
1

Formal Verification of Safety-Critical Aerospace
Systems

Saswata Paul⋆, Elkin Cruz⋆, Airin Dutta⋆, Ankita Bhaumik⋆, Erik Blasch†, Gul Agha‡, Stacy Patterson⋆,
Fotis Kopsaftopoulos⋆, and Carlos Varela⋆,⋄

Abstract—Developments in autonomous aircraft,
such as electrical vertical take-off and landing (eVTOL)
vehicles and multicopter drones, raise safety-critical
concerns in populated areas. This article presents
the ASSURE (Analysis of Safety-Critical Systems Us-
ing Formal Methods-Based Runtime Evaluation) frame-
work, which is a collection of techniques for aiding
in the formal verification of safety-critical aerospace
systems. ASSURE supports the rigorous verification of
deterministic and non-deterministic properties of both
distributed and centralized aerospace applications by
using formal theorem proving tools. We present veri-
fiable algorithms and software, formal reasoning mod-
els, formal proof libraries, and a data-driven runtime
verification approach for aerospace systems towards a
provably safe Internet of Planes (IoP) infrastructure.

Index Terms—theorem proving, runtime verification,
stochastic systems, distributed systems
Important Acronyms:
AoA: Angle of Attack
ASSURE: Analysis of Safety-Critical Systems Using
Formal Methods-Based Runtime Evaluation
DAC: Decentralized Admission Control
DDDAS: Dynamic Data-Driven Applications Systems
eVTOL: Electrical Vertical Take-Off and Landing
FAM: Failure-Aware Actor Model
IoP: Internet of Planes
MTR: Multicopy Two-Hop Relaying
NMAC: Near Mid-Air Collision
TAP: Two-Phase Acknowledge Protocol
TLAPS: Temporal Logic of Actions Proof System
UAM: Urban Air Mobility

I. Introduction

THE rapid advancement in the field of autonomous
aircraft has revolutionized scientific data collection,

package delivery, disaster relief, agriculture surveillance,
weather tracking, and passenger transportation. As au-
tonomous aircraft technologies evolve to become more
accessible and cost-efficient, it will become necessary to
rigorously verify their performance to guarantee that they
will operate safely, securely, and efficiently.

Author affiliations:
⋆Rensselaer Polytechnic Institute, Troy, NY, USA.
†Air Force Research Laboratory, Rome, NY, USA.
‡University of Illinois Urbana-Champaign, Champaign, IL, USA.
⋄Corresponding author. Email: cvarela@cs.rpi.edu
This research was partially supported by the Air Force Office of
Scientific Research, DDDAS Grant No. — FA9550-19-1-0054 and the
National Science Foundation, Grant No. — CNS-1816307.

A. Motivation
Aerospace systems are safety-critical and errors in

aerospace operations such as flight control and naviga-
tion can be catastrophic. Recently, there were two fatal
accidents involving the Boeing 737 Max 8 series of air-
craft — Lion Air flight 610 on October 29, 2018 (189
fatalities) and Ethiopian Airlines flight 302 on March 10,
2019 (157 fatalities). These were caused by failing sensors
sending erroneous data to the Maneuvering Character-
istics Augmentation System (MCAS), which is a flight
stabilization software designed to automatically prevent
aircraft from stalling during flight by adjusting the angle of
attack (AoA) (Fig. 1) [1]. Similarly, navigational errors can
lead to mid-air collisions, such as in 2002 at Überlingen [2],
where a Boeing 757 cargo jet and a Tupolev Tu-154
passenger jet collided mid-air (Fig. 2) causing 69 fatalities,
and the mid-air collision involving a Cirrus SR-22 airplane
and a Swearingen Metroliner airplane near Centennial
Airport, Denver, Colorado, USA in May 2021 [3].

The safety-critical nature of aerospace applications war-
rants requirements for irrefutable system assurance guar-
antees for any tool or technique used in such applica-
tions. Such assurance guarantees can be obtained through
rigorous verification and validation (V&V) procedures.
Examples of aerospace V&V include software built-in-
testing (BIT) [4] and hardware sensor failure analysis
and mitigation via analytical redundancy [5]. However, the
complex nature and dynamic operating conditions of such
aerospace applications make it impossible to exhaustively
test them to provide such strong safety guarantees. Under
such circumstances, formal methods, tools, and techniques,
can be used for the verification of the critical properties
of such applications, e.g., by mechanically checking the
proofs of correctness guarantees.

B. Formal Methods
In avionics engineering, imprecision can lead to catas-

trophic errors in aerospace systems, thereby presenting a
strong incentive for using precise mathematical techniques
for specifying and reasoning about these systems. Formal
methods use rigorous mathematical techniques to reason
about the critical properties of hardware and software sys-
tems. Mathematical logic provides a natural framework for
precisely constructing and expressing various concepts in
computing and lends itself well to formalization [6]. Formal
verification of safety-critical systems requires tools and

pauls
Typewritten Text
Note

pauls
Typewritten Text
: This paper has been accepted in the IEEE AESM Magazine
 DOI 10.1109/MAES.2023.3238378

2

Malfunction of MCAS

Normal Operation of MCAS
Sensors correctly
detect that the
nose is too high
and may cause a
stall condition

Sensors incorrectly
detect that the
nose is too high
and may cause a
stall condition

MCAS activates
the horizontal
stabilizers to
adjust the AoA
in both cases

Fig. 1: Boeing’s MCAS system’s failure.

Fig. 2: The flight paths for the 2002 Überlingen
mid-air collision incident (Image credits:
https://www.skybrary.aero/index.php/T154_
/_B752,_en-route,_Uberlingen_Germany,_2002).

techniques for mechanically checking proofs of correctness
guarantees. There are two main uses of formal methods in
system development:

• Specification - the process of describing a system and
its required properties using a formal language with
mathematically well-defined syntax and semantics.

• Verification - the process of determining if the spec-
ified system satisfies the required properties using
theorem proving and/or model checking.

1) Theorem Proving: Theorem proving entails creating
a set of statements S that reflects the specification of
a system and a set of formulae F that represents the
required correctness properties as constraints on states.

The theorem proving technique allows models with pos-
sibly infinitely large state spaces as there is no need to
exhaustively explore all the reachable states for a given
model. Rather, a set of logical inference rules is used to
construct proofs that can mathematically establish that
S entails F . Infinite state spaces are usually modeled by
using universal quantification (denoted by the ∀ symbol)
which implies that a property can be satisfied by all pos-
sible members of a domain. Theorem proving allows us to
reason about constraints on states in addition to individual
state instances. Proof assistants and automated theorem
provers like Athena [7] and Temporal Logic of Actions
Proof System (TLAPS) [8] can automatically search for
and check proofs in defined domains [9].

2) Model Checking: In model checking [10], an abstract
model M of a system is first constructed in the form of
variations of finite state automata and a set of formulae F
is constructed that specifies the correctness properties [9].
It is then established that M semantically entails F by
exploring the entire set of reachable states for M. If a
property does not hold in all of the reachable states, then
at least one valid counter-example is produced and the
property is said to be false. Models can be designed for
both software and hardware systems before the actual
systems are developed, but to successfully apply model
checking, the models need to have finite state spaces. The
task of verification can be fully automated by using model
checking software like the TLA+ Model Checker [11].

Compared to model checking, theorem proving is a more
expressive approach for verification since theorems are
usually defined as logical constraints that hold over infinite
system states, which is in contrast to the finite set of
states used in model checking. Moreover, model checking is
limited by the state space explosion problem which makes
the verification of many real-world applications with large
state space dimensionality intractable.

C. Aerospace Challenges
Aerospace systems are inherently complex involving

intricate interactions between different types of avionics
components such as multi-modal sensors, control inputs,
flight control surfaces, as well as avionics intra-aircraft
and inter-aircraft data transfer via fiber optic cables or
radio frequency transponders. Some important challenges
involved in developing verifiable aerospace systems are:

• Heterogeneous avionics components can vary signif-
icantly in their specifications, correctness require-
ments, and properties. This makes it necessary to
employ different types of techniques for the formal
verification of aerospace systems.

• The characteristics of aerospace systems are defined
by a mixture of both deterministic properties, where
the system behaviors under different possible op-
erating conditions are well understood; and non-
deterministic properties, where the behaviors are de-
pendent on unpredictable uncertainties.

• The dynamicity of the operating conditions of real-
world aerospace systems makes it difficult to pro-

https://www.skybrary.aero/index.php/T154_/_B752,_en-route,_Uberlingen_Germany,_2002
https://www.skybrary.aero/index.php/T154_/_B752,_en-route,_Uberlingen_Germany,_2002
https://www.skybrary.aero/index.php/T154_/_B752,_en-route,_Uberlingen_Germany,_2002
https://www.skybrary.aero/index.php/T154_/_B752,_en-route,_Uberlingen_Germany,_2002

3

vide formal guarantees that are valid during deploy-
ment. Formal proofs that are developed in the pre-
deployment stages may cease to be valid at runtime
if the actual operating conditions do not conform to
the assumptions made during reasoning.

• There can be a disconnect between the formal speci-
fication of an avionics software module and its actual
code, which implies that even if the specification is
verified to satisfy some property, the code may not be.

• Developing formal specifications of complex aerospace
systems requires interdisciplinary domain knowledge
and high proficiency in formal methods tools.

D. ASSURE: Analysis of Safety-Critical Systems Using
Formal Methods-Based Runtime Evaluation

Owing to the challenges posed by the complexity of
aerospace systems and their dynamic operating conditions,
the formal verification of such systems warrants the use
of different types of existing techniques and the devel-
opment of new techniques to address these challenges.
Therefore, this article presents the ASSURE (Analysis
of Safety-Critical Systems Using Formal Methods-Based
Runtime Evaluation) framework, which is a collection of
formal techniques for the verification of real-world safety-
critical systems. These techniques can be used to specify
critical aerospace applications ranging from autonomous
navigation to flight state estimation and verify their cor-
rectness using mathematically rigorous formal logic. The
primary contributions of this article are – (1) survey-
ing different ASSURE techniques for the verification of
aerospace systems: Hoare logic [12]-based techniques (us-
ing Dafny [13]), temporal logic [14] based techniques (using
TLAPS), constructive techniques using dependent type
theory (using Agda [15]), and first-order logic theorem
proving techniques (using Athena); and (2) presenting AS-
SUREs reusable library-based theorem proving approach
with dynamic data-driven [16] verification to reason about
stochastic aerospace systems (using Athena).

The rest of the article is structured as follows: Sec-
tion II describes ASSURE techniques for the verification
of deterministic properties of aerospace systems by pre-
senting: (1) a formally verified deterministic algorithm for
strategic conflict detection and avoidance and (2) models
for reasoning about deterministic properties of distributed
coordination protocols that can be used for autonomous
air traffic management; Section III describes ASSURE
techniques for the verification of probabilistic properties of
aerospace systems by presenting: (1) models for reasoning
about probabilistic properties of aerospace applications
such as fixed-wing aircraft stall detection, hexacopter rotor
fault detection, and multi-aircraft coordination, (2) a proof
library in Athena for reasoning about probabilistic prop-
erties of airborne distributed protocols, (3) formal correct-
ness envelopes that can divide the operational state space
into regions where a formal proof may or may not hold,
and (4) a runtime verification approach based on the Dy-
namic Data-Driven Applications Systems (DDDAS) [16]

Candidates

Airspace

Owners

Fig. 3: Aircraft implementing DAC for an airspace.

paradigm; Section IV presents a brief discussion on the
different verification techniques we have developed as a
part of ASSURE; and Section V concludes the article and
presents some potential directions for future work.

II. Verifying Deterministic Properties of
Aerospace Systems

A deterministic system is a system in which there is no
randomness involved in the change of states, i.e., under
a given input, the system will always produce the same
output as long as the initial state is the same. There are
several important applications of deterministic systems
that are required for the safe operation of aerospace
systems. To motivate deterministic system analysis, this
section introduces an autonomous air traffic management
technique called decentralized admission control (DAC)
and describes the formal verification of some deterministic
properties relevant to DAC.

DAC is an autonomous separation assurance tech-
nique that allows a group of aircraft to collaboratively
plan safe operations through well-defined four-dimensional
airspaces for urban air mobility (UAM) scenarios. In DAC,
an airspace has a set of owner aircraft which already have
the authorization to carry out a predefined set of flight
plans through the airspace. The set of flight plans of the
owners is safe, i.e., there is no possibility of near mid-
air collisions (NMAC) between any subset of flight plans
in the set. One or more candidate aircraft can then use
the knowledge of this safe set to compute a conflict-free
flight plan that is compatible with the safe set (Fig. 3).
A candidate can then propose its conflict-free plan to the
owners to gain authorization to use the airspace. When
a candidate is authorized to use an airspace, the set of
owners changes to include the candidate and all future
candidates must use this new set of owners to compute
their conflict-free proposals.

In DAC, participating aircraft must coordinate in a
decentralized manner over the Internet of Planes (IoP) —
a vehicle-to-vehicle (V2V) network of aircraft, ground sta-
tions, and satellites. The IoP is characterized by different
aspects such as the distributed coordination protocols used
by the aircraft, and the nature of airborne communication.
To allow for a provably safe IoP infrastructure, we use the
ASSURE framework to verify such aspects of the IoP.

4

Decentralized coordination in DAC for authorizing a
single candidate involves two consecutive stages:

1) Consensus, which requires a set of agents to reach an
agreement on some value and is a fundamental prob-
lem in distributed systems. There may be multiple
candidates concurrently competing for admission into
an airspace, but the owners can only admit the candi-
dates sequentially because the competing candidates
do not consider each other in their proposals and
admitting one candidate potentially invalidates the
proposals of all other candidates. Hence, a distributed
consensus protocol must be used to ensure that only
a single candidate’s proposal is chosen at a time.

2) Knowledge Propagation is the act of sending a fact
throughout a network to attain a desired state of
distributed knowledge. When a candidate is autho-
rized, the set of owners changes to include the candi-
date, and all aircraft relevant to the airspace must
be informed about the new set of owners so that
they can learn the new value. Aircraft relevant to
an airspace comprises the set of new owners and
the set of candidates expected to try to enter the
airspace in the future (this includes the candidates
who may have been previously denied authorization).
Consensus only guarantees that a sufficiently large
subset of all relevant aircraft will learn about the
agreement. Therefore, after a candidate is authorized,
a distributed knowledge propagation protocol must
propagate the knowledge of the agreement to all
relevant aircraft.

Several types of deterministic correctness properties are
relevant for DAC, e.g., there must be a guarantee that
the conflict-free proposal computed by the candidates
accurately avoids NMACs with the owners’ flight plans.
Similarly, there are two types of deterministic properties of
interest for the distributed protocols used in DAC: (1) the
distributed protocol will correctly achieve its intended goal
(called safety) and (2) the distributed protocol will even-
tually achieve its intended goal (called eventual progress).
The next section highlights some examples of formal ver-
ification of such deterministic properties.

A. Deterministic Algorithms
For critical properties, such as the property that the pro-

posals computed by the candidates must have no conflict
with the owners’ flight plans, it is necessary to ensure that
the property is never violated. Therefore, algorithms that
are used to compute such proposals must be deterministic
in order to ensure that the property is valid for all inputs to
the algorithm. In [17], we presented solve, a deterministic
algorithm to compute NMAC-free proposals for DAC.

An NMAC is a potentially catastrophic interaction
between two or more aircraft that is caused by the loss
of safe separation between the aircraft. A distance-based
method for detecting NMACs uses a cylindrical "hockey
puck"-shaped volume around each aircraft called the well-
clear volume (with diameter D and height H) [18]. During

Fig. 4: An NMAC between two aircraft.

Fig. 5: Periods of interest for two flight plans.

Fig. 6: Sample assignment matrix for the ground speeds.

an NMAC, the well-clear volumes of the involved aircraft
intersect each other. At any time t, an NMAC arises if two
conditions simultaneously hold: ∥sxy,t∥< D and |sz,t|< H,
where ∥sxy,t∥ and |sz,t| represent the relative horizontal
and vertical positions at t. This conflict detection logic
works only when the states of two aircraft a and b at
a time t0 are available as Sa,t0 and Sb,t0 , along with a
known period of interest during which both aircraft must
maintain constant ground speed. However, candidates in
DAC must be capable of detecting conflicts between two
or more multi-segment flight plans where each flight plan
is a sequence of multiple constant ground speed segments.
Given two flight plans Fa and Fb, it is, therefore, nec-
essary to discretize the temporal dimension into periods
of interest (e.g., Fig. 5, shows the top-view of two flight
plans). The times corresponding to the way-points of the
flight plans discretize the temporal dimension (represented
by the dotted line) into consecutive periods of interest,
demarcated by time points. Periods of interest are only
valid if two flight plans have temporal overlap during that
period (e.g., in Fig. 5, the periods t0 to t1 and t8 to t9 are
not valid periods of interest).

solve is a recursive algorithm that can be used by a

5

candidate to compute an NMAC-free flight plan proposal
for DAC, given a set of flight plans Φ = {F1, ..., FN } for
the owners. In our approach, the candidate first decides on
a desired set of waypoints in 3D space. Then, a conflict-
free flight plan is computed by assigning a suitable ground
speed to each segment between the waypoints such that
(∥sxy,t∥< D)∧(|sz,t|< H) is never true with respect to any
plan in Φ. A suitable set of ground speed assignments is
denoted by a matrix where each row represents a segment
in the flight plan and each column represents a possible
value of ground speed (Fig. 6).

Using Athena, we have mechanically verified the fol-
lowing deterministic properties for solve using inductive
formal proofs over the algorithm’s specifications:

Theorem 1. (Safety) If solve returns a complete assign-
ment matrix M , then adding the flight plan F correspond-
ing to M to the set of traffic flight plans Φ results in a safe
set of flight plans.

Theorem 2. (Completeness) If solve returns an incom-
plete assignment matrix M , then there does not exist a
valid assignment of ground speeds M , such that adding its
corresponding flight plan F to the set of traffic flight plans
Φ results in a safe set of flight plans.

B. Models for Reasoning about Distributed Systems
Formal specifications of algorithms are usually ex-

pressed using logical models that support reasoning about
correctness properties. We have used the actor model [19],
[20] and the temporal logic of actions (TLA) [14] to reason
about consensus and knowledge propagation respectively.

1) Actor Model: The actor model is a theoretical model
of concurrent computation that can be used for reasoning
about distributed systems. Actors are self-contained, con-
currently interacting entities of a computing system that
communicate by message passing [21]. In [22], we have
used the actor model to formally reason about eventual
progress in the Synod consensus protocol as it assumes
asynchronous communication and fairness, which are help-
ful for reasoning about progress in networks like the IoP.

In asynchronous communication, message transmission
delays are unbounded, so message transmission delays
cannot be differentiated from processing delays or in the
extreme case, agent failures. The IoP is an open network
in which aircraft may experience permanent or temporary
communication failures that may render them unable to
send or receive any messages. Failures may be caused by all
messages to and from an aircraft getting delayed because
of transmission problems or due to internal processing
delays in the aircraft. Therefore, for formal reasoning, it
must be possible to specify if an actor has failed at any
given time, i.e., if it is incapable of sending or receiving
messages. To specify such failures, in [22], we introduced
a failure-aware actor model (FAM), which allows us to
formally reason about temporary and permanent failures.

The Synod consensus protocol was proposed in [23] as
the fundamental consensus protocol used by Paxos. Synod

assumes an asynchronous, non-Byzantine1 system model
in which agents may fail and restart, and have stable stor-
age. Synod assumes that messages can be duplicated, lost,
and can have arbitrary transmission times, but cannot
be corrupted. It consists of two logically separate sets of
agents: proposers, which are the agents that can propose
values for agreement, and acceptors, which are agents that
can vote on which value should be agreed upon. A proposer
learns that its proposal has been chosen if it receives voted
messages from a quorum of acceptors.

Synod is ideal for consensus in DAC because it guar-
antees the safety property that only one value will be
agreed upon by the acceptors. However, because of the
asynchronous nature of communication in the IoP, it
becomes challenging to guarantee progress in Synod since
there is no unique leader . The Fischer, Lynch, and Pater-
son (FLP) impossibility result [24] implies that in purely
asynchronous systems, where agent failures cannot be
differentiated from message delays, leader election cannot
be guaranteed. Therefore, it is important to identify the
fundamental conditions under which progress can be for-
mally guaranteed in leaderless protocols like Synod.

We have identified a set of conditions (called CND) under
which eventual progress can be guaranteed — “eventually,
a nonfaulty proposer must propose a proposal number,
that will not be interrupted by higher-numbered propos-
als, to a quorum of nonfaulty acceptors, and the Synod-
specific messages between these agents must be eventually
received” [22]. Using FAM, we have formally specified
the interactions between Synod agents and verified the
following eventual progress property in Athena (Fig. 7).

Theorem 3. (Eventual Progress in Synod) Given CND, a
proposer p will eventually learn that a proposal number b
has been chosen.

2) Temporal Logic of Actions: TLA is a model that can
be used to specify the behavior of concurrent systems and
reason about their correctness properties [14]. In TLA,
a system has a set of states and the transition between
states are caused by actions. An action is a mathematical
expression that contains primed and unprimed variables
where unprimed variables represent the current state and
primed variables represent the future state after the action
has taken place [25].

Any knowledge propagation protocol used in DAC
should ensure a safe state of knowledge in which all aircraft
can "feel safe" to operate. In knowledge logic [26], the
expression kiΦ represents that an agent i knows the fact
Φ and EΦ represents that every agent E in the system
knows Φ. The expression E2Φ represents a higher state of
knowledge than EΦ and implies that every agent knows
two facts— Φ and EΦ. In the context of DAC, if Φ

1A Byzantine failure is one where an agent can appear to fail or
give erroneous data to some agents while appearing to work correctly
to some other agents. In a non-Byzantine system model, no Byzantine
failures are considered, i.e., an agent either fails or communicates
following the protocol’s specification from the perspective of all
participating agents.

6

represents the new set of flight plans of the owners after
consensus, then the absence of E2Φ will create a scenario
in which the autonomous aircraft will not be able to
trust that the operation of DAC will be safe. Fagin et
al. [26] succinctly explain this concern with the following
example — even if all drivers in a society know the rules
for following traffic lights and follow them, that is not
enough to make a driver "feel safe". This is because unless
a driver knows that everyone else knows the rules and will
follow them, then the driver may consider it possible that
some other driver, who does not know the rules, may run
a red light. Hence, in [27], we have specified E2Φ as a safe
state of knowledge for DAC and presented a Two-Phase
Acknowledge Protocol (TAP) that can be used by aircraft
to attain E2Φ after consensus has been reached on Φ.

TAP assumes an asynchronous, non-Byzantine system
model in which agents operate concurrently and may expe-
rience communication failures. TAP also assumes reliable
messaging [28] where message delivery is guaranteed. Mes-
sages can be duplicated but cannot be corrupted. In TAP,
there is a non-empty set of propagators, and a logically
separate non-empty set of replicas. Each propagator knows
which agents are in the set of all replicas. A single value Φ
is known to all propagators. E2Φ, in the context of TAP,
implies that all replicas know that all other replicas know
Φ. The goal of every propagator is to propagate Φ and
eventually learn that E2Φ has been achieved.

Under two additional conditions beyond the system
model of TAP — no replica can permanently fail and at
least one propagator does not permanently fail — we have
mechanically verified the following correctness properties
of TAP using TLAPS (Fig. 8):

Theorem 4. (Safety in TAP) A propagator can learn that
E2Φ has been attained if and only if all replicas know EΦ.

Theorem 5. (Eventual Progress in TAP) Eventually,
some propagator will learn that E2Φ has been attained.

III. Verifying Probabilistic Properties of
Aerospace Systems

The complex nature of aerospace systems and the
uncertain operating conditions presented by real-world
conditions imply that guarantees of deterministic correct-
ness cannot always be provided for all aspects of such
systems. Guarantees of probabilistic correctness can still
be provided for such stochastic aerospace systems using
statistical theory [29]. In the absence of guarantees of
deterministic properties, guarantees of probabilistic prop-
erties can still help pilots or flight control computers make
important operational decisions. As an example, because
of the asynchronous nature of communication in the IoP,
it is impossible to deterministically bound the time that
may be required for consensus in DAC. However, if there is
a guarantee that consensus will take at most 1 second with
high probability (e.g., 99.999999999%), then a candidate
can decide to only compute flight plans that start after 1
second. Similarly, for avionics that must detect the stall

Fig. 7: Verification of Synod using Athena.

Fig. 8: Verification of TAP using TLAPS.

state of an aircraft, it will be useful to have a guarantee
that states with a high probability that the system will
correctly detect the stall/no stall state over a specified
subset of operating conditions [30]. This section presents
some ways to provide such guarantees of probabilistic
properties that can be useful at runtime.

A. Models for Reasoning
Probabilistic properties can be guaranteed for systems

by modeling the systems stochastically. Stochastic estima-
tion follows two methods — data-driven models that are
based on runtime observations or theoretical models based
on analytical principles. Both data-driven and theoretical
methods utilize measurements, physical knowledge, and
context [31]. Below, we present some of our work on using
such models for reasoning about aerospace systems.

1) Data-Driven Models: It is possible to observe the
operating conditions of aerospace systems by collecting
data from sensors at runtime or through simulation [32].
The data can be used to infer important statistical prop-
erties and create data-driven models about the operating
conditions. We have used data-driven models for stall
detection in fixed-wing aircraft [33] and for rotor fault
detection in hexacopters [34].

a) Fixed-Wing Aircraft Stall Detection: A data-
driven method for stall detection uses response signals
recorded from piezoelectric sensors placed on the wings of
an aircraft to detect the stall states [35]. Given dynamic
noise-corrupted data collected from a sample of the ad-
missible flight states; each state can be characterized by
a specific airspeed and angle of attack (AoA)2 and kept

2The angle between the chord of the wing and the relative airflow.

7

constant for the duration of the data collection. Hence, it
is possible to develop appropriate methods capable of mon-
itoring and detecting aerodynamic stalls (Fig. 9) without
the use of pitot-static3, angle of attack, or gyroscopic sen-
sor information [36]. We have developed a mathematical
model for stall detection which is based upon experimental
wind tunnel data that was obtained by controlling the AoA
and airspeed configuration of a model wing and recording
the mean and variance of signal energy. Specific angle of
attack/airspeed configurations correlate with aeroelastic
properties4, allowing certain signal energy distributions to
be associated with stall/no-stall conditions [37].

Our collective-Gaussian stall model is defined as: Given
the sample space R, a collective-Gaussian stall model
is the collective-probability model for stall classification:
Mstall = ⟨Θstates , {N (µθ, Σθ)} , Pstates , Lstall , Cstall ⟩,
where Θstates is the set of air flight configurations
for which there is data, {N (µθ, Σθ)} is a multivariate-
normally distributed random variable for the air flight
configuration θ ∈ Θstates, Pstates is the probability
density function that determines the probability for an
air flight configuration θ ∈ Θstates to occur, Lstall =
stall, no-stall; and Cstall : Θ → Lstall is a tag function
for each flight state.

b) Hexacopter Rotor Fault Detection: We adopted a
model of a rigid-body regular hexacopter (Fig. 10) that
uses a summation of forces and moments to calculate
accelerations [38]. This model allows for the simulation of
abrupt rotor failures by ignoring the failed rotors’ inflow
states and setting the output rotor forces and moments
to zero. A proportional-integral-derivative (PID)-based
feedback controller was implemented on the nonlinear
model to stabilize the aircraft altitude and attitudes, as
well as track desired trajectories. We developed a velocity-
based control design which can perform well even in the
event of rotor failures, with no adaptation in the control
laws themselves [38]. We then implemented a continuous
Dryden wind turbulence model to simulate realistic flight
conditions in our experiments.

The Dryden model provided the main source of simu-
lated data for 5 m/s forward speed under light, moderate,
and severe levels of turbulence. Observations were then
made from the roll/pitch/yaw signals after simulating
abrupt rotor failures [39]. In the case of front rotor fail-
ure, the hexacopter pitched down without any substantial
change in roll angle, as the loss of rotor 1 thrust did not
significantly affect the aircraft roll equilibrium. However,
in the case of side rotor failure, both the pitch and roll
attitudes changed and the roll attitude compensation was
observed to be underdamped5. The deviation of roll atti-
tude in rotor 2 failure was reversed for rotor 6 failure, be-
cause of unbalanced roll moment in rightward and leftward
directions, respectively. The heading of the aircraft was

3Sensors used to detect ambient air pressure in an aircraft.
4Structural effects on aerodynamic forces.
5“Underdamped” means that the controller compensated for the

disturbance caused by rotor failure by allowing the roll signal to
complete a few oscillations before settling into a steady-state value.

Airflow

Fig. 9: Stall in a fixed-wing aircraft.

Fig. 10: Schematic diagram of a hexacopter.

observed to deviate in different directions with the failure
of the front rotor compared to the side rotor. This was
due to the different rotor spin directions of front and side
rotors, and consequently the direction of the hub torque
generated by each rotor. We developed a knowledge-based
fault detection algorithm that uses the knowledge of the
hexacopter configuration along with principles of force and
moment equilibrium to predict how the aircraft roll, pitch,
and yaw attitudes will behave under instantaneous loss of
thrust and consequent moment imbalance in an event of
rotor failure. Therefore, the decision-making follows the
deviation of signals from their 99% confidence intervals
under abrupt failures of rotors 1, 2, and 6.

2) Theoretical Models: Theoretical models of stochastic
systems are based on well-established analytical and statis-
tical results about the behavior of the systems. To develop
guarantees that are useful and practical, the theory used
for such reasoning must be appropriate for the system
analyzed. We have used theoretical models for reasoning
about probabilistic progress in distributed protocols [40].

The total time that is required for a distributed protocol
to make progress is dependent on three factors : (1) mes-
sage transmission delays, (2) message processing delays,
and the (3) the number of messages involved. In asyn-
chronous settings, message delays are unbounded, making
it impossible to provide deterministic bounds on the total
time that may be required for progress. In the IoP, aircraft
must be able to communicate their own information and

8

relay received information from other aircraft using a
multi-hop ad hoc approach [41] (Fig. 11). Moreover, an
aircraft can be viewed as a single server where messages
arrive, wait for some time until they are processed, and
take some time to be processed, which is consistent with
queueing theory [42] for reasoning about message pro-
cessing delays (Fig. 12). Among many possible theoret-
ical models present in the literature, we have used the
Multicopy Two-Hop Relay (MTR) protocol [43] and the
M/M/1 queue system [42] to model message transmission
and processing delays respectively in vehicular ad hoc
networks (VANET) [44] like the IoP.

n+1 hops

DestinationSource Relay 1 Relay 2 Relay n

Fig. 11: Message transmission via relaying.

Waiting line Server(s)

Total processing time

Waiting time Service time

Processed
message

Incoming
messages

Message
interarrival

time

Fig. 12: A typical queuing system.

a) The MTR Protocol for Inter-Aircraft Communi-
cation Delays: In the MTR protocol, there are a set of
M + 1 mobile nodes whose trajectories are independent
and identically distributed (i.i.d.). A source node can
directly transfer a message to a destination node if the
destination is within its transmission range, or, it can
transmit copies of the message to one or more relay nodes.
A relay node can transmit a copy of a message directly to
the destination node if the two are within the transmission
range of the relay node. A relay node, however, cannot
transmit a copy of a message to another relay node. Each
message, therefore, makes a maximum of two hops —
it is either transmitted directly from the source to the
destination, or it is transmitted through one intermediate
relay node. The inter-meeting times of all pairs of nodes,
i.e., when they are reachable from each other, are i.i.d.
and are exponentially distributed with the rate parameter
λMT R. Each untransmitted copy of a message has a time-
to-live (TTL) after which a relay drops it.

By using the specifications of MTR, the following prob-
abilistic bound on the time TDm

taken to deliver a message
m using MTR can be proven:

P (TDm ≤ t) = 1 − e−λMT RMt (1)

where TDm
is exponentially distributed with a rate param-

eter λDm = λMT RM .
b) The M/M/1 Queue System for Aircraft Message

Processing Delays: The M/M/1 queue system [42] enables
deriving elegant analytical properties for computing the
total time TPm required for a message m to be processed.
TPm includes the time spent in the queue and the time
spent in actually processing the message. Some impor-
tant analytical properties of the M/M/1 queue are: it

is managed by a single server; TPm is exponentially dis-
tributed [45]; the interarrival times of messages in the
queue are exponentially distributed with a rate parameter
λa; the service time of messages is exponentially dis-
tributed with a mean 1/µs, where µs is the rate parameter;
and the number of message arrivals in an interval of length
τ follows a Poisson distribution [46] with a parameter λaτ .
The rate parameter of TPm can then be obtained as:

λPm = µs − λa (2)

In [40], we have used Athena to develop mechanically
verified formal proofs of the following well-known results
about the MTR protocol and the M/M/1 queue system:

Theorem 6. (The Rate Parameter for TDm) TDm is
exponentially distributed with the rate parameter λDm =
λMT RM .

Theorem 7. (The Rate Parameter for TPm
) TPm

is expo-
nentially distributed with the rate parameter λPm

= µs−λa.

The machine-checked proofs of the above theorems can
be used as building blocks and "plugged-in" as required
for developing higher-level machine-checked guarantees of
timely progress for distributed protocols that can be useful
for safety-critical UAM applications.

The DDDAS paradigm [16] advocates for a synergetic
interaction between purely theoretical and data-driven
models. A theoretical model can be enhanced dynamically
by collecting runtime data, making it more accurate and
computationally less expensive. Similarly, theoretical prin-
ciples can help inform where it pays off best to collect data.

B. Formal Proof Libraries
Aerospace systems are complex and consist of intricate

relationships between various types of sub-systems that
work in tandem. Therefore, reasoning about the high-level
properties of such systems involves holistic consideration
of the various domain-specific aspects involved. Formally
proving the correctness of a high-level property using
an interactive proof assistant like Athena requires access
to formal constructs that are sufficiently expressive to
correctly specify such aspects. Note, for formal reasoning
about the statistical properties of stochastic aerospace
systems, it is necessary to have access to definitions from
across mathematics as represented in Fig. 13.

Developing expressive formal constructs in a machine-
readable language is a challenging task since it re-
quires: (1) domain knowledge of all aspects of the systems
that need to be specified, (2) knowledge of formal logic and
reasoning techniques, and (3) proficiency in the language
in which the constructs are to be specified. If computer
scientists and aerospace engineers have to develop the
required formalizations from the ground up every time a
new high-level property for a complex system needs to be
verified, then the task of verification can become extremely
expensive. To address this, we propose the development of
domain-specific reusable libraries of formal constructs that
can be readily used for reasoning about such high-level

9

Higher-Level
Statistical
Results

Measure Theory
& Integration,

Formal
Probability

Real Analysis

TopologyLinear Algebra

Set TheoryAlgebraic Theories

Fig. 13: Theories required to reason about high-level sta-
tistical properties of stochastic systems [37].

Distribution

Random Variable

Erlang Distribution

Probability

VANET

Exponential Distribution

Probability of
 IID Random

 Variables

MTR Protocol

Real

Limit Integral

Queue

Function

M/M/1 Queue

Distributed Protocols
 in VANET

Timely Progress in TAP

Probability Theory

Mathematical Theory

Network Theory

Distributed Systems Theory

Fig. 14: Hierarchy of reusable theories in Version 0.1 of the
ASSURE Athena library.

properties, just like code libraries for regular programming
languages. Such libraries can be fairly complicated to
develop because of the reasons mentioned earlier, but once
reusable theories have been created, they can simply be
"plugged-in" for verifying dependent high-level properties.

Mechanically verifying timely progress properties of dis-
tributed protocols using theories of the MTR protocol and
the M/M/1 queue system requires formal specifications
to express constructs such as networks, mobility models,
communication models, failure-models, inter-agent inter-
actions, queues, and agent behaviors. Most of these con-
structs can be used for reasoning about different types of
distributed airborne communication protocols as well as
other aerospace applications such as stochastic state esti-
mation (e.g., stall and fault detection avionics systems).

Therefore, we have developed an open-source proof library
in Athena that can be used for reasoning about the proba-
bilistic properties of stochastic aerospace systems [40]6. As
of Version 0.1, our Athena library has specialized theories
from different domains to reason about distributed pro-
tocols implemented over ad hoc airborne networks. There
are theories from four main domains: general mathemat-
ics, probability, network theory, and distributed systems.
Within each domain, there are theories from various re-
lated sub-domains. Fig. 14 depicts the logical hierarchy
of version 0.1 of the ASSURE Athena library and the
dependencies between the various modules representing
the different logical domains and sub-domains. Using the
library, we have mechanically verified the probabilistic
properties of message delays in the IoP (e.g., Fig. 15).� �
conclude THEOREM-mean-T-value
...
let{

...
mu_s := (Dist. ratePar (Random .pdf (srvcTm Q))
);
lambda_a := (Dist. ratePar (Random .pdf (
cstArRat Q)));
N_d := (mu_s - lambda_a);
...

}
(!chain [T

= (N * (1.0 / L)) [T= N-x-inv-L]
= ((L / N_d) * (1.0 / L)) [N= L-by-N_d]
= (1.0 / N_d) [conn-2-a-by-d-x-b-by-a]
])� �

Fig. 15: A snippet from the Athena proof of Eq. 2.

The formal specifications in our Athena library are
reusable in different contexts so that further expansion of
the library can be aided by using the existing specifications
as building blocks rather than requiring them to be rede-
veloped from scratch. In our experience, efficiently design-
ing reusable formal structures to express interconnected
theories requires several iterations where the specifications
need to be improved to be more general as new contexts
for application are identified. Another challenge is the
meaningful modularization of the theories to make it easy
to import them independently in different contexts. We are
working on extending the library by adding more mechan-
ically verified theories to reason about state estimation
applications such as stall and fault detection.

C. Correctness Envelopes
Correctness properties of a system can be formally ver-

ified using machine-checked proofs that often depend on
certain logical preconditions that must be satisfied. Some
of these preconditions are data-driven and can be quan-
tified and measured at runtime using data collected from
sensors. Such data-driven preconditions allow specification
of correctness envelopes that represent distinct subsets
of the operational state space where some correctness

6The library can be found at https://wcl.cs.rpi.edu/assure

10

Fig. 16: Safety envelopes (bottom row) as the intersection of z-predictability (top row) and τ -confidence (middle row)
for airspeed of 6m/s, 20m/s and all flight states. a) z = 1, τ = 80% b) z = 2, τ = 99%. In the bottom row, blue
represents no stall, red represents stall, and white represents the area outside the envelope [33].

properties of the system can be irrefutably guaranteed.
These envelopes are defined by parameters that can de-
pend on runtime measurements. For specific properties,
the envelopes are determined by different types of data,
and at any given time, the system may be well within the
boundaries of one envelope and outside another envelope.
We present two types of correctness envelopes relevant to
high-level properties of interest for aerospace systems —
safety envelopes7.

1) Safety Envelopes: A formal safety envelope, anal-
ogous to a flight envelope, is a computable subset of
the operational state space that describes the constraints
on the operating conditions under which a correctness
guarantee is valid [37]. Such a subset can involve both con-
tinuous (e.g., membership of sensor data in some interval
of the state space) and non-continuous (e.g., normality test
of the sample history of a sensor) constraints.

Safety envelopes for stall awareness (Fig. 16) are defined
using the intersection of z-predictability, capturing the
likelihood of the signal energy x being consistent with the
Mstall data-driven model, and τ -confidence, capturing the
likelihood of accurate stall classification, as follows:

• z-predictability: Given a collective-Gaussian stall

7In this context, “safety” means that nothing bad ever happens,
while “progress” means that something desirable happens.

model Mstall (see Section III-A1a) and a parameter
space z ∈ R+, z-predictability corresponds to the
statement: Sz−pred (Mstall , z, x) = ∃θ ∈ Θstates :
DM (µθ, Σθ, x) < z where DM (µθ, Σθ, x) is the Ma-
halanobis distance

√
(µθ − x)⊺ Σ−1

θ (µθ − x).
• τ-confidence: Given a collective-Gaussian stall

model Mstall and a parameter space τ = (0.5, 1], the
classification function for Mstall is given by:

Ccond (Mstall , τ, x)

=


stall P (stall = true | X = x) ≥ τ

nostall P (stall = false | X = x) ≥ τ

uncertain in any other case

where the conditional probability of stall given x
follows Bayes Theorem:

P (stall = true | X = x)

= P (X = x | stall = true)P (stall = true)
P (X = x)

A classification function Ccond (Mstall , τ, x) = k is τ -
confident iff k ̸= uncertain.

Two mechanically verified Agda theorems about safety
envelopes for stall classification are given below:

Theorem 8. (z-predictability within Safety Envelope)

11

� �
program Rotor_check_threshold ;

inputs
roll ,pitch ,yaw (t) using closest (t);

constants
R_LOW = -0 .0153;
R_HIGH = 0.006;
P_LOW = -0 .0884;
P_HIGH = -0 .0703;
Y_LOW = -0 .0040;
Y_HIGH = 0.0022;

outputs
roll ,pitch ,yaw ,mode at every 0.1 sec;

errors
e1: roll;
e2: pitch ;
e3: yaw;

modes
m0: e2 in [P_LOW .. P_HIGH]

or (e2 in (.. P_LOW) and e3 in [Y_LOW ..
Y_HIGH])

or (e2 in (.. P_LOW) and e3 in (Y_HIGH ..)
and e1 in [R_LOW .. R_HIGH]) " Normal ";

m1: e2 in (.. P_LOW)
and e3 in (.. Y_LOW) " Rotor 1 failure ";

m2: e1 in (.. R_LOW) and e2 in (.. P_LOW)
and e3 in (Y_HIGH ..) " Rotor 2 failure ";

m3: e1 in (R_HIGH ..) and e2 in (.. P_LOW)
and e3 in (Y_HIGH ..) " Rotor 6 failure ";

end;� �
Fig. 17: A sentinel written in PILOTS.

If an energy signal x belongs to safety envelope
SEcond(Mstall, z, x), then ∃ θ ∈ Θstates :√

(µθ − x)⊺ Σ−1
θ (µθ − x) < z.

Theorem 9. (τ -confidence within Safety Envelope)
If an energy signal x belongs to safety envelope
SEcond(Mstall, z, x), then Ccond (Mstall , τ, x) ̸=uncertain.

2) Progress Envelopes: A formal progress envelope for
a distributed algorithm is a computable subset of the
system state space where the formal proof of a progress
property holds [47]. The envelope is defined by a set of log-
ical constraints parameterized by the system’s operational
conditions. To illustrate formal progress envelopes, let
us consider a hypothetical distributed protocol deployed
in the IoP. Assume that there is a progress guarantee
that the protocol will make progress in under 8 ms with
98% probability if the message delays are exponentially
distributed with a rate parameter λ. Now, at runtime,
the message delays are observed over two different time
intervals — [t0, t1] and [t1, t2]. It is seen that the message
delays do not follow exponential distribution in the first
interval but follow an exponential distribution with rate
parameter λ in the second interval. Therefore, we say that
the first interval is outside the progress envelope while the
second interval is inside the envelope.

D. Runtime Verification of Stochastic Aerospace Systems
We present some data-driven techniques to extend for-

mal proofs beyond the pre-deployment stages so that
mathematically rigorous guarantees of probabilistic prop-
erties can be provided at runtime.

1) Parameterized Proofs: Mathematically rigorous for-
mal proofs of correctness can be developed manually in the
pre-deployment stages of aerospace systems. In order to
make these proofs useful at runtime, it is possible to design
them as functions of the correctness envelope parameters
that can be quantified and measured at runtime [47],e.g.,
instead of a static proof that states: "The probability that
round-trip message transmission latency will be at most 0.9
seconds is 99%", a parameterized proof would state: "If
the one-way message transmission and processing delays
follow Gaussian distributions N (µX , σ2

X) and N (µY , σ2
Y),

then the probability that the round-trip message latency
will be at most t seconds is G(µX , σX , µY , σY , t)", where
G is the cumulative distribution function of the combined
Gaussian distribution N (µX + µY , σ2

X + σ2
Y). Modeling

the statistical reasoning allows the proofs to be augmented
with dynamic parameters at runtime in order to generate
properties that are both dynamically useful and formally
rigorous. It should, however, be noted, that proofs that
are not designed as functions of only runtime observable
parameters, cannot be classified as parameterized proofs as
they cannot be instantiated using dynamic observations.

2) Correctness Sentinels: A correctness sentinel is a
runtime-accessible program that can monitor data-streams
to detect if the data conforms to correctness envelope
constraints [33], [37]. Like any software for safety-critical
aerospace systems, the sentinels must be verified to ensure
that they can monitor required data correctly. We present
two approaches for developing verified sentinels that can
be used for monitoring correctness properties at runtime.

a) Sentinels Developed in Domain-Specific Program-
ming Languages: Using a domain-specific programming
language, we can design and verify sentinel software.
The high-level and declarative nature of domain-specific
languages can potentially enable the generation of formal
specifications for verification from the code. In [34], we
have verified the correctness of a data streaming applica-
tion developed in the ProgrammIng Language for spatiO-
Temporal data Streaming (PILOTS). PILOTS is a high-
level declarative programming language for the develop-
ment of applications for analyzing spatio-temporal data
streams [48]. We designed a PILOTS program called Ro
tor_check_threshold (Fig. 17) for the hexacopter rotor
fault detection application (described in Section III-A1b).
Rotor_check_threshold takes the pitch, roll, and yaw
attitudes as input streams of data and outputs the same
along with the estimated mode of the system every 0.1
seconds. These three attitudes are analyzed with error
functions that capture patterns in the input streams occur-
ring when individual rotors fail. Rotor_check_threshold
is a sentinel because it can quickly analyze incoming data
streams to check if the data corresponds to individual rotor
failure conditions. For the verification of the Rotor_check
_threshold program, we used Dafny [13], a verification
tool based on Hoare logic [12] that uses the Z3 SMT
solver [49]. Appropriate pre-conditions, post-conditions,
and invariants were identified corresponding to the correct-
ness conditions of the constraints in the state estimation

12

� �
method inductiveProof (start : int , end : int ,

dataStream : array <Error >, A_LOW : real ,
A_HIGH : real)
returns (modeStream : array <int >)
requires end >= start && start >= 0
requires dataStream . Length > 0 ==> dataStream
. Length - 1 >= end
requires dataStream . Length == 0 ==>
dataStream . Length >= end
ensures modeStream . Length == dataStream .
Length
ensures SystemCheck (start , end , dataStream ,
modeStream , A_LOW , A_HIGH)
{

modeStream := new int[dataStream . Length];
if (dataStream . Length == 0)
{

assert SystemCheck (0, 0, dataStream ,
modeStream , A_LOW , A_HIGH); }

else
{

var idx := start ;
while (idx < end)
invariant idx <= end
invariant SystemCheck (start , idx ,

dataStream , modeStream , A_LOW , A_HIGH)
decreases end - idx
{

var m := ModeAnalyzer (dataStream [
idx], A_LOW , A_HIGH); modeStream [idx] := m;

idx := idx + 1; }}}� �
Fig. 18: Dafny specification of a mode estimation function.

model, and were generated as a formal specification. A
PILOTStoDafny code generator was created to generate
Dafny specifications (Fig. 18) from the PILOTS code, and
then Dafny was used to prove the correctness of the code
with respect to the specifications.

b) Sentinels Automatically Generated from Theory:
Another approach is to generate sentinels from the theory.
Formal specifications of the correctness properties that
a sentinel must monitor are created, then the sentinel’s
code is generated directly from the specifications. Two
advantages are: firstly, the specifications of the sentinels
are derived from the theory of the correctness envelopes,
ensuring that the sentinels are correct by construction; and
secondly, the sentinel specifications are amenable to theo-
rem proving techniques. In [33], we created a sentinel for
the stall detection application described in Section III-A1a
directly from specifications written in the Agda proof
system (Fig. 19). Agda can be used to generate Haskell
code that can be executed and tested. To do this, a
wrapper was written around the Agda code to pass data
from the standard input. The resulting binary can process
a continuous stream of data and output to the standard
output a stream of booleans representing membership in
the safety envelope. The correctness of the Haskell code
follows from the correctness of the Agda specifications.

3) Runtime Verification using DDDAS: DDDAS allows
a system to dynamically incorporate new data to enhance
an existing model using a feedback loop [16]. DDDAS
with parameterized proofs generates and updates formally
rigorous correctness guarantees at runtime. Within the

� �
theorem1← : ∀(M z x)

→ z-predictable M z x ≡ ⟨x, true⟩
→ Any (λ{⟨⟨α, ν⟩, ⟨nd, p⟩⟩ → x ∈ pi nd z})(Model .fM M)

theorem1← : M z x res ≡ x, true = any-map (proj1 ◦ proj2)(
follows-def←M z x res ≡ x, true)

theorem1→ : ∀(M z x)
→ Any (λ{⟨⟨α, ν⟩, ⟨nd, p⟩⟩ → x ∈ pi nd z})(Model .fM M)
→ z-predictable M z x ≡ ⟨x, true⟩

theorem1→ : M z x proofAny = follows-def→M z x(
any-map-rev (proj1 ◦ proj2)proofAny)� �

Fig. 19: Agda specifications from which a Haskell sentinel
was generated.

DDDAS paradigm, a formal feedback loop consists of the
following (Fig. 20):

• The proof refinement component receives a parame-
terized proof with a set of initial parameters and run-
time inputs from the sentinels. If possible, it refines
the proofs with the runtime parameters and provides
new envelopes.

• The model refinement component receives new en-
velopes from the proof refinement component and an
initial system model. It updates the system model
according to the latest envelopes.

• The sentinels analyze the runtime operating condi-
tions of the system against the latest envelopes. If the
conditions do not conform to the envelopes, they send
the runtime parameters to the proof refinement com-
ponent and inform the live system about guarantees
that hold in runtime.

• The live system uses the updated system model from
the model refinement component.

The DDDAS feedback loop dynamically updates the
formal proofs with parameters that reflect the runtime
operating conditions of a system, thereby allowing the de-
velopment of highly adaptive provably correct applications
that can adapt to properties that hold at runtime. In the
case of dynamic systems, this feedback loop can be used by
developing suites of model-specific parameterized proofs
that can change dynamically depending on the model that
is being used at runtime. If there is a set of models M, then
for each model M in M, there can be a set of parameterized
proofs S(M). If the DDDAS system updates its model
to any model M in M at runtime, the corresponding set
of proofs S(M) can be used to provide guarantees. This
approach, however, has its limitations as only a finite
number of models and corresponding sets of proofs can
be developed in advance. If the system chooses a model
M ′ ̸∈ M at runtime, then no guarantees can be generated.

To showcase a simple application of the formal DDDAS
feedback loop, let us consider an example8 where there
is a machine-verified parameterized property — “For a
random variable X following a Gaussian distribution fX ,
P (X ≤ v) =

∫ z

−∞
1√
2π

e−x2/2dx, where z = v−µX

σX
and µX

and σX are the mean and standard deviation of fX .” Now,

8Video of a simulation of this example can be found at
https://wcl.cs.rpi.edu/assure

13

Proof
Refinement

Sentinels

Model
Refinement

Live
System

Dynamic
Proof

Envelope

Dynamic
Proof

Parameters

Dynamic
Proof

Envelope

Updated
System
Model

Dynamic Operating
Conditions

Parameterized
Proofs

Initial System
Model

Outputs

Dynamic
GuaranteesHard

Constraints

Fig. 20: Formal DDDAS sentinel feedback loop.

let us assume that the live system uses the transmission
delay TDm for a single message m as a model to compute
the round-trip delay 2 × TDm

. Initially, it is assumed that
TDm

is normally distributed with µTDm
= 5 ms and

σTDm
= 1. The proof refinement component computes that

P (X ≤ 10) = 99.99997% and P (X ≤ 15) = 99.99999%.
As P (X ≤ 10) > 99%, the model refinement component
selects TDm = 10 ms and the live system computes a
round-trip delay of 20 ms. Now, at runtime, the sen-
tinel monitors the actual values of TDm

and sees that
σTDm

≈ 3.1. This causes the proof refinement component
to compute new values P (X ≤ 10) = 94.41874% and
P (X ≤ 15) = 99.92945%. Now, the model refinement
component selects TDm = 15 ms and the live system
computes a round-trip delay of 30 ms.

IV. Discussion
Aerospace systems are complex and involve intricate in-

teractions between various types of sub-systems that allow
for superior performance and adaptability. The complex
nature of interactions between the sub-systems increases
the possibility of malfunctions that can be catastrophic.
The techniques we have presented in this article allow
rigorous verification of the safety-critical correctness guar-
antees of such systems using formal logic.

Real-life operating conditions of aerospace systems are
rife with uncertainties that cannot be predicted or mod-
eled accurately. Therefore, the probabilistic approach of
theorem proving presented in this article can be beneficial
as it allows for the development of formal guarantees
in the face of such uncertainties. This work creates a
good foundation for extending formal theorem proving
techniques to more complex statistical theories, such as the
Cramer-Rao Lower Bound (CRLB), that can be used for
statistically analyzing the quality of data-driven models,
or for analyzing more sophisticated parametric and non-
parametric stochastic state estimation techniques.

Another important aspect of the verification of
aerospace systems is the runtime verification of proper-
ties with respect to the dynamically changing operating
conditions. Runtime verification is useful because even

probabilistic models often fall short of accurately modeling
the uncertain operating conditions of aerospace systems.
Therefore, it is important to have the ability to monitor
the formal properties at runtime so that the applications
can be aware of what guarantees are actually valid at a
given point in time during deployment.

V. Conclusion and Future Work
This article presented ASSURE (Analysis of Safety-

Critical Systems Using Formal Methods-Based Runtime
Evaluation) — a collection of formal methods-based
techniques for the verification of deterministic and non-
deterministic properties of safety-critical aerospace sys-
tems. ASSURE supports techniques for the verification
of both centralized aerospace applications, such as stall
detection, and decentralized applications, such as au-
tonomous multi-aircraft coordination. Using the ASSURE
approach, formal proofs for the runtime verification of
dynamic systems, whose operating conditions cannot be
modeled accurately, can be developed. Runtime verifica-
tion enables monitoring system behavior and instantiating
parameterized proofs accordingly at deployment time.

Version 0.1 of ASSUREs Athena library only supports
deterministic and probabilistic reasoning about airborne
distributed protocols. Hence, one potential direction of
future work would be to expand the library with new theo-
ries to support reasoning about stochastic state-awareness
and failure modeling for aerospace systems. Another di-
rection of future work would be to design an efficient
pipeline to generate sentinels for such applications directly
from the specifications in the Athena library. Finally, an
implementation of the DDDAS formal feedback loop for
aerospace applications will allow the safer development of
future networked drone and eVTOL hardware systems.

References
[1] P. Johnston and R. Harris, “The Boeing 737 MAX saga: Lessons

for software organizations,” Soft. Qual. Prof., vol. 21, no. 3, pp.
4–12, 2019.

[2] P. Brooker, “The Uberlingen accident: Macro-level safety
lessons,” Saf. Sci., vol. 46, no. 10, pp. 1483–1508, 2008.

14

[3] NTSB News Releases. (2021, May) Investigative update:
Wednesday’s mid-air collision near Denver. Accessed: Nov. 2021.
[Online]. Available: https://www.ntsb.gov/news/press-releases/
Pages/NR20210513b.aspx

[4] R. Drees and N. Young, “Role of BIT in support system main-
tenance and availability,” IEEE Aero. and Elect. Syst. Mag.,
vol. 19, no. 8, pp. 3–7, 2004.

[5] S. Imai, E. Blasch, A. Galli, W. Zhu, F. Lee, and C. A. Varela,
“Airplane flight safety using error-tolerant data stream process-
ing,” IEEE Aero. and Elect. Syst. Mag., vol. 32, no. 4, pp. 4–17,
2017.

[6] J.-F. Monin, Understanding formal methods. Springer Science
& Business Media, 2012.

[7] K. Arkoudas and D. Musser, Fundamental Proof Methods in
Computer Science: A Computer-Based Approach. Cambridge,
MA: MIT Press, 2017.

[8] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying
safety properties with the TLA+ Proof System,” in Int. Joint
Conf. on Auto. Reas. Springer, 2010, pp. 142–148.

[9] M. Ouimet and K. Lundqvist, “Formal software verification:
Model checking and theorem proving,” Embedded Systems Lab-
oratory Technical Report ESL-TIK-00214, 2007.

[10] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem et al.,
Handbook of Model Checking. Springer, 2018, vol. 10.

[11] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+
specifications,” in Adv. Res. Work. Conf. on Corr. Hard. Des.
and Ver. Meth. Springer, 1999, pp. 54–66.

[12] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Comm. of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[13] K. R. M. Leino, “Dafny: An automatic program verifier for
functional correctness,” in Int. Conf. on Logic for Prog. Art.
Intel. and Reas. Springer, 2010, pp. 348–370.

[14] L. Lamport, “The Temporal Logic of Actions,” ACM Trans. on
Prog. Lang. and Syst. (TOPLAS), vol. 16, no. 3, pp. 872–923,
1994.

[15] P. V. D. Walt and W. Swierstra, “Engineering proof by reflection
in Agda,” in Symp. on Impl. and App. of Funct. Lang. Springer,
2012, pp. 157–173.

[16] F. Darema, “Dynamic Data-Driven Application Systems: A new
paradigm for application simulations and measurements,” in
Int. Conf. on Comp. Sci. (ICCS). Springer, 2004, pp. 662–
669.

[17] S. Paul, S. Patterson, and C. A. Varela, “Conflict-aware flight
planning for avoiding near mid-air collisions,” in The 38th
AIAA/IEEE Dig. Avio. Syst. Conf. (DASC), San Diego, CA,
Sep. 2019, pp. 1–10.

[18] S. M. Lee, C. Park, M. A. Johnson, and E. R. Mueller, “Inves-
tigating effects of well clear definitions on UAS sense-and-avoid
operations in enroute and transition airspace,” in 2013 Avia.
Tech., Int., and Op. Conf., 2013, p. 4308.

[19] G. Agha, Actors: A Model of Concurrent Computation in Dis-
tributed Systems. Cambridge, MA: The MIT Press, 1986.

[20] C. Hewitt, “Viewing control structures as patterns of passing
messages,” Art. Intel., vol. 8, no. 3, pp. 323–364, 1977.

[21] G. Agha, I. A. Mason, S. Smith, and C. Talcott, “Towards a
theory of actor computation,” in Int. Conf. on Conc. Theory.
Springer, 1992, pp. 565–579.

[22] S. Paul, G. A. Agha, S. Patterson, and C. A. Varela, “Verifica-
tion of eventual consensus in Synod using a failure-aware actor
model,” in Proc. of the 13th NASA Form. Meth. Symp. (NFM).
Cham: Springer, 2021, pp. 249–267.

[23] L. Lamport, “The Part-Time Parliament,” ACM Trans. on
Comp. Syst. (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” J. of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[25] L. Lamport, Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Boston: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[26] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi, Reasoning
About Knowledge. MIT press, 2004.

[27] S. Paul, S. Patterson, and C. A. Varela, “Collaborative situa-
tional awareness for conflict-aware flight planning,” in The 39th
IEEE/AIAA Dig. Avio. Syst. Conf. (DASC), 2020, pp. 1–10.

[28] L. Gönczy, M. Kovács, and D. Varró, “Modeling and verification
of reliable messaging by graph transformation systems,” Elect.
Notes in Theo. Comp. Sci., vol. 175, no. 4, pp. 37–50, 2007.

[29] C. C. Insaurralde and E. Blasch, “Framework prototype to
test decision support system for avionics analytics,” in 2021
IEEE/AIAA 40th Dig. Avio. Syst. Conf. (DASC). IEEE, 2021,
pp. 1–11.

[30] E. Blasch and B. Pokines, “Analytical science for autonomy
evaluation,” in 2019 IEEE Nat. Aero. and Elect. Conf. (NAE-
CON). IEEE, 2019, pp. 598–605.

[31] E. Blasch, F. Darema, S. Ravela, and A. Aved, Eds., Handbook
of Dynamic Data Driven Applications Systems. Springer, 2021.

[32] E. Blasch, É. Bossé, and D. A. Lambert, High-Level Information
Fusion Management and Systems Design. Artech House, 2012.

[33] E. Cruz-Camacho, S. Paul, F. Kopsaftopoulos, and C. A. Varela,
“Towards provably correct probabilistic flight systems,” in Dyn.
Data Driven App. Syst., F. Darema, E. Blasch, S. Ravela, and
A. Aved, Eds. Cham: Springer International Publishing, 2020,
pp. 236–244.

[34] A. Bhaumik, A. Dutta, F. Kopsaftopoulos, and C. A. Varela,
“Proving the correctness of multicopter rotor fault detection and
identification software,” in The 40th AIAA/IEEE Dig. Avio.
Syst. Conf. (DASC), October 2021.

[35] F. Kopsaftopoulos and F.-K. Chang, “A dynamic data-driven
stochastic state-awareness framework for the next generation
of bio-inspired fly-by-feel aerospace vehicles,” in Handbook of
Dynamic Data Driven Applications Systems. Springer, 2018,
pp. 697–721.

[36] F. Kopsaftopoulos, R. Nardari, Y. Li, and F. Chang, “Data-
driven state awareness for fly-by-feel aerial vehicles: Experimen-
tal assessment of a non-parametric probabilistic stall detection
approach,” Struct. Health Monit., pp. 1596–1604, 2017.

[37] S. Breese, F. Kopsaftopoulos, and C. Varela, “Towards prov-
ing runtime properties of data-driven systems using safety en-
velopes,” in The 12th Int. Work. on Struct. Health Monit.,
Stanford, CA, Sep. 2019.

[38] A. Dutta, M. E. McKay, F. Kopsaftopoulos, and F. Gandhi,
“Fault detection and identification for multirotor aircraft
by data-driven and statistical learning methods,” in 2019
AIAA/IEEE Elect. Air. Tech. Symp. (EATS). IEEE, 2019,
pp. 1–18.

[39] A. Dutta, M. McKay, F. Kopsaftopoulos, and F. Gandhi, “Sta-
tistical residual-based time series methods for multicopter fault
detection and identification,” Aero. Sci. Tech., vol. 112, p.
106649, 2021.

[40] S. Paul, S. Patterson, and C. A. Varela, “Formal guarantees of
timely progress for distributed knowledge propagation,” in The
Third Work. on Form. Meth. for Auto. Syst., ser. Electronic
Proc. in Theoretical Computer Science, vol. 348. The Hague,
Netherlands: Open Publishing Association, 2021, pp. 73–91.

[41] Y. Wang and Y. J. Zhao, “Fundamental issues in systematic
design of airborne networks for aviation,” in IEEE Aero. Conf.
IEEE, 2006, pp. 8–pp.

[42] L. Lipsky, “M/M/1 Queue,” Queueing Theory: A Linear Alge-
braic Approach, pp. 33–75, 2009.

[43] A. Al Hanbali, A. A. Kherani, and P. Nain, “Simple models
for the performance evaluation of a class of two-hop relay
protocols,” in Int. Con. on Res. in Net. Springer, 2007, pp.
191–202.

[44] M. M. Hamdi, L. Audah, S. A. Rashid, A. H. Mohammed,
S. Alani, and A. S. Mustafa, “A review of applications,
characteristics and challenges in vehicular ad-hoc networks
(VANETs),” in Int. Cong. on Human-Comp. Int., Opt. and Rob.
App. (HORA). IEEE, 2020, pp. 1–7.

[45] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Net-
works. Prentice-Hall International New Jersey, 1992, vol. 2.

[46] A. Leon-Garcia, Probability and Random Processes for Electri-
cal Engineering, 2nd ed. Reading, MA: Addison-Wesley, 1994.

[47] S. Paul, F. Kopsaftopoulos, S. Patterson, and C. A. Varela,
“Dynamic data-driven formal progress envelopes for distributed
algorithms,” in Dyn. Data-Driven App. Syst., 2020, pp. 245–252.

[48] S. Imai, A. Galli, and C. A. Varela, “Dynamic data-driven
avionics systems: Inferring failure modes from data streams,” in
Dyn. Data-Driven Appl. Syst., Reykjavik, Iceland, Jun. 2015,
pp. 1665–1674.

[49] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Int. Conf. on Tools and Algo. for the Const. and Anal. of Syst.
Springer, 2008, pp. 337–340.

https://www.ntsb.gov/news/press-releases/Pages/NR20210513b.aspx
https://www.ntsb.gov/news/press-releases/Pages/NR20210513b.aspx

	Introduction
	Motivation
	Formal Methods
	Theorem Proving
	Model Checking

	Aerospace Challenges
	ASSURE: Analysis of Safety-Critical Systems Using Formal Methods-Based Runtime Evaluation

	Verifying Deterministic Properties of Aerospace Systems
	Deterministic Algorithms
	Models for Reasoning about Distributed Systems
	Actor Model
	Temporal Logic of Actions

	Verifying Probabilistic Properties of Aerospace Systems
	Models for Reasoning
	Data-Driven Models
	Fixed-Wing Aircraft Stall Detection
	Hexacopter Rotor Fault Detection

	Theoretical Models
	The MTR Protocol for Inter-Aircraft Communication Delays
	The M/M/1 Queue System for Aircraft Message Processing Delays

	Formal Proof Libraries
	Correctness Envelopes
	Safety Envelopes
	Progress Envelopes

	Runtime Verification of Stochastic Aerospace Systems
	Parameterized Proofs
	Correctness Sentinels
	Sentinels Developed in Domain-Specific Programming Languages
	Sentinels Automatically Generated from Theory

	Runtime Verification using DDDAS

	Discussion
	Conclusion and Future Work
	References

