OverView: Generic Visualization of

Large-Scale Distributed Systems

Jason LaPorte

Travis Desell

Carlos Varela

overview@cs.rpi.edu
http://wcl.cs.rpi.edu/overview/

August 30, 2006

Abstract

Visualization aids developers in conceptual under-
standing, testing, and debugging of distributed sys-
tems. Many of these systems, due to their complexity,
are programmed using high-level abstractions (such
as actors, ambients, processes, or virtual machines);
and while tools are lacking for such visualization in
general, there is a specific need for visualization of
very large distributed systems, including thousands
or tens of thousands of these entities. OverView is
an entity-specification driven software toolkit which
allows visualization of these systems; preserving the
high-level concepts within and displaying their im-
portant properties, such as location, remote commu-
nication, and migration, both online (that is, in real-
time) and offline. OverView’s architecture is generic,
in that different abstractions may reuse the same vi-
sualization modules, requiring only a change in the
entity-specifications that map high-level code to the
visualization abstractions.

1 Problem Description

Distributed systems (for example, a computer pro-
gram that is distributed across a network) have re-
cently become very popular, due to their versatility
and the relatively low expense of increased computa-
tion power through networking. However, these sys-
tems are extremely complex, and thus the burden on

programmers and researchers to develop these sys-
tems has increased.

For example, one might wish to see the activity,
computationally speaking, of the computers compris-
ing SETI@home[1].! Perhaps one wants to view the
interactions between the computers running a high-
performance simulation across several computational
clusters. You might also want to see, visually, a Bit-
Torrent swarm as its activity spikes and dwindles over
time. More intriguing is the idea of a distributed pro-
gram running on mobile phones, the runtime of which
may migrate from the phone to nearby servers and
back again as the owner of the phone walks around a
city, or if the battery becomes critically low.

Developers and maintainers of such systems can
gain a productivity boost if they can have a means of
visually analyzing these systems; furthermore, such a
tool can be used as an aid to teach students concepts
of distributed systems. Therefore, the creation of a
tool to visualize distributed systems is a useful and
worthwhile endeavor to undertake.

1.1 Specific Problems in Distributed
Systems Visualization

It is worth describing some of the specific problems
inherent in visualizing distributed systems, and they

hundred thou-
computation.

LAt a given time, there are one
sand personal computers working on a
http://setiathome.berkeley.edu/

are outlined in this section.

1.1.1 Scalability

Scalability is a paramount problem, and of partic-
ular interest to us, as we wish to visualize tens of
thousands of entities across potentially thousands of
computer systems. Addressing scalability covers two
related problems; firstly, that of the scalability of the
architecture; and secondly, that of the scalability of
the visualization. The latter will be included in Sec-
tion 1.1.4.

Architecture scalability is the ability for the soft-
ware framework itself to scale. The difficulty is that
of the client bottleneck: if a distributed system is
running on thousands of physical machines, then the
visualization tool must receive events, directly or in-
directly, from each machine. This is extremely ex-
pensive in terms of network bandwidth and client
processing time; and unless steps are taken, the visu-
alization may be needlessly inefficient, or else be too
slow to be practical or possible.

1.1.2 Genericity

Genericity refers to how well a single type of vi-
sualization can be applied to a heterogeneous set
of problems. For example, we may wish to visu-
alize mobile object-based systems, actor-based sys-
tems, mobile ambient-based systems, mobile virtual
machine-based systems, or other abstract concepts of
distributed systems, all using the same framework.

Furthermore, it also refers to how well different lan-
guages may be visualized with the system. For ex-
ample, visualization of Java-based systems, as well as
C and MPICH-based systems.

1.1.3 Online and Offline Visualization

Most visualization tools offer offline visualization;
that is, constructing a visualization from a log or de-
scription file. While this is a worthwhile design goal,
distributed systems are far too dynamic for such a
system to be very useful. Therefore, it is important to
have a visualization tool that runs online—that is, in
real-time, while the distributed system is running—so

that it is more useful for those who use it; this carries
the added necessity of runtime profiling that is not
expensive or intrusive to the system. It is important
to retain the ability to use the visualization offline,
so that one can record and replay a visualization if
required.

1.1.4 Visualization Clarity

A visualization’s purpose is to enhance one’s ability
to understand a system, by making statistical infor-
mation visual so that our brains, which are already
built and fine-tuned to process images, may better
comprehend the information at hand. Thus, it is also
of vital importance that the visualization is clear and
easy to understand at a glance. This means that the
visualization must be intuitive, and that it must scale
well: that is, it must be able to make small systems (a
few dozen to a few hundred elements) just as under-
standable as large systems (thousands to hundreds of
thousands of elements).

Unfortunately, this not a simple problem, since
small-scale visualizations tend to be quantitative in
nature (as detail is important), while large-scale vi-
sualizations tend to be qualitative (as trends become
more important than details). These two goals are
generally mutually exclusive, and so means to change
the type of visualization must be put into place.

2 Approach

OverView|2, 3]? is a toolkit which permits visualiza-
tion of distributed systems written in Java, in or-
der to better enable those interested in these systems
to understand them. The OwverView Instrumenter
(OVTI) allows the abstraction of Java method invoca-
tions (without modifying the code of the existing Java
program) into a small set of events, which are sent
over a network to the OverView Presenter (OVP),
which interprets the events and displays a meaning-
ful, interactive, graphical representation of the state
of the distributed system. This is shown in Figure 1.

2At the time of writing, the current version of OverView is
0.3.3.

In OverView, Java method invocations are mapped
to events, which represent a high-level abstraction of
a program’s execution. The mapping is defined in
an Entity Specification Language (ESL) file, which is
read by OVI. OVI then instruments (that is, inserts
new instructions into) the compiled Java bytecode of
the program, which causes it to send those events
over a socket to any listening OVP when the pro-
gram is run. This instrumentation does not signif-
icantly effect the runtime of the program, it simply
adds asynchronous event-transmitting behavior.

Java Source

Java Class

Instrumented Java Class

Figure 1: A high-level description of how OverView
is used.

ESL File

2.1 The Entity Specification
Language

The Entity Specification Language is a simple declar-
ative language, which is used to map Java method
invocations to OverView events, so that one can
abstract any Java program into a set of cues that
OverView can use to render a visualization. The

ESL grammar is provided in Figure 2, and a sam-
ple ESL file, which handles creation and communica-
tion events for SALSA actors, can be found in Figure
3. The benefit of using such a language is twofold:
firstly, it allows us to make our visualization generic
to any Java program, regardless of how it is imple-
mented. Secondly, if one desires to visualize differ-
ent parts of the same program, or the same program
at different granularities (for example, at the object-
level or at the level of some higher-order composition
of objects), one may do so by simply instrumenting
the program using different ESL files.

OverView currently supports the following types of
events:

e Creation, which represents the creation of an
entity.

e Migration, which represents the movement of
an entity from one entity or container to another.

e Deletion, which represents the elimination (ei-
ther manually or via garbage-collected) of an en-
tity.

e Communication, which represents when one
entity sends information to another (which can
represent a method call, a remote method invo-
cation, an message-sending operation, or so on).

e Split, which is when one entity begets another
(e.g. for load balancing)[4].

e Merge, the opposite of a split operation, which
merges one entity into another.

e Error, which displays an error message in rela-
tion to some entity.

2.2 The OverView Instrumenter

OVI itself has two parts: an instrumenter, and an
Integrated Profiling Agent (IPA). The instrumenter
itself uses ESL entity specifications as a road map to
insert event-sending bytecode into a compiled Java
program. The code that is inserted is the IPA: what
it does is simply send a specified event to a listening

Entity == entity IDENTIFIER is Name EntityBody

EntityBody == { UniqueByDeclaration (WhenDeclaration)* }
UniqueByDeclaration ::== unique by Value;
WhenDeclaration —:== when (start | finish)

MethodSpecification -> EventDeclaration
[ExceptionSpecification (, ExceptionSpecification)*];

MethodSpecification ::== IDENTIFIER ([Parameter (, Parameter)*])
ExceptionSpecification ::== on exception IDENTIFIER -> FventDeclaration
Parameter == Type IDENTIFIER
Type ::== IDENTIFIER (. IDENTIFIER)*
EventDeclaration == EventType ([Value (, Value)*])
EventType == Creation | Migration | Deletion
| Communication | Split | Merge | Error
Value === LITERAL
| exception
| (entity | IDENTIFIER) (. ValuePart)+
ValuePart == IDENTIFIER [([Value (, Value)*])]

Figure 2: The ESL grammar.

entity UniversalActorState is salsa.language.UniversalActor$State {
when start addClassName(java.lang.String className)
-> creation(this.getUAL() .getIdentifier(),
this.getUAL(Q) .getHostAndPort());

when start putMessageInMailbox(salsa.language.Message arg0)
-> communication(arg0.getSourceName(),
arg0.getTargetName()) ;

}

Figure 3: An example ESL file. This particular file is for generating events from SALSA actors.

OVP when it is triggered (during a method invoca-
tion, for example).

The instrumenter uses Apache’s Byte-Code Engi-
neering Library (BCEL)?, which facilitates the inser-
tion of new bytecode into existing programs. The
profiling agent is of tremendous importance in the
topic of scalability, and will be further discussed in
Section 5.

2.3 The OverView Presenter

" OverView

Figure 4: A screenshot of OVP, with 5 containers and
12 entities.

OVP, when invoked, will create a number of client
connections to IPAs and listen for incoming events,
which are multiplexed and translated into a visual-
ization. Most of the software consists of the visual-
ization itself, and the various means of controlling it.
Its design is shown in Figure 6.

The visualization is currently a simple and intu-
itive one, though it does not scale particularly well: it
remains intuitive enough for dozens of elements (Fig-
ure 4), but becomes excessively cluttered and difficult

3http://jakarta.apache.org/bcel /index.html

W
=
=

/. OverView,

Figure 5: Another screenshot of OVP, with 20 con-

tainers and 200 entities.

Data Collector Data Collector Data Collector
\
Event Dispatcher
Visualization History

Figure 6: The structure of OVP. Events, which are
sent by multiple profiling agents, are collected by
Data Collectors, one for each agent. These are sent to
a single Event Dispatcher, which collects the events
and forwards them to a Visualization module. A His-
tory module keeps a pointer which is used to tell the
Event Dispatcher which events to forward.

to understand with hundreds of elements (Figure 5),
far short of our goal of thousands or tens of thou-
sands. Two basic concepts exist within our visual-
ization: entities and containers. Entities are merely
some self-contained unit of computation, such as an
object, an actor, a process in a physical computation
environment. Containers are just that: they contain
entities. For example, a computer on which processes
run, or a virtual machine in which actors perform.
Entities can exist within containers, within other en-
tities (such as an actor on a mobile virtual machine),
or can simply float around, being without contain-
ment of any kind. When two entities communicate, a
line is drawn between them. The line will decay over
time, so the brighter the line, the more frequently
the two entities communicate. Whenever an entity
moves, or splits, or merges, its motion is interpolated
so that the visual cues may provide the viewer with
a more intuitive understanding of what is happening.
The user may use the mouse to zoom in or out of the
visualization, pan it around, or fast-forward, pause,
or rewind through time, like you might do with a
VCR.

3 Preliminary Results

OverView has been tested on a number of programs,
such as visualizing recursive computations. It has
also been shown to visualize SALSA[5]* (Simple Ac-
tor Language System and Architecture) programs,
such as heat distribution through a bar®, across sev-
eral computer systems. However, it remains untested
on “real-world” applications (such as those described
in Section 1) and on very large networks. Rensselaer
has put much effort into creating large-scale comput-
ing infrastructure, however; and with some interest-
ing programs being written to make use of it (for ex-
ample, an astronomy simulation program), we intend
to conduct such tests soon.

SALSA in particular benefits greatly from
OverView, as SALSA itself can be instrumented, re-

4SALSA is an extension to Java that allows programming
using the Actor model. http://wcl.cs.rpi.edu/salsa/

5You can see a video of this online, at
http://wecl.cs.rpi.edu/overview/media/heat.avi

moving the need to instrument SALSA source files.
This makes visualization of SALSA programs with
OverView as simple as using a particular SALSA ver-
sion to compile your source code.

One of the specific choices made in the current
version of OverView is it’s distinctive ring struc-
ture. Containers are placed in a large ring around
the window (which is, of course, able to be panned
and zoomed), while entities are placed around rings
within their parents. We had looked at several dif-
ferent placement mechanisms, such as random and
book-style (left-to-right and top-to-bottom), and this
one has demonstrated itself to be better than all the
rest for the following reasons: firstly, it minimizes
ambiguous communications: that is, communications
overlapping multiple entities, so you cannot tell at
a glance which it refers to; this is a problem that
appears often with a grid-style setup since so many
communications are horizontal or vertical. Secondly,
it can display a hierarchy of elements intuitively even
with a the naive placement of new elements at the
end of the list, allowing it to support recursive com-
putations as well as any other kind (Figure 7). It’s
downsides include a lot of wasted space (in the middle
of the ring), and it doesn’t scale up, because if you're
looking at one side of the ring in detail, you can’t be
looking at the other. However, for small networks, it
works very well.

Another implementation difficulty was the His-
tory module. It was implemented in the following
way: when events are collected from IPAs, they are
buffered into a list of events. A pointer is kept that
points somewhere in the list; by default, it is al-
ways at the end, but it can be moved linearly as
well. The difficulty in implementation was that, since
we require the visualization to remain consistent, we
cannot allow random-access in the visualization (via,
for example, checkpointing) since this would cause
a “jump” in the visualization. So, instead, we must
have methods for doing events, and for undoing them,
to restore the state that occurred before the event
was received. Aggregations of these actions allow us
to move to any temporal point in the visualization.
Some events (such as communication) are instanta-
neous, and have no lasting effect on the visualization,
so they are reversible (that is, doing is the same as

Figure 7: An example of the ring visualization on
a binary tree, placing new elements (in a preorder
traversal) at the end of the list.

undoing). Others, however, such as deletion, remove
the context in which the entity existed (for example,
we must know where the entity was located before it’s
deletion to be able to undo it), so we had to intro-
duce a mechanism to store this context. We store the
context when the event is first played; it should be
noted that this is possible since an event must always
be played forwards before it can possibly be played
backwards. This is because the tape is linear and we
always start at the beginning.

4 Prior and Related Work

4.1 Prior Work on OverView

At an earlier stage in OverView’s development, it was
implemented as a plug-in for the Eclipse® IDE. This
was motivated by the desire of spring-boarding off
of Eclipse’s architecture, and with the desire of pos-
sibly using OverView as a debugging component to

6http://www.eclipse.org/

SALSA programs, within Eclipse’s debugging soft-
ware. However, the author saw this as a goal too far
in the future, and separated OverView from Eclipse
to make it smaller, simpler, more portable, and to
open up new venues of development (for example,
visualization from within a web browser via a Java

applet).

4.2 Related Work in Visualization

Frishman and Tal’'s Visualization of Mobile Ob-
ject Environments[6] demonstrates a software project
similar to our own, but very different in mechanism.
While it is limited in genericity (as it relies upon a
particular implementation of Mobile Objects in Java,
for execution and profiling purposes), it scales much
better than OverView does, at present. It suggests
providing the user a means to select a “focus,” that
is, select which parts of the visualization are of inter-
est. Then, the software visualization may “filter out”
unrelated or unimportant parts of the visualization.
If this filter is moved close to the data source (that
is, into the profiling agent), an immediate savings on
network bandwidth and client framerate (that is, the
time it takes OVP to construct the visualization per
frame) will result. It should be noted that such an
approach affects not only the architecture, but also
the visualization itself.

Benjamin Fry’s master thesis, Organic Information
Design[7], demonstrates that while static visualiza-
tion systems are well understood (as they’ve been
developed over several hundred years), dynamic visu-
alization systems are still in their infancy. He argues
that by taking cues from biological systems (such as
metabolism, growth, homeostasis, and reproduction),
one can design a more dynamic and scalable visual-
ization that retains intuitiveness. While these designs
tend to provide an excellent qualitative representa-
tion of a system, which is desirable in large or very
dynamic systems, they falter in quantitative measure-
ments, which may be desirable at smaller scales.

5 Future Work and
Conclusions

Scalability has not yet been addressed in the software
to any significant degree, either in architecture or
in visualization. To address architecture scalability
concerns, we are experimenting with focus-based ap-
proaches described in Section 4.2, along with an event
filtering and publish-subscribe mechanisms in each
TPA. We are also considering the possibility of us-
ing a hierarchical event distribution model to reduce
network bandwidth. Events, which are currently be-
ing sent as serialized Java arrays of strings, may be
changed to some other format for efficiency and for
genericity (for languages other than Java).

To address visualization scalability concerns
(which are, at the moment, possibly the most lim-
iting factor of the software), we are experimenting
with various prototypes of alternate means of visu-
alizations that take cues from the lessons learned
from Organic Information Design (Section 4.2) and
our own prior experimentation. Examples of possible
faults in the current visualization are:

e Nested layers of entities being drawn inside of
each other, while intuitive, does not scale well
at all, particularly when considering communica-
tion between them. Alternate representations of
containment are being examined, such as place-
ment and coloration.

e Communicating events draw lines between them,
and current mechanisms do well to demonstrate
frequency of communication, but not bandwidth
of communication. We are interested in mecha-
nisms that, for example, alter the line thickness
based on how much information is sent. It should
be noted that this is nontrivial, as there must be
an ESL abstraction for how much data is being
sent, before such a thing may be implemented.

e The visualization may benefit from being more
interactive. For example, being able to repo-
sition entities using the mouse, and saving the
created layout for future visualizations.

In terms of on- and offline visualization, offline vi-
sualization has not yet been implemented. Addition-
ally, dynamic paging of visualization data is a neces-
sity, as leaving a visualization running for too long
will crash Java by using up all available heap space.
A mechanism must exist whereby the log file is placed
in secondary storage, and only the currently used por-
tion is in main memory.

We are constantly evaluating which events
OverView supports, so as to have the fewest events
necessary; this is to simplify the program and to bet-
ter enable reasoning about it.

The difficulties inherent in designing a good visual-
ization tool, the potential usefulness of such a system,
and the apparent lack of other software of the kind
imply that there is a need for distributed visualiza-
tion tools. While our current results show us that
our tool, OverView, does not address the problem of
scalability to the degree we feel it should, it takes
a unique approach to the problem of genericity: by
using the Event Specification Language in conjunc-
tion with the OverView Instrumenter, we can profile
any Java application unintrusively, freeing the user to
visualize any type of system, using any abstraction,
at any desired granularity. Online and offline visu-
alization are both important, and our approach of
runtime visualization through the OverView Instru-
menter’s Integrated Profiling Agents (which gather
data about the system’s state and transmit it) al-
low us to easily manage both. Finally, the problem
of having a clear, intuitive, and understandable vi-
sualization is addressed by the OverView Presenter,
which displays a graphical representation of the state
of the distributed system. We are excited about the
promise that OverView has as a useful, generic visual-
ization tool, and hope that as it is further developed,
it will prove to be of use to others as much as it is
useful to us.

References

[1] W. T. Sullivan, III, D. Werthimer, S. Bowyer,
J. Cobb, D. Gedye, and D. Anderson. A
new major SETI project based on Project
SERENDIP data and 100,000 personal comput-

ers. In C. Batalli Cosmovici, S. Bowyer, and
D. Werthimer, editors, JAU Colloq. 161: Astro-
nomical and Biochemical Origins and the Search
for Life in the Universe, pages 729—, January
1997.

Harihar N. Iyer, Abe Stephens, Travis Desell,
and Carlos Varela. OverView — dynamic visu-
alization of java-based highly reconfigurable dis-
tributed systems. Technical report, Rensselaer
Polytechnic Institute Worldwide Computing Lab-
oratory, August 2003.

T. Desell, H. Iyer, A. Stephens, and C. Varela.
OverView: A framework for generic online visu-
alization of distributed systems. In Proceedings
of the European Joint Conferences on Theory and
Practice of Software (ETAPS 2004), eclipse Tech-
nology eXchange (eTX) Workshop, Barcelona,
Spain, March 2004.

Travis Desell, Kaoutar El Maghraoui, and Car-
los Varela. Malleable Components for Scalable
High Performance Computing . In Proceedings
of the HPDC’15 Workshop on HPC Grid pro-
gramming Environments and Components (HPC-
GECO/CompFrame), pages 3744, Paris, France,
June 2006. IEEE Computer Society.

Carlos Varela and Gul Agha. Program-
ming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices. OOP-
SLA’2001 Intriguing Technology Track Proceed-
ings, 36(12):20-34, December 2001.

Yaniv Frishman and Ayellet Tal. Visualization
of mobile object environments. In SoftVis '05:
Proceedings of the 2005 ACM symposium on Soft-
ware visualization, pages 145-154, New York, NY,
USA, 2005. ACM Press.

Benjamin Fry. Organic information design. Mas-
ter’s thesis, Massachusetts Institute of Technol-
ogy, May 2000.

