ])

35

36 # Finally , proving Fair-Rcv-Causes-Theorem

37 ( !prove Fair-Rcv-Causes-Theorem [ Fair-Rcv-Causes-Theorem-step2 N.Less =. transitive ])� �
Athena is sound, i.e., if a deduction D is evaluated with respect to an assumption

base Π and produces a sentence S, then Athena provides the guarantee that S is a logical
consequence of Π. Athena can also detect ill-sorted expressions in proofs and report them,
thereby removing the possibilities of ill-formed expressions in the proofs and the assumption
base. However, ATPs like SPASS are like black-boxes whose internal operations cannot be
analyzed. If there is an inconsistency in the premise passed to an ATP, then the ATP may
derive false from the premise, enabling it to prove any desired conclusion. Therefore, one
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must make sure that inconsistent statements are not passed to ATPs for deriving conclusions.
According to Gödel’s Incompleteness Theorems, it is impossible to prove that a set of axioms
is consistent [154]. Therefore, we have taken the following steps in order to obtain confidence
in the correctness of our proofs:

• We have checked that the facts in our assumption base are not inconsistent by making
sure that they conform to the informal proofs that we have developed.

• We have checked that SPASS cannot generate false from the statements that are in
our assumption base.

• We have kept the intermediate obligations in our proof hierarchy simple enough so
that they can be obtained from their preceding steps by basic operations like modus
ponens, conjunction elimination, etc. In this way, we have ensured that we have a
clear understanding of how the proof of a step is expected to proceed before passing
the parameters to SPASS.

• Every time we have used SPASS to prove some conclusion from a premise L, we have
first tried to prove false from L by executing the command (!prove false L) in
Athena. In all such cases, when we have tried to prove false from a premise we
wanted to use, SPASS has failed by finding a completion without timing out. This
showed that SPASS could not have used false to derive the proof of the conclusion.

Given the soundness guarantees of Athena, its built-in sort-detection feature, and the steps
we have taken to avoid inconsistencies in our proofs, we have established a reasonable degree
of confidence in the soundness of our approach.



APPENDIX C
VERSION 0.1 OF OUR ATHENA LIBRARY FOR

DISTRIBUTED ALGORITHMS

The logical hierarchy of version 0.1 of our Athena library for stochastic reasoning about
distributed coordination protocols can be divided into four main levels:

• General mathematics:

Real

Limit Integral

Function

Figure C.1: The general mathematics level of the library.

At this level of the library, there are Athena constructs that can be used to express
concepts of real numbers, function expressions, limits, and integrals (Fig. C.1). An
example of such a construct is the Func datatype that has a (consUF FunSym Real)

constructor which can be used to specify a unary function with a given function symbol
and a real number.

This level is very rudimentary in version 0.1 and contains a few well-known conjectures
of real numbers and does not contain any proofs or theorems.

• Probability:

This level of the library contains Athena constructs required to express concepts from
distributions, random variables, IID random variables, probability, Erlang distribu-
tions, and exponential distributions (Fig. C.2). An example of such a construct is the

142



143

Distribution

Random Variable

Erlang Distribution

Probability

Exponential Distribution

Probability of 
 IID Random 

 Variables

Figure C.2: The probability level of the library.

datatype Event that has a (consE rel:Rel rv:Random.RandVar rl:Real) construc-
tor. This constructor can be used to define an event of the form “a random variable
X takes a value <symbol> a real x” where <symbol> can be any relational operator
in the set {<,≤, >,≥,=}. Probability of an event is expressed by the probE operator
which takes an Event as input and returns a Real.

The modules in this level contain several important properties of random variables,
probability, and Erlang and exponential distributions that can be used for reasoning
about higher-level properties. There are proofs of important high-level properties such
as Eq. C.1 and Eq. C.220.

P (min (X1 . . . Xn) > y) = P (X1 > y,X2 > y, ..., Xn > y) (C.1)

P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) =
n∏

i=1
P (Xi ≤ xi) (C.2)

20For independent random variables.
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• Networks:

VANET

MTR Protocol

Queue

M/M/1 Queue

Figure C.3: The network level of the library.

This level of the library contains Athena constructs that can be used to express concepts
from VANETs, the MTR protocol, queues, and the M/M/1 queue (Fig. C.3). E.g., the
netTd and the netNodeSet operators defined over the domain of networks Network

return the transmission delay in a network and the set of all mobile nodes in a network
respectively. Similarly, the cstArRat and the cstDly operators defined over the domain
of all queues Queue represent the customer arrival rate and the customer processing
delay of a queue respectively.

This level contains some general properties of networks and queues such as Little’s
theorem and also the proofs of high-level probabilistic properties regarding message
transmission and processing delays from Chapter 4 such as Eq. 4.2 and Eq. 4.11.

• Distributed systems:

At this level of the library, there are Athena constructs to express concepts relevant
to timely progress properties of distributed algorithms (Fig. C.4). Examples of such
constructs are the operators msGetTd, msGetTp, and dpTotTim defined over the domain
of distributed protocols DisProt that return the mesage transmission and processing
delays and the total time required for progress for a protocol.

This level contains all the high-level properties of timely progress described in Chap-
ter 4. It also contains the proofs of these properties and the derivation of the proof of
timely progress for TAP from Eq. 4.12 to Eq. 4.22.
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Distributed Protocols 
 in VANET

Timely Progress in TAP

Figure C.4: The distributed system level of the library.

Overall, version 0.1 of our Athena library for probabilistic properties of distributed
protocols consists of 71 axioms and 27 theorems that are spread across the different levels
described above.
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