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Abstract
Successfully attaining consensus in the absence of a centralized coordinator is a fundamental problem in distributed multi-
agent systems. We analyze progress in the Synod consensus protocol—which does not assume a unique leader—under the
assumptions of asynchronous communication and potential agent failures. We identify a set of sufficient conditions under
which it is possible to guarantee that a set of agents will eventually attain consensus using Synod. First, a subset of the agents
must not permanently fail or exhibit Byzantine failure until consensus is reached, and second, at least one proposal must be
eventually uninterrupted by higher-numbered proposals. To formally reason about agent failures, we introduce a failure-aware
actor model (FAM). Using FAM, wemodel the identified conditions and provide a formal proof of eventual progress in Synod.
Our proof has been mechanically verified using the Athena proof assistant and, to the best of our knowledge, it is the first
machine-checked proof of eventual progress in Synod.

Keywords Paxos · Liveness · Fairness · Athena · Urban air mobility · Formal theorem proving

1 Introduction

Consensus, which requires a set of agents to reach an agree-
ment, is a fundamental problem in distributed systems.
Under asynchronous communication settings, where mes-
sage transmission and processing delays are unbounded, it is
impossible to guarantee consensus [1] since message delays
cannot be differentiated from agent failures. Nevertheless, in
decentralized multi-agent systems, where there is no central-
ized coordinator to manage safe operations, it is necessary
for the agents to use consensus protocols for coordination.
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An important application of multi-agent systems is in
the aerospace domain where the use of uncrewed aircraft
systems (UAS) for Urban Air Mobility (UAM) [2] oper-
ations will significantly increase the density of aircraft in
the National Airspace System (NAS) [3]. Since human-
operated approaches of air-traffic management (ATM) are
not scalable to high densities and are prone to human
errors [4], UAS must be capable of autonomous UAS traf-
fic management (UTM) [5]. In [6], we proposed an UTM
technique called decentralized admission control (DAC) in
which aircraft coordinate over an asynchronous network
called the Internet of Planes (IoP) [7]. In DAC, a candi-
date aircraft computes a conflict-aware flight plan [8] with
respect to a set of owner aircraft of a controlled airspace.
The candidate then requests admission into the airspace by
proposing this plan to the owners. There may be multiple
candidates simultaneously proposing plans that are mutually
incompatible. Therefore, the owners can only admit the can-
didates sequentially by agreeing on one proposal at a time.
Since UAM applications are time-sensitive, any consensus
protocol used in DAC must guarantee an eventual agree-
ment.

In this paper, we present an analysis of consensus that
is primarily motivated by the requirements of DAC. We
study the Synod consensus protocol [9] that does not
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restrict proposal rights to a unique leader, but guarantees
the safety property that “only one value will be agreed
upon”. To guarantee the progress property that, “eventually,
an agreement will happen”, the Paxos consensus proto-
col [10], a better-known variant of Synod, allows only a
unique leader to initiate proposals. For DAC, the leader-
less Synod consensus protocol is more appropriate as it
allows multiple candidates to propose values to the own-
ers.

A progress guarantee contingent upon a unique leader has
several drawbacks from the perspective of DAC. First, leader
election itself is a consensus problem. Therefore, a progress
guarantee that relies on successful leader election as a pre-
conditionwould be circular, and therefore fallacious. Second,
the Fischer, Lynch, and Paterson impossibility result (FLP)
[1] implies that unique leadership cannot be guaranteed in
asynchronous systems where agents may unpredictably fail.
In some cases, network partitioning may also erroneously
cause multiple leaders to be elected [11]. Third, vehicular
networks like the IoP are expected to be highly dynamic
where membership frequently changes. Consensus is used
in DAC for agreeing on only a single candidate, after which
the set of owners changes by design. Hence, the benefits of
electing a stable leader that apply for state machine replica-
tion, where reconfiguration is expected to be infrequent [12],
are not applicable to DAC. Finally, channeling proposals
through a unique leader creates a communication bottle-
neck and introduces the leader as a single point of failure:
there can be no progress if the specified leader fails. In the
absence of a unique leader, a system implementing Paxos
falls back to the more general Synod protocol. Therefore, in
this paper,we focus on identifying sufficient conditions under
which the fundamental Synod protocol can make eventual
progress.

The failure of safety-critical aerospace systems can lead
to the loss of human life and property (e.g.—the fatal crash
of Air France 447 in 2009 [13,14]). To ensure correctness,
formal methods can be used for the rigorous verification of
such systems. The actor model [15,16] is a theoretical model
of concurrent computation that can be used for formally rea-
soning about distributed systems. It assumes asynchronous
communication and fairness, which is useful for reasoning
about the progress of such systems. In airborne communica-
tion networks like the IoP, aircraft may experience temporary
or permanent communication failures where they are unable
to send or receive any messages. Such failures can affect
progress in distributed algorithms like Synod. Therefore, to
support reasoning about such communication failures, we
introduce a failure-aware actor model (FAM) that assumes
predicate fairness [17].WeuseFAMto reason about progress
in Synod under a set of purely asynchronous conditions and
develop a formal proof of eventual progress. We then adopt
a primarily interactive approach for mechanizing the proof

using the Athena proof assistant [18] while using the SPASS
theorem prover [19] to prove the simple steps1.

The main contributions of this work are:

• We identify a set of conditions under which eventual
progress in Synod can be guaranteed in purely asyn-
chronous settings, without assuming a unique leader.

• We introduce a failure-aware actor model (FAM) to sup-
port formal reasoning about temporary or permanent
communication failures in the IoP.

• We prove that eventual progress can be guaranteed in
Synod under the identified conditions and mechanically
verify our proof using Athena. To our knowledge, this is
the first machine-checked proof of progress for Synod.

• We argue that in a predicate fair implementation of FAM,
our conditions for progress in Synod can be guaranteed
and provide a mechanically verified proof for the same2.

The paper is structured as follows—Sect. 2 describes the
Synod protocol and presents the conditions for eventual
progress in Synod; Sect. 3 introduces FAM and its fair-
ness properties; Sect. 4 presents a formal proof of eventual
progress in Synod and a proof of the conditions under pred-
icate fairness; Sect. 5 discusses the mechanization of our
formal proofs in Athena; Sect. 6 discusses prior research
related to our study of consensus and the actor model; Sect. 7
presents a discussion on our approach alongwith somepoten-
tial future directions of work; and Sect. 8 concludes the paper
with a summary.

2 The Synod protocol

Synod assumes an asynchronous, non-Byzantine system
model in which agents operate at arbitrary speed, may fail
and restart, and have stable storage. Messages can be dupli-
cated, lost, and have arbitrary transmission time, but cannot
be corrupted [10]. It consists of two logically separate sets
of agents:

• Proposers—The set of agents that can propose values to
be chosen.

• Acceptors—The set of agents that can vote on which
value should be chosen.

Synod requires a subset of acceptors, which satisfy a quo-
rum, to proceed. To ensure a unique agreement, if there is a
consensus in one quorum, then there cannot also be another
quorumwith a different consensus. For this reason, the safety

1 Athena code available at https://wcl.cs.rpi.edu/assure/
2 This proof improves upon an earlier version of the work [20]
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property of Synod requires that any two quorums must inter-
sect3. A simple example of a quorum is a subset of the set
of all acceptors which constitutes a simple majority. [21]
presents other methods for determining quorums, including
flexible quorums, but in this paper, we only consider fixed
quorums. Additionally, we assume that the set of agents par-
ticipating in an instance of the protocol does not change with
time.

There are four types of messages in Synod:

• prepare (1a) messages include a proposal number.
• accept (2a) messages include a proposal number and a
value.

• promise (1b) messages include a proposal number and a
value.

• voted (2b) messages include a proposal number and a
value.

For each proposer, the algorithm proceeds in two distinct
phases [10]:

• Phase 1

(a) A proposer P selects a unique proposal number b
and sends a prepare request with b to a subset Q of
acceptors, where Q constitutes a quorum.

(b) When an acceptor A receives a prepare request with
the proposal number b, it checks if b is greater than
the proposal numbers of all prepare requests to which
A has already responded. If this condition is satisfied,
then A responds to P with a promise message. The
promise message implies that A will not accept any
other proposal with a proposal number less than b.
The promise includes (i) the highest-numbered pro-
posal b′ that A has previously accepted and (ii) the
value corresponding to b′. If A has not accepted any
proposals, it simply sends a default value.

• Phase 2

(a) If P receives a promise message in response to its
prepare requests from all members of Q, then P
sends an accept request to all members of Q. These
acceptmessages contain the proposal number b and a
value v, where v is the value of the highest-numbered
proposal among the responses or an arbitrary value if
all responses reported the default value.

(b) If an acceptor A receives an accept request with a
proposal number b and a value v from P , it accepts
the proposal unless it has already responded to a pre-
pare request having a number greater than b. If A

3 This condition is only required for proving safety and is not required
for proving progress independently.

accepts the proposal, it sends P a voted message
which includes b and v [9].

A proposer determines that a proposal was successfully cho-
sen if and only if it receives voted messages from a quorum
for that proposal.

A proposer may initiate multiple proposals in Synod, but
each proposal that is initiated in Synod must have a unique
proposal number.

2.1 Safety in Synod

Safety in Synod implies that only one value will be agreed
upon by the acceptors. Synod allows multiple proposals to
be chosen. Safety is ensured by the invariant—”If a proposal
with value v is chosen, then every higher-numbered proposal
that is chosen has value v” [10]. Therefore, there may be
situations where a proposer P proposes a proposal number
after one or more lower-numbered proposals have already
been chosen, resulting in some value v being agreed upon.
By design, Synod will ensure that P proposes the same value
v in its Phase 2. Since proposers can initiate proposals in any
order and communication is asynchronous, the only fact that
can be guaranteed about any chosen value is that it must have
been proposed by the first proposal to have been chosen by
anyquorum.From the context of admission control, it implies
that if a candidate P2 successfully completes both phases
after another candidate P1 has completed both phases, then
P2 will simply learn that P1 has been granted admission. So
P2 will update its set of owners to include P1, create a new
conflict-aware flight plan, and request admission by starting
the Synod protocol again.

2.2 Progress in Synod

Progress in Synod implies that, eventually, some value will
be agreed upon. Some obvious scenarios in which progress
may be affected in Synod are:

• Two proposers P1 and P2 may complete Phase 1 with
proposal numbers b1 and b2 such that b2 > b1. This will
cause P1 to fail Phase 2. P1 may then propose a fresh
proposal number b3 > b2 and complete Phase 1 before
P2 completes its Phase 2. This will cause P2 to fail Phase
2 and propose a fresh proposal number b4 > b3 . This
process may repeat infinitely [10] (livelock).

• Progress may be affected even if one random agent fails
unpredictably [1].

Paxos assumes that a distinguished proposer (leader) is
elected as the only proposer that can initiate proposals [9].
Lamport states “If the distinguished proposer can commu-
nicate successfully with a majority of acceptors, and if it
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uses a proposal with number greater than any already used,
then it will succeed in issuing a proposal that is accepted.”
[10]. The FLP impossibility result [1] implies that, in purely
asynchronous systems, where agent failures cannot be dif-
ferentiated from message delays, leader election cannot be
guaranteed. Moreover, it is possible that, due to network par-
titioning, multiple proposers are elected as leaders [11]. In
the absence of a unique leader, a system implementing Paxos
falls back to Synod. Therefore, it is important to identify the
fundamental conditions under which progress can be for-
mally guaranteed in Synod.

To guarantee progress, it suffices to show that some pro-
posal number b will be chosen. This will happen if b satisfies
the following conditions:

P1 When an acceptor A receives a prepare message with b,
b should be greater than all other proposal numbers that
A has previously seen.

P2 When an acceptor A receives an accept message with b,
b should be greater than or equal to all other proposal
numbers that A has previously seen.

P1 and P2 simply suggest that, for b, there will be a
long enough period without prepare or accept messages
with a proposal number greater than b, allowing messages
corresponding to b to get successfully processed without
being interrupted by messages corresponding to any higher-
numbered proposal.

Since progress cannot be guaranteed if too many agents
permanently fail or if too many messages are lost, Lam-
port [22] presents some conditions for informally proving
progress in Paxos. A nonfaulty agent is defined as “an agent
that eventually performs the actions that it should”, and a
good set is defined as a set of nonfaulty agents, such that,
if an agent repeatedly sends a message to another agent in
the set, it is eventually received by the recipient. It is then
assumed that the unique leader and a quorum of acceptors
form a good set and that they infinitely repeat all messages
that they have sent. These conditions are quite strong since
they depend on the future behavior of a subset of agents and
may not always be true of an implementation. However, since
they have been deemed reasonable for informally proving
progress even in the presence of a unique leader, we partially
incorporate them in our conditions under which progress in
Synod can be formally guaranteed in the absence of a unique
leader. Our complete conditions for guaranteeing progress
in Synod, therefore, informally state that “eventually, a non-
faulty proposer must propose a proposal number, that will
satisfy P1 and P2, to a quorum of nonfaulty acceptors, and
the Synod-specific messages between these agents must be
eventually received”.

We can see that the conditions for progress in Paxos con-
stitute a special case of our conditions for progress in Synod

where P1 and P2 are satisfied by a proposal proposed by
the unique leader. If the unique leader permanently fails,
then the corresponding guarantee is only useful if leader re-
election is successful. However, if leader election is assumed
to have already succeeded, there will be no need for further
consensus, rendering the guarantee moot. Synod’s progress
guarantee remains useful as long as at least one proposer
is available to possibly propose at least one successful pro-
posal, thereby remaining pertinent even if multiple (not all)
proposers arbitrarily fail. Moreover, our conditions do not
assume that consensus (leader election) will have already
succeeded.

3 The failure-aware actor model (FAM)

Actors are self-contained, concurrently interacting entities
of a computing system that communicate bymessage passing
[23]. We use the actor model [16] to formally reason about
eventual consensus in Synod since it assumes asynchronous
communication and fairness, which is helpful for reasoning
about progress in asynchronous networks like the Internet of
Planes (IoP). Fairness in the actor model has the following
consequences [24]:

• Guaranteed message delivery, and
• An actor infinitely often ready to process a message will
eventually process the message.

The IoP is an open network in which aircraft may expe-
rience permanent or temporary communication failures that
may render them unable to send or receive any messages.
This may be caused by all messages to and from an air-
craft getting delayed because of transmission problems or
due to internal processing delays (or processing failures) in
the aircraft. In asynchronous communication, since message
delays are unbounded, it is not possible to distinguish trans-
mission delays from processing delays or failures. However,
it is important to take into account if an actor has failed at
any given time, i.e., if it is incapable of sending or receiving
messages. To reason about such actor failures, we introduce
a failure-aware actor model (FAM).

FAM models two states for an actor at any given time—
available or failed. Actors can switch states as transitions
between configurations. From the perspective of message
transmission and reception, a failed actor cannot send or
receive anymessages, but an available actor can. This allows
FAM to formallymodel communication failures between air-
craft in the IoP. The failure model of FAM also assumes that
every actor has a stable storage that is persistent across fail-
ures. In addition to the actor model’s fairness assumptions,
FAM assumes predicate fairness [17], which states that a
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Fig. 1 Operational semantics
for the base-level transition rules

predicate that is infinitely often enabled in a given path will
eventually be satisfied.

3.1 The semantics of FAM

Varela [24] presented a dialect (AM) of Agha,Mason, Smith,
andTalcott’s lambda-calculus-based actor language (AMST)
[25] whose operational semantics are a set of labeled transi-
tions from actor configurations to actor configurations4. An
actor configuration κ is a temporal snapshot of actor system
components, namely the individual actors and the messages
“en route”. It is denoted by 〈〈α ‖ μ〉〉, where α is a map from
actor names to actor expressions, andμ is a multi-set of mes-
sages. An actor expression e is either a value v or a reduction
context R filled with a redex r, denoted as e = R � r �.

κ1
l−→ κ2 denotes a transition rule where κ1, κ2, and l are

the initial configuration, the final configuration, and the tran-
sition label, respectively. There are four possible transitions
—fun, new, snd, and rcv. A computation sequence is a finite

sequence of labeled transitions [κi li−→ κi+1 | i < n] for
some n ∈ N. Sequences are partially ordered by the initial
segment relation. A computation path from a configuration
κ is a maximal linearly ordered set of sequences in the com-
putation tree, τ(κ).

To model failures, we modify Varela’s dialect of AMST
(AM) and categorize its original transitions (fun, new, snd,
and rcv) as base-level transitions. For a base-level transition
in FAM to be enabled to occur for an actor in focus at any
time, the actor needs to be available at that time. To denote
available and failed actors at a given time inFAM,we redefine
an actor configuration as 〈〈α ‖ ᾱ ‖ μ〉〉, where α is a map
from actor names to actor expressions for available actors,
ᾱ is a map from actor names to actor expressions for failed
actors, and μ is a multi-set of messages “en route”.

To model actor failure and restart, we define two meta-
level transitions stp (stop) and bgn (begin) that can stop an
available actor or start a failed actor in its persistent pre-
failure state. The stp transition is only enabled for an actor in
the available state and thebgn transition is only enabled for an

4 Interested readers can refer to Sect. 4.5 of [24] for more details about
the language.

Fig. 2 Operational semantics for the meta-level transition rules

actor in the failed state. Figures 1 and 2 show the operational
semantics of our actor language as labeled transition rules
where:

• →λ denotes lambda calculus semantics, essentially beta-
reduction,

• new, send, and ready are actor redexes,
• 〈a ⇐ v〉 denotes a message for actor a with value v,
• α, [e]a denotes the extended map α′, which is the same

as α except that it maps a to e,
• 	 denotes multi-set union,
• α|S denotes restriction of mapping α to elements in set

S, and
• dom(α) is the domain of α.

For an actor configuration κ = 〈〈α ‖ ᾱ ‖ μ〉〉 to be syn-
tactically well-formed in our actor language, it must conform
to the following:

1. ∀a, a ∈ dom(α)∪dom(ᾱ), fv(α(a)) ⊆ dom(α)∪dom(ᾱ)

2. ∀m, m ∈ μ, m = 〈a ⇐ v〉, fv(a) ∪ fv(v) ⊆ dom(α) ∪
dom(ᾱ)

3. dom(α) ∩ dom(ᾱ) = ∅

where fv(e) is the set of free variables in the expression e.

3.2 Fairness in FAM

FAM assumes a general fairness property called predicate
fairness [17] which states that “if a predicate is infinitely
often enabled in a given path, then, eventually the predicate
must be true” (this is a recursive definition in that the path
could begin from any configuration along the path). To bet-
ter illustrate predicate fairness, let us assume a predicate ψ

over actor configurations. At any configuration κ in a path,
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Table 1 Set symbols for our
formal specification

Symbol Description Symbol Description

A Set of all actors M Set of all messages

P Set of all proposer actors A Set of all acceptor actors

V Set of all values Q Set of all quorums

B Set of all proposal numbers M Set of all sets of messages

C Set of all actor configurations S Set of all transition steps

I Set of all finite computation sequences P Set of all predicates over C
T Set of all fair transition paths N Set of all natural numbers

ψ is enabled if and only if there exists a finite sequence

[κi li−→ κi+1 | i < n] such that if the sequence is executed
with κ0 = κ , then ψ(κn) will be true. Predicate fairness in
FAM states that in a fair path, if the predicate ψ is infinitely
often enabled, i.e., infinitely often it is the case that a finite

sequence [κi li−→ κi+1 | i < n | ψ(κn) = true] can poten-
tially happen, then, eventually ψ(κ̄) will be true for some
configuration κ̄ .Now, any individual base-level transition can
be considered a finite sequence consisting of a single transi-
tion. Therefore, predicate fairness entails the simpler fairness
condition that “a base-level transition that is infinitely often
enabled will eventually happen”.

We use predicate fairness in FAM in order to argue
that the non-interruption condition described in Sect. 2.2,
which is required for ensuring eventual consensus, can be
guaranteed in a fair implementation. The condition follows
from an assumption that the proposers will keep retrying
with higher-numbered proposals if they fail to get their
proposals accepted. If a nonfaulty proposer p is ready to
propose some proposal number b at a configuration κ such
that all prior proposals were lower than b, then there is at

least one possible finite sequence [κi li−→ κi+1 | i < n]P1,P2
(with κ0 = κ) that can cause the non-interruption con-
dition to be true at κn , thereby enabling the condition. A

witness for [κi li−→ κi+1 | i < n]P1,P2 is the sequence in
which all proposers except p stop permanently, preventing
any higher proposals in the future. Now, since proposal num-
bers are unique in Synod, if the nonfaulty proposers keep
retrying, then always, eventually some nonfaulty proposer
will become ready to propose the highest proposal number
yet. This will cause our progress conditions to be enabled
infinitely often in any path. Hence, by predicate fairness, our
progress conditions will eventually be true, allowing some
proposal number to eventually get accepted.

It should be noted that the fairness assumption of FAM
applies only to the base-level transitions and not to the meta-
level transitions. This is because actor failures and restarts in
FAM can be arbitrary and it is not possible to control them
programmatically in an implementation.

Interested readers may refer to Appendix 1 for some
important results about the relationship of FAMwithVarela’s
dialect of AMST (AM).

4 Formal proof of eventual progress in
Synod

In this section, we formally prove two important properties
regarding eventual progress in Synod bymodeling the system
using FAM. The logical notations used in this section have
been introduced in Tables 1 and 2.

The first property that we prove is eventual progress in
Synod under the conditions (CND) identified in Sect. 2.2.
To prove this property, it suffices to show that, eventually,
some proposal number will receive votes from some quorum
and be chosen. Theorem 1 represents this eventual progress
property formally by stating that, eventually, some proposer
will learn that some proposal number has been chosen.

Theorem 1 (Eventual progress in Synod) Given CND, in all
fair transition paths, eventually, some proposer p will learn
that some proposal number b has been chosen.

Theorem-1 ≡
CND �⇒ (∀T ∈ T : (∃i ∈ N, p ∈ P, b ∈ B : Ł(p, b, ς(T , i))))

By CND, eventually, some nonfaulty proposer p will
become ready to propose a proposal number b, that will sat-
isfy P1 and P2, to a nonfaulty quorum Q. Our proof strategy
for Theorem 1 is to show that under the fairness assumptions
of FAM, the behavior of Synod actors, and some assumptions
on the properties of nonfaulty actors, eventually, p will learn
that b has been chosen by Q.

The next important property that we prove in this sec-
tion shows that, theoretically, under the predicate fairness
assumption of FAM, CND can be eventually guaranteed. For
that, we specify a Synod-specific predicateψ over actor con-
figurations such that ψ(κ) is true if and only if CND holds
at configuration κ . Theorem 2 formally states the required
property that, eventually, ψ will be satisfied in all fair tran-
sition paths.
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Table 2 Relation symbols for
our formal specification

Symbol Description Input Output

ς Get actor configuration at an indexed point

in a transition path T × N C
ρ Get indexed point in a transition path T × N T
� Transition path constructor T × S T
σ Choose a value to propose based on configuration C × A V
s Construct a snd transition step A × M S
r Construct a rcv transition step A × M S
m Get set of messages “en route” C M

a Actor is in α C × A Bool

� Actor is ready for a step T × A × S Bool

φ Proposer has promises from a quorum P × B × Q × C Bool

� Proposer has votes from a quorum P × B × Q × C Bool

d̄ Actor is nonfaulty A Bool

δ Proposal number satisfies P1 and P2 B Bool

Ł A proposer has learned of successful consensus P × B × C Bool

e A predicate is enabled at a configuration C × P Bool

λ A sequence happens at a configuration C × I Bool

ϕ Nonfaulty proposer ready to propose the highest proposal

number yet to nonfaulty quorum C × P × Q Bool

Some nonfaulty proposer is ready to propose

ψ a proposal number that will not be interrupted C Bool

Theorem 2 (CND follows from predicate fairness) In all fair
transition paths, eventually, the predicate ψ will be true at
some configuration.

Theorem-2 ≡ ∀T ∈ T : ∃κT
i ∈ C : ψ(κT

i )

We prove Theorem 2 by first defining when a predicate
over configurations is enabled and then arguing that under
suitable conditions, predicate fairness can causeψ to be even-
tually true.

In the rest of this section, we first formally specify some
necessary fairness properties of FAM, the behavior of Synod
actors, the properties of nonfaulty actors, and the conditions
required for eventual progress. Then we provide the formal
proofs of Theorems 1 and 2.

Given below are some important concepts useful for the
formal specifications and proofs:

• A message is represented by a tuple 〈 s ∈A , r ∈A, k
∈ξ, b ∈B, v ∈V〉 where s is the sender, r is the receiver,
k is the type of message, b is a proposal number, v is a
value, and ξ = {1a, 1b, 2a, 2b}. v̄ ∈ V is a null value
constant used in 1a messages.

• The local state of an actor x can be extracted from a
configuration κ as a tuple 〈ηx

κ∈M, βx
κ ∈B, vxκ∈V〉 where

ηx
κ is the set of messages received but not yet responded

to, βx
κ is the highest proposal number seen by an acceptor

actor, and vxκ is the value corresponding to the highest
proposal number accepted by an acceptor actor.

• Transition paths represent the dynamic changes to actor
configurations as a result of transition steps [26] and have
been used to model computation paths. Indexed positions
in transition paths correspond to logical steps in time and
are used to express eventuality. κT

i represents the actor
configuration at an indexed point i in a path T .

• P ⊂ A and A ⊂ A are the sets of proposers and accep-
tors, respectively, and a quorum is a possibly equal, fixed,
non-empty subset of A, i.e., ∀Q ∈ Q : Q ⊆ A ∧ Q �=
∅.

4.1 Fairness assumptions for actor transitions

We assume two fairness axioms for the snd and rcv transi-
tions that follow from the fairness assumptions of FAM. The
F-Snd-axm and the F-Rcv-axm state that if a snd or rcv
transition is enabled at some time, it must either eventually
happen or, eventually, it must become permanently disabled.

F-Snd-Axm ≡
∀x ∈ A,m ∈ M, T ∈ T , i ∈ N : (�(ρ(T , i), x, s(x,m)) �⇒

((∃ j ∈ N : ( j ≥ i)
∧ ρ(T , j + 1) = �(ρ(T , j), s(x,m)))

∨ (∃k ∈ N : (k > i)

∧ (∀ j ∈ N : ( j ≥ k) �⇒ ¬�(ρ(T , j), x, s(x,m))))))
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F-Rcv-Axm ≡
∀x ∈ A,m ∈ M, T ∈ T , i ∈ N :
((m ∈ m(ς(T , i)) ∧ �(ρ(T , i), x, r(x,m))) �⇒

((∃ j ∈ N : ( j ≥ i)
∧ ρ(T , j + 1) = �(ρ(T , j), r(x,m)))

∨ (∃k ∈ N : (k > i)
∧ (∀ j ∈ N : ( j ≥ k) �⇒

¬(m ∈ m(ς(T , j)) ∧ �(ρ(T , j), x, r(x,m)))))))

4.2 Rules specifying the actions of Synod actors

TheSynod protocol is presented in [9] as a high-level abstrac-
tion of the behavior of the agents while leaving out the
implementation details to the discretion of the system devel-
opers [27].We specify rules over actor local states that dictate
if an available Synod actor should become ready to send a
1b, 2a, or 2b message. Since Synod does not specify when a
proposer should send a 1a message, we leave that behavior
unspecified.

Snd-1b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B :
(〈p, a, 1a, b, v̄〉 ∈ ηaς(T ,i) ∧ βa

ς(T ,i) < b

∧ a(ς(T , i), a)) �⇒
�(ρ(T , i), a, s(a, 〈a, p, 1b, b, vaς(T ,i)〉))

Snd-2a-Rul ≡
∀p ∈ P, T ∈ T , i ∈ N, b ∈ B, Q ∈ Q :
(φ(p, b, Q, ς(T , i)) ∧ a(ς(T , i), p)) �⇒

(∀a ∈ Q : �(ρ(T , i), p, s(p, 〈p, a, 2a, b, σ (ς(T , i), p)〉)))

Snd-2b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B, v ∈ V :
(〈p, a, 2a, b, v〉 ∈ ηaς(T ,i) ∧ βa

ς(T ,i) ≤ b

∧ a(ς(T , i), a))) �⇒

�(ρ(T , i), a, s(a, 〈a, p, 2b, b, v〉))
Since the response to a message in Synod is a finite set

of actions, if there is a message in the multi-set for a Synod
actor and the actor is also available, then a receive transition
is enabled.

Rcv-Rul ≡
∀s, r ∈ A, T ∈ T , i ∈ N, k ∈ ξ, b ∈ B, v ∈ V :
(〈s, r , k, b, v〉 ∈ m(ς(T , i)) ∧ a(ς(T , i), r)) �⇒

�(ρ(T , i), r , r(r , 〈s, r , k, b, v〉))

4.3 Assumptions about the future behavior of
nonfaulty agents

To prove progress in Synod, we borrow some assumptions
about the future behavior of nonfaulty agents used by Lam-
port for informally proving progress in Paxos [22]. It is worth
noting that being nonfaulty does not prohibit an agent from
temporarily failing. It simply means that, for every action
that needs to be performed by the agent, eventually the agent

is available to perform the action and the action happens. In
FAM, a nonfaulty actor can be modeled by asserting that an
enabled snd or rcv transition for the actor will eventually
happen. However, given the F-Snd-Axm and F-Rcv-Axm
axioms, it suffices to assume that, for a nonfaulty actor, if a
snd or rcv transition is enabled, then it will either eventually
occur or it will be infinitely often enabled. As FAM does not
model message loss, anymessage in the multi-set will persist
until it is received.

We introduce a predicate d̄ to specify an actor as nonfaulty,
such that:

• d̄(x) implies that x will be eventually available if there
is a message “en route” that x needs to receive.

• (x) implies that x will be eventually available if x’s local
state dictates that it needs to send a message.

• (x) implies that if a snd or rcv transition is enabled for x ,
then it will either eventually occur or it will be infinitely
often enabled.

Prp-NF-Axm ≡
∀p ∈ P : d̄(p) �⇒

(∀b ∈ B, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, a ∈ A, Q ∈ Q :
(φ(p, b, Q, ς(T , i))
∨ 〈a, p, k, b, v〉 ∈ m(ς(T , i))) �⇒

(a(ς(T , i), p)
∨ (∃ j ∈ N : ( j > i) ∧ a(ς(T , j), p))))

Acc-NF-Axm ≡
∀a ∈ A : d̄(a) �⇒

(∀p ∈ P, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, b ∈ B :
((〈p, a, 1a, b, v〉 ∈ ηaς(T ,i) ∧ (βa

ς(T ,i) < b))

∨ (〈p, a, 2a, b, v〉 ∈ ηaς(T ,i) ∧ (βa
ς(T ,i) ≤ b))

∨ (〈p, a, k, b, v〉 ∈ m(ς(T , i)))) �⇒
(a(ς(T , i), a)

∨ (∃ j ∈ N : ( j > i) ∧ a(ς(T , j), a))))

NF-IOE-Axm ≡
∀x ∈ A : d̄(x) �⇒

(∀T ∈ T , i ∈ N,m ∈ M :
((m ∈ m(ς(T , i)) ∧ �(ρ(T , i), x, r(x,m))) �⇒
((∃ j ∈ N : ( j ≥ i)

∧ ρ(T , j + 1) = �(ρ(T , j), r(x,m)))

∨ (∀k ∈ N : (k > i) �⇒
(∃ j ∈ N : ( j ≥ k)
∧ (m ∈ m(ς(T , j)) ∧ �(ρ(T , j), x, r(x,m)))))))

∧ (�(ρ(T , i), x, s(x,m)) �⇒
((∃ j ∈ N : ( j ≥ i)

∧ ρ(T , j + 1) = �(ρ(T , j), s(x,m)))

∨ (∀k ∈ N : (k > i) �⇒
(∃ j ∈ N : ( j ≥ k) ∧ �(ρ(T , j), x, s(x,m))))))

We then introduce a predicate δ that istrue for a proposal
number if and only if it satisfies the conditions P1 and P2
described in Sect. 2.2.

P1-P2-Def ≡
∀b ∈ B : δ(b) ⇐⇒

(∀p ∈ P, T ∈ T , i ∈ N, v ∈ V, a ∈ A :
((〈p, a, 1a, b, v̄〉 ∈ ηaς(T ,i) �⇒ βa

ς(T ,i) < b)
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∧ (〈p, a, 2a, b, v〉 ∈ ηaς(T ,i) �⇒ βa
ς(T ,i) ≤ b)))

Finally, our conditions for formally guaranteeing progress
state – in all fair transition paths, some nonfaulty proposer
p will be eventually ready to propose some proposal number
b, that will satisfy P1 and P2, to some quorum Q whose
members are all nonfaulty.

CND ≡
∀T ∈ T :
(∃i ∈ N, p ∈ P, b ∈ B, Q ∈ Q : (d̄(p) ∧ δ(b)
∧ (∀a ∈ Q : (d̄(a) ∧ �(ρ(T , i), p, s(p, 〈p, a, 1a, b, v̄〉))))))

4.4 The proof of progress

Theorem 1 (presented earlier) represents eventual progress
in Synod, and Lemmas 1 and 2, which represent progress
in Phase 1 and Phase 2, respectively, are useful for proving
Theorem 1.

Lemma 1 (Phase 1 progress) In a fair transition path, if even-
tually a nonfaulty proposer p becomes ready to propose a
proposal number b, that satisfies P1 and P2, to a quorum
Q whose members are all nonfaulty, then, eventually, p will
receive promises from all members of Q for b.

Lemma-1 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :
(d̄(p) ∧ δ(b)
∧ (∀a ∈ Q : (d̄(a) ∧ �(ρ(T , i), p, s(p, 〈p, a, 1a, b, v̄〉)))))

�⇒ (∃ j ∈ N : ( j ≥ i) ∧ φ(p, b, Q, ς(T , j)))

Lemma 2 (Phase 2 progress) In a fair transition path, if
eventually a nonfaulty proposer p receives promises for a
proposal number b, that satisfies P1 and P2, from a quorum
Q whose members are all nonfaulty, then, eventually, p will
receive votes from all members of Q for b.

Lemma-2 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :
(d̄(p) ∧ δ(b) ∧ φ(p, b, Q, ς(T , i)) ∧ (∀a ∈ Q : d̄(a)))

�⇒ (∃ j ∈ N : ( j ≥ i) ∧ �(p, b, Q, ς(T , j)))

Given below are the proof sketches of Theorem 1 and
Lemmas 1 and 2:
Theorem 1 Proof -

(1) By Lemma 1 and CND, some nonfaulty proposer p
will eventually receive promises from some quorum Q,
whose members are all nonfaulty, for some proposal
number b that satisfies P1 and P2.

(2) By Lemma 2, p will eventually receive votes from Q for
b and learn that b has been chosen. ��

Lemma 1 Proof -

(1) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm,
prepare messages from p will eventually be sent to all
members of Q.

(2) By Acc-NF-Axm, NF-IOE-Axm, and F-Rcv-Axm,
all members of Q will eventually receive the prepare
messages.

(3) By P1-P2-Def, Snd-1b-Rul, and Acc-NF-Axm,
each member of Q will eventually be ready to send
promise messages to p.

(4) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm,
the promisemessages from eachmember of Q will even-
tually be sent.

(5) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm,
p will eventually receive the promise messages from all
members of Q. ��

Lemma 2 Proof -

(1) By Snd-2a-Rul, and Prp-NF-Axm, p will eventu-
ally be ready to send accept messages to all members of
Q with proposal number b.

(2) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm,
accept messages from p will eventually be sent to all
members of Q.

(3) By Acc-NF-Axm, NF-IOE-Axm, and F-Rcv-Axm,
all members of Q will eventually receive the acceptmes-
sages.

(4) By P1-P2-Def, Snd-2b-Rul, and Acc-NF-Axm,
eachmember of Q will eventually be ready to send voted
messages to p.

(5) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm,
the voted messages from each member of Q will even-
tually be sent

(6) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm,
p will eventually receive the voted messages from all
members of Q. ��

4.5 The proof of CND under predicate fairness

In order to formalize the specification of predicate fairness in
FAM,wefirst definewhat itmeans for a predicate P over con-
figurations to be enabled at a configuration. Enabled-Def
states that in a path T , a predicate P is enabled at a configu-
ration κT

i if and only if there exists a sequence I such that if
I happens at κT

i , then P will be true in the consequent con-
figuration κT

j
5.

Enabled-Def ≡
∀T ∈ T , κT

i ∈ C, P ∈ P : e(κT
i , P) ⇐⇒

5 The symbols e(κT
i , P), λ(κT

i , I ), and [κT
i

I��� κT
j ] denote that P is

enabled at κT
i , I happens at κ

T
i , and κT

j is a consequence of I happening

at κT
i respectively.
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(∃I ∈ I : λ(κT
i , I ) �⇒ (∃κT

j ∈ C : [κT
i

I��� κT
j ] ∧ P(κT

j )))

Using the enabling condition, we can now formally spec-
ify predicate fairness for FAM as the statement F-Predi
cate-Axm.

F-Predicate-Axm ≡
∀T ∈ T , κT

i ∈ C, P ∈ P : e(κT
i , P) �⇒

(∃κT
j ∈ C : ( j ≥ i) ∧ P(κT

j ))

∨(∃κT
k ∈ C : (k > i) ∧ (∀κT

j ∈ C : ( j ≥ k) �⇒ ¬e(κT
j , P)))

To show that CND will be satisfied under predicate
fairness, let us define a Synod-specific predicateψ over con-
figurations such that ψ(κ) is true if and only if at κ , some
nonfaulty proposer is ready to propose a proposal number,
that will satisfy the non-interruption condition, to some non-
faulty quorum (Synod-Pred). Clearly, if ψ is eventually
satisfied in all paths, the conditions CND will be satisfied.
Using predicate fairness and the behavior of the proposers,
we can show thatψ will be eventually true in all fair paths.

Synod-Pred ≡
∀T ∈ T , κT

i ∈ C :
(ψ(κT

i ) ⇐⇒
(∃p ∈ P, b ∈ B, Q ∈ Q : (d̄(p) ∧ δ(b)
∧ (∀a ∈ Q : (d̄(a) ∧ �(κT

i , p, s(p, 〈p, a, 1a, b, v̄〉)))))))
As previously mentioned in Sect. 3.2, we assume that

the proposers can retry with higher-numbered proposals if
their proposals are not chosen. Since proposal numbers are
unique in Synod, no two proposals can be equal. Therefore, if
all nonfaulty proposers retry, then always, eventually, some
nonfaulty proposer will become ready to propose the highest
proposal number yet to a nonfaulty quorum. We formalize
this property as Prp-Retry, which states that at any con-
figuration κT

i , if a nonfaulty proposer p becomes ready to
propose the highest proposal number yet proposed to a non-
faulty quorum6, then eitherψ will be satisfied at some future
configuration κT

j , or always, eventually, some nonfaulty pro-
poser will become ready to propose the highest proposal
number yet proposed to a nonfaulty quorum.

Prp-Retry ≡
∀T ∈ T , κT

i ∈ C : (∃p ∈ P, Q ∈ Q : ϕ(κT
i , p, Q)) �⇒

((∃κT
j ∈ C : ( j ≥ i) ∧ ψ(κT

j ))

∨(∀κT
k ∈ C : (k > i) �⇒

(∃κT
j ∈ C : ( j ≥ k) ∧ (∃p ∈ P, Q ∈ Q : ϕ(κT

j , p, Q)))))

Now, at any configuration κT
i , if a nonfaulty proposer p

becomes ready to propose the highest proposal number yet,
then there is a possible witness sequence Î such that if Î
happens at κT

i , then ψ will be true at the consequent con-

figuration κT
j . This sequence Î is the sequence in which all

proposers except p fail permanently, preventing any future
proposals. Therefore, we can state that if ϕ(κT

i , p, Q) is

6 The symbolϕ(κT
i , p, Q)denotes that p is ready to propose the highest

proposal number yet proposed to Q at κT
i .

true at any configuration κT
i , then if Î happens at κT

i ,
then ψ(κT

j ) will be true at the consequent configuration

κT
j (Wit-Seq).

Wit-Seq ≡
∀T ∈ T , κT

i ∈ C :
(∃p ∈ P, Q ∈ Q : ϕ(κT

i , p, Q)) �⇒
(λ(κT

i , Î ) �⇒ (∃κT
j ∈ C : [κT

i
Î��� κT

j ] ∧ ψ(κT
j )))

Finally, for consensus to happen, at least one proposal
needs to be made by some nonfaulty proposer. Therefore,
we assume that, eventually, some nonfaulty proposer will
become ready to propose the highest proposal number yet
(Some-Prp-Ready). Thiswill be trivially satisfied the first
time some nonfaulty proposer becomes ready to initiate the
highest proposal yet.

Some-Prp-Ready ≡
∀T ∈ T : (∃κT

i ∈ C, p ∈ P, Q ∈ Q : ϕ(κT
i , p, Q))

Theorem 2 states that, eventually, the predicate ψ will be
satisfied in all fair paths, which is, by definition, equivalent
to the conditions CND.
Theorem 2 Proof -

(1) By Some-Prp-Ready, Wit-Seq, and Enabled-
Def, ψ will be enabled at least once.

(2) By Prp-Retry, ψ will be infinitely often enabled.
(3) By contradiction with F-Predicate-Axm, ψ will

eventually be true. ��

5 Verification using Athena

Distributed systems have previously been verified using
both interactive theorem provers, such as Coq [28] (e.g.—
[29]), and automated theorem provers (ATP), such as Z3
[30] (e.g.—[31]). Automation can be helpful for proof devel-
opment since ATPs can search for proofs without manual
human interaction. However, our goal was to make our
Athena proofs human-comprehensible in the form of clear
and intuitive series of logical conclusions. Such detailed
proofs can make it easy to identify the subtle ways in
which the assumptions can affect the proofs, thereby facili-
tating future proof development under different assumptions.
Interactive proof development can achieve this by requiring
proofs to be conveyed as a detailed sequence of logical infer-
ence steps for mechanical verification. This is not possible
when ATPs are used as black-boxes to automatically search
for non-trivial proofs. Additionally, since the interactive
approach requires all proof steps to be specified explicitly,
intermediate results can be reused in appropriate contexts.
Therefore, we adopted a primarily interactive approach of
proof development aided by minimal automation.
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We have mechanically verified all the lemmas and theo-
rems introduced in Sect. 4 usingAthena.Although itmight be
possible to express our proofs in other interactive systems like
Coq, our choice of Athena for this purpose has been inspired
by the existing Athena formalizations of actor systems in
the literature [26,32,33]. Athena is based on many-sorted
first order logic [34] and uses a natural deduction [35] style
of proofs, which is an intuitive way of reasoning. Logical
sentences can either be asserted into an assumption base or
proven as a theorem, and there is a soundness guarantee that
any proven theorem will be a logical consequence of sen-
tences in the assumption base. Athena performs automatic
sort-checking to prevent ill-sorted expressions in specifi-
cations. It allows theorems to be introduced at an abstract
level by encapsulating proofs in parameterized methods
which can be instantiated to prove different specializations
of the abstract theorems (e.g.—for any arbitrary p and q, the
cond-defmethodcanprove¬p∨q from p �⇒ q).Athena
has an interactive proof development environment that is also
integrated with ATPs like Vampire [36] and SPASS [19].
This allows the high-level skeleton of proofs to be developed
interactively, while the basic inference steps can be easily
delegated to ATPs via Athena commands.

We have developed custom constructs in Athena’s many-
sorted first order logic to specify the formal expressions pre-
sented in Sect. 4. E.g., the expression ρ(T , i) is represented
as (rho T i) in our Athena formalization and a mes-
sage 〈s, r , k, b, v〉 can be represented as (consM s r k
b v) using the constructor consM for forming messages.
Using these constructs, sentences like F-Snd-Axm (Fig. 3),
Rcv-Rul (Fig. 4), and Theorem 1 (Fig. 5) can be speci-
fied in Athena using the define keyword, and then they
can be either asserted into the assumption base or proven as
theorems. We have asserted the fairness axioms, the rules
defining the behavior of Synod actors, and the assumptions
for progress as sentences inAthena. The proofs of the lemmas
and theorems have then been mechanically verified to add
the corresponding sentences to the assumption base. Proofs
of generic properties, like IOE->Fair-Snd-Theorem
(Fig. 6) (which states that an enabled snd transition for a
nonfaulty actorwill eventually happen),were developedonce
and then reused in multiple contexts.

Our guided proofs involved a significant number of inter-
mediate steps that were connected by simple inference logic
such asmodusponens and conjunction elimination.However,
often the expressions comprised nested layers of conjunc-
tions and disjunctions, which made the task of interactively
guiding the proofs of these simple steps using Athena’s proof
tactics very time consuming (find an example in [37]). There-
fore, we used SPASS to discharge the simple inference rules
between such steps, while the logical structures of the proofs
were developed manually. SPASS can be invoked within
Athena by using a command of the form (!prove p L)

Fig. 3 The Athena code for F-Snd-Axm

Fig. 4 The Athena code for Rcv-Rul

Fig. 5 The Athena code for Theorem 1

Fig. 6 IOE->Fair-Snd-Theorem in Athena

wherep is the sentence to beproven andL is a list of sentences
already in the assumption base. If SPASS can successfully
derive p from L, then p is added to the assumption base as a
theorem.

Using SPASS with Athena allowed us to retain the clar-
ity provided by interactive proofs without being impeded
by the drawn-out task of manually guiding the simple infer-
ence steps. As a consequence, the structure of our proofs
allows us to clearly identify the subtle effects of modify-
ing the various assumptions, at a more detailed level, than
what would have been possible if SPASS was used to dis-
charge non-trivial proof steps. E.g., a failure of the proof
of Theorem 1, caused by changing j ≥ i to j > i in
F-Snd-Axm, can be easily traced back to a basic modus
ponens step in the proof of IOE->Fair-Snd-Theorem.
If the complete proof of IOE->Fair-Snd-Theoremwas
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delegated to SPASS, then SPASS would have simply failed
without reporting the exact cause of the failure. In our expe-
rience, such proof clarity can not only help in debugging
incorrect proofs but can also promote an in-depth understand-
ing of the system properties that are being verified.

ATPs like SPASS are like black-boxes whose internal
operations cannot be easily analyzed. If there is an incon-
sistency in the premise passed to an ATP, then the ATP
may derive false from the premise, enabling it to prove
any desired conclusion. Therefore, one must make sure that
inconsistent sentences are not passed to ATPs for deriving
conclusions. For this reason, we have taken the following
steps to obtain reasonable confidence in the proofs that we
have developed:

• We have ensured that our Athena code accurately con-
forms to our formal proofs.

• We have only used SPASS to discharge simple steps such
as modus ponens and conjunction elimination, thereby
ensuring that we have a clear idea of how the proof of a
step delegated to SPASS is expected to proceed.

• Before using any premise L to prove a step using SPASS,
we have first checked that (!prove false L) fails
in SPASS without timing out. This showed that SPASS
could not derive false from the premise.

Using Athena, we have mechanically verified the proofs
of Lemmas 1, 2, Theorems 1, and 2. The proofs consist of
over 7200 lines of Athena code. However, the safety property
of Synod has not been verified in this work.

6 Related work

Previously, De Prisco et al. [38] presented a rigorous hand-
written proof of safety for Paxos along with an analysis of
time performance and fault tolerance. Chand et al. [39] pro-
vided a proof of safety ofMulti-Paxos using TLA+ [40] and
TLAPS [41]. Padon et al. [42] have verified safety of Paxos,
Vertical Paxos [12], Fast Paxos [22], and Stoppable Paxos
[43]. Küfner et al. [44] provided a machine-checkable proof
for the safety property of Paxos. Schiper et al. [45] formally
verified the safety property of a Paxos-based totally ordered
broadcast protocol using EventML [46] and the Nuprl [47]
proof assistant. Howard et al. [21] have model-checked the
safety property of Flexible Paxos in the TLC model checker
[48]. Rahli et al. [49,50] verified safety of a Multi-Paxos
implementation using EventML and Nuprl. In contrast to
our work, none of the above work has verified any progress
property for leaderless consensus.

While we have verified eventual consensus in the absence
of a unique leader, previously, progress in consensus has been
studied under the assumption of a leader. A unique leader

prevents livelock by design as there cannot be interrupting
proposals. McMillan et al. [31] machine-checked the safety
and eventual progress properties of Stoppable Paxos [43], a
variant of Paxos where there is a unique leader, using Ivy
[51]. Drăgoi et al. [52] verified eventual progress in LastVot-
ing [53], an adaptation of Paxos in theHeard-Of (HO) model
[53]. Eventual progress in LastVoting relies on the assump-
tion of a unique leader and has also been verified in [54] using
Isabelle [55].

In contrast to our purely asynchronous conditions for the
analysis of eventual progress, progress of algorithms has also
been investigated under the assumption of varying degrees
of synchrony. Hawblitzel et al. [56,57] verified eventual
progress in IronRSL, a Multi-Paxos implementation, using
a framework called IronFleet. In addition to a unique leader,
the eventual progress property of IronRSL assumes that mes-
sage delays will eventually follow a known bound (partial
synchrony [58]). Similarly, Losa & Dodds [59] presented the
Stellar Consensus Protocol and verified its eventual progress
using partial synchrony. Partial synchrony can not only allow
the detection of agent failures for the execution of algorithms,
but can also allow for strategic timeouts. E.g., Wanner et al.
verified the eventual consistency of a round-based log repli-
cation protocol in which nodes use timeouts to detect the
end of rounds and in each instance, only a “primary” node
(leader) is allowed to initiate proposals. Attiya et al. [60] and
Keidar et al. [61] have also used partial synchrony to infor-
mally reason about progress in consensus. A more detailed
review of progress in consensus algorithms can be found in
[62], but they do not provide any machine-checked proofs.

Variants of the actor model, such as FAM, have also
been presented in the literature. Field and Varela [63]
presented transactors, a fault-tolerant programming model
for composing loosely-coupled distributed components run-
ning in unreliable environments using actors. Transactors
can ensure global consistency in application-level protocols
using checkpoints. One notable difference between trans-
actors and FAM is that, unlike FAM, transactors support
the loss of messages. However, they have not mechanically
verified the properties of transactors. Charalambides et al.
[64] introduced a system for typing coordination constraints
in parameterized actors. Their system can be used for the
static analysis of implementations of asynchronous concur-
rent systems using session types [65]. However, they have not
investigated progress properties or developed any machine-
checked proofs. Charalambides et al. [66] investigated the
use of type systems to capture the progress properties of
actor programs but have not mechanically verified the proofs
of the properties that they studied.

Mechanical verification of the properties of actor systems
has been presented by Musser and Varela [26]. They created
a formalization of the actor model in Athena and verified
many properties of actor computation at an abstract level,
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independently of the details of a particular system of actors.
Their work included theorems concerning the persistence of
actors and messages, preservation of unique actor identifiers,
monotonicity properties of actor local states, guaranteedmes-
sage delivery, and general consequences of fairness, and was
later extended by Dunn [32] to include correctness proper-
ties of actor systems with First-In-First-Out communication.
Their work does not model actor failures or study progress
in consensus algorithms, but our formalization of FAM and
Synod in Athena has been inspired by their Athena formal-
izations. A formalization of the safety property of transactors
in Athena was also presented by Boodman [33].

7 Discussion and future work

The conditions for progress Given the FLP impossibility
result, eventual consensus under asynchronous conditions
can only be guaranteed by making some strong assump-
tions.Assumptions like a unique leader and partial synchrony
[58] have been used to guarantee eventual consensus in the
literature (e.g. – [22,57]). However, since real-life commu-
nication is asynchronous and all candidates in DAC must
be allowed to initiate proposals, we have investigated even-
tual consensus under purely asynchronous conditions and in
the absence of a leader. The conditions for eventual con-
sensus in Synod require that some agents will be nonfaulty
(to bypass the impossibility result) and that eventually, some
proposal will not be interrupted by higher-numbered propos-
als (to avoid livelocks). Under these conditions, Lamport’s
proof of progress for Paxos [22] becomes a special case of
our proof of progress for Synod.

Predicate fairness in FAM We have shown that predicate
fairness can be used to theoretically guarantee our condi-
tions for eventual progress if the proposers keep retryingwith
higher proposal numbers. Predicate fairness is stronger than
the fairness property of AM and it can be used for reason-
ing about the progress of different distributed protocols. It is
important to note that predicate fairness is not necessary for
our conditions for progress to be satisfied as the conditions
may eventually be true even in a system that is not predi-
cate fair. However, we believe that our formal analysis of
predicate fairness in FAM is an important theoretical contri-
bution toward the study of progress in distributed protocols
like Synod implemented using actor systems.

Importance of eventual progress A guarantee of even-
tual progress does not provide any bound on the time that
may be required for progress. In fact, in completely asyn-
chronous settings, it is impossible to provide a bound on the
time required for progress. However, real-life communica-
tion is asynchronous and the theoretical analysis of eventual
progress under purely asynchronous conditions allows for the
identification of subtle details that can halt progress by caus-

ing livelock or deadlock situations. Our analysis of eventual
progress in Synod formally identified sufficient conditions
required to prevent the protocol from encountering such
undesirable situations.

Future work Consensus is a fundamental aspect of dis-
tributed aerospace applications like DAC. We have verified
eventual consensus in Synod, thereby showing that the pro-
tocol is appropriate for use in DAC. However, there are
other open challenges to the practical realization of DAC,
such as bootstrapping decentralized coordination and pro-
viding guarantees for coordination that can be practically
useful. Since the properties of real-life communication can-
not be deterministically predicted, a potential direction of
futureworkwould be to investigate probabilistic properties of
timely progress for Synod. Such probabilistic properties can
be developed by stochastically modeling themessage delays,
which cannot be deterministically predicted in asynchronous
conditions [67]. Another potential direction of work would
be to model message loss in FAM by introducing additional
meta-level transitions. This would allow us to weaken the
progress conditions further by requiring that only a subset
of the messages are not lost. To avoid livelocks, it may also
suffice to replace predicate fairness with a weaker assump-
tion that “infinitely often enabled finite transition sequences
must eventually occur”. Formal reasoning about Byzantine
failures is also an interesting avenue of future work.

8 Conclusion

In this paper, we have identified a set of sufficient conditions
underwhich theSynodconsensus protocol canmake eventual
progress, in asynchronous communication settings and in the
absence of a unique leader. Leader election itself being a con-
sensus problem, our conditions generalize Paxos’ progress
conditions by eliminating their cyclic reliance on consensus.
We have also introduced a failure-aware actor model (FAM),
that assumes predicate fairness, to reason about communi-
cation failures in actors. Using this reasoning framework,
we have formally demonstrated that eventual progress can
be guaranteed in Synod under the identified conditions and
have used Athena to develop the first machine-checked proof
of eventual progress in Synod. Additionally, we have also
shown with a mechanical proof that under predicate fairness
in FAM, our conditions for eventual progress will be even-
tually satisfied.
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Appendix A relationship of FAM to AM

We present some theorems about the relationship of FAM to
Varela’s dialect of AMST (AM).

Theorem 3 (FAMsubsumesAM)Any valid computation path
in AM is a valid path in FAM.

Theorem 3 Proof -

Let π = [κi li−→ κi+1 | i < ∞] be a valid computation
path in AM. Let F be a function from configurations in AM
to configurations in FAM as follows:

F(〈〈α ‖ μ〉〉) = 〈〈α ‖ ∅ ‖ μ〉〉
Then π ′ = [F(κi )

li−→ F(κi+1) | i < ∞] is a valid path in
FAMby induction on computation sequences since fun,new,
snd, and rcv in FAM are identical to AM transitions without
modifying ᾱ, the map for failed actors, which remains empty
throughout π ′. ��
Theorem 4 (AM can simulate finite paths in FAM) If all the
stp and bgn transitions are removed fromafinite computation
path inFAM, then the resulting pathwill correspond to a valid
path in AM.

Theorem 4 Proof -

Let π = [κi li−→ κi+1 | i < n] be a valid computation
path in FAM.LetG be a function fromconfigurations in FAM
to configurations in AM as follows: G(〈〈α ‖ ᾱ ‖ μ〉〉) =
〈〈α ∪ ᾱ ‖ μ〉〉 = 〈〈α′ ‖ μ〉〉

Given π , we construct a finite path π ′ in AM by remov-
ing all the stp and bgn transitions from π . This is a valid
path by structural induction on transitions. To show this, let

κi
li−→ κi+1 be a transition in π and let κi

li−→ κi+1 =

〈〈αi ‖ ᾱi ‖ μi 〉〉 li−→ 〈〈αi+1 ‖ ᾱi+1 ‖ μi+1〉〉. Then there
can be two cases:

Case 1: li is of the form [fun : a], [new : a, a′], [snd : a],
and [rcv : a, v] in FAM. Then there exists a transition l ′j in

π ′ such that κ ′
j

l ′j−→ κ ′
j+1 where κ ′

j = G(κi ), l ′j = li , and

κ ′
j+1 = G(κi+1) since 〈〈α′

j ‖ μ′
j 〉〉

l ′j−→ 〈〈α′
j+1 ‖ μ′

j+1〉〉
is valid in AM because—(i) a, the actor in focus is in α′

j =
αi ∪ ᾱi , since it is in αi ; (ii) α′

j+1(a) = αi+1(a); and (iii)
μ′

j+1 = μi+1.
Case 2: li is of the form [stp : a], [bgn : a] in FAM. Then

we can remove the transition in π ′ since G(κi ) = G(κi+1)

because α, [e]a ∪ ᾱ = α|dom(α)−{a} ∪ ᾱ, [e]a for the stp
transition and α ∪ ᾱ, [e]a = α, [e]a ∪ ᾱ|dom(ᾱ)−{a} for the
bgn transition. ��

Theorem 4 cannot be claimed for infinite paths in FAM.
E.g., consider a path in FAM in which an actor fails perma-
nently. Then all future transitions that are enabled for the
actor will never happen. If the stp transition is removed from
this path, then it will be an unfair path in AM.

The mechanical verification of Theorems 3 and 4 is out of
the scope of this work.
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