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Maximum Sustainable Throughput Prediction
for Large-Scale Data Streaming Systems

Abstract—In cloud-based stream processing services, the maximum sustainable throughput (MST) is defined as the maximum
throughput that a system composed of a fixed number of virtual machines (VMs) can ingest indefinitely. If the incoming data rate
exceeds the system’s MST, unprocessed data accumulates, eventually making the system inoperable. Thus, it is important for the
service provider to keep the MST always larger than the incoming data rate by allocating a sufficient number of VMs. In this paper, we
propose a cost-effective framework to predict MST values for a given number of VMs for stream processing applications with various
scalability characteristics. Since it may be difficult to find one prediction model that works well for various stream processing
applications, we first train several models using linear regression for each application. We then select the best-fitting model for the
target application through the evaluation of extra MST samples. To save cost and time to collect MST samples while achieving high
prediction accuracy, we statistically determine the most effective set of VMs within a budget. For evaluation, we use Intel’s Storm
benchmarks running on Amazon EC2 cloud. Using up to 128 VMs, experiments show that the models trained by our framework predict
MST values with up to 15.8% average prediction error. Further, we evaluate our prediction models with simulation-based elastic VM
scheduling for a realistic data streaming workload. Simulation results show that with 20% over-provisioning, our framework is able to
achieve less than 0.1% SLA violations for the majority of test applications. We save 36% cost compared to a static VM scheduling that
covers the peak workload to achieve the same level of SLA violations.

Index Terms—Cloud computing, maximum sustainable throughput, performance prediction, data streaming.

1 INTRODUCTION

The need for real-time stream data processing is ever in-
creasing as we are facing an unprecedented amount of data
generated at high velocity. Upon the arrival of a stream
event, we want to process it as quickly as possible to timely
react to events such as aircraft airspeed sensor failure [1] or
unusually high CPU usage in data centers [2]. Traffic man-
agement [3], [4] and sensor data processing from Internet-of-
Things (IoT) devices [5], [6], [7] are also common real-time
stream processing applications.

To process these fast data streams in a scalable and reli-
able manner, a new generation of stream processing systems
has emerged: systems such as Storm [8], [9], Flink [10], [11],
Samza [12], and Spark Streaming [13], [14] have been ac-
tively used and developed in recent years. Cloud computing
can add on-demand elasticity to these stream processing
systems to deal with fluctuating computing demand using
autoscaling [15]. To guarantee a service level agreement
(SLA) in terms of application performance, we need a pre-
diction model that connects the number of virtual machine
(VM) instances and application performance so that the
autoscalers can estimate and provision the right number of
VMs.

We define maximum sustainable throughput (MST) as the
maximum throughput that the stream processing system
can ingest indefinitely for a given number of VMs. It is
an application performance metric that is useful from the
data processing service provider’s perspective. If the in-
coming data rate exceeds the system’s MST, unprocessed
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data accumulates, eventually making the system inoperable.
By dynamically allocating and deallocating VMs, service
providers can keep the MST larger than the incoming data
rate to maintain stable service operation while only paying
VMs that are needed.

To realize this MST-based elastic stream processing in
a cost efficient manner, we need an MST prediction model
for a given stream application and number of VMs. How-
ever, most recent elastic stream processing studies primarily
focus on guaranteeing latency [16], [17], [18], [19]. There-
fore, these studies only use prediction models for latency.
ElasticStream [20] is the only elastic streaming system that
estimates maximum throughput. It uses a model that is
linear in the number of VMs, which is not realistic for all
applications, as we show in this work.

Due to the complex nature of distributed data process-
ing, it is not always feasible to model application perfor-
mance analytically, without any observations of application
performance. Recent works have used supervised learning
to model the performance of distributed batch processing
applications [21], [22], [23]. These works collect performance
metric samples from actual application runs and train pre-
diction models using regression. Among them, our work
was inspired by Ernest [22], which models job completion
time for Apache Spark’s batch processing as a polynomial
of the input data size and number of machines. It uses
training samples obtained from a few machines to predict
the performance for a larger number of machines. We take
a similar approach to Ernest to predict MST values for
stream processing applications. While Ernest uses a single
prediction model, we note that there are cases where a single
model cannot be trained to work well for multiple stream
processing applications.

In this work, we propose a cost-effective framework to
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predict MST values for stream processing applications with
various scalability characteristics. Since it may be difficult
to find one prediction model that works well for all of
the applications, we first train several models using linear
regression. We then select the best-fitting model for the
target application through the evaluation of extra MST
samples. To save cost and time to collect MST samples
while achieving high prediction accuracy, we statistically
determine the most effective set of VMs within a budget. For
evaluation, we use Intel’s Storm benchmarks [24] running
on Amazon EC2 cloud. Using up to 128 VMs, experiments
show that the models trained by our framework accurately
predict MST. We also simulate elastic VM scheduling with
the trained models using a realistic data streaming workload
and confirm the cost-effectiveness of our approach.

The rest of the paper is organized as follows. In Section 2,
we present related work on performance models used in
elastic data processing. In Section 3, we describe the concept
of maximum sustainable throughput and its measurement
method. Section 4 presents our MST prediction framework.
Section 5 shows the evaluation of our models’ prediction
accuracy, and Section 6 shows the cost-effectiveness of
the proposed framework in simulation-based elastic stream
processing. Section 7 discusses the results of experiments.
Finally, we conclude the paper in Section 8.

2 RELATED WORK

In stream processing, one of the most common performance
metrics is latency. There are several proposals for topology-
aware latency models [16], [17], [18], [19]. Li et al. propose
a topology-aware average latency model that uses thread-
level statistics such as the average tuple processing latency
and tuple transfer latency [16]. Heinze et al. try to minimize
latency spikes due to stateful operator migration when
scaling stream applications [17]. Their model considers an
application topology consisting of multiple operators. It
enumerates operators that need to be paused and restarted
for migration, and it estimates latency including operator
pause time. Queuing theory is also used for latency predic-
tion. Nephele (a prototype of Apache Flink) models each
processing unit to be a G/G/1 single server system with
a degree of parallelism [18]. DRS models multiple threads
derived from a processing unit to be a M/M/c multiple
server system [19].

Another important metric for stream processing is
throughput. There are some proposals that do not explicitly
model throughput but try to achieve high throughput by
improving task scheduling on a fixed number of VMs [25],
[26]. R-Storm implements a resource-aware task scheduler
on top of Storm [25]. It tries to increase throughput by
maximizing resource utilization and co-locating tasks com-
municating with each other. Similarly, Fischer and Bernstein
use graph partitioning to minimize network communica-
tion across different machines and also to minimize load
imbalance [26]. To alleviate excessive incoming workload
for stream processing running on a fixed number of VMs,
techniques such as random sampling [27] and backpres-
sure [28] have been proposed. Random sampling randomly
picks up events from a stream to reduce the amount of data
to process, but the answers are approximate. Backpressure
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is a mechanism in which the data receiver sends a signal to
request the data sender to halt its data transmission.

There have been a number of research projects on pre-
dicting job completion time for batch processing. There
are prediction models specifically designed for MapRe-
duce. AROMA [21] takes a purely data-driven approach,
in which it combines clustering of resource usage profiles
and regression with Hadoop MapReduce-specific variables.
ARIA [29] shows an analytically-designed job completion
time model based on the general map-reduce programming
framework [30]. Ernest [22] models job completion time
for Spark’s batch processing based on computation and
communication topology. Ernest represents job completion
time as a polynomial of the number of machines and the
size of input data. Compared to AROMA and ARIA, the
model used in Ernest only requires target scaling factors (i.e.,
input data size and number of machines), and therefore it is
more widely applicable. Our approach is similar to Ernest as
we use the number of machines as the only variable in our
models. However, Ernest assumes a single model, whereas
our framework uses multiple models and selects the model
that is expected to give the least prediction error for each
test application. This helps us predict performance for both
linearly and non-linearly scaling applications, as we show
later in this paper.

To safely scale up a cluster to process fluctuating work-
load, it is important to know the maximum processing
capacity of the cluster. Metrics similar to MST has been
used for web service applications [31], [32], but maximum
throughput has received less attention compared to latency
in stream data processing. To the best of our knowledge,
ElasticStream [20] is the only elastic stream processing sys-
tem that tries to maintain the cluster’s maximum through-
put to handle fluctuating input data rates through auto-
mated VM allocation. It uses a linear model to predict
maximum throughput; however, there are applications for
which maximum throughput is not linearly scalable as we
show in Section 5. Unlike ElasticStream, we model MST for
both linearly and non-linearly scalable applications.

We presented a preliminary version of MST prediction
framework first time in [33]. In this work, we extend our
previous work by adding the following new research efforts:

o A model selection method from several candidate mod-
els.

o Experiments with Intel’'s Storm benchmarks [24]
and a stream machine learning application from
SAMOA [34]. We evaluate prediction results of MST
values for up to 128 VMs (previously up to 32 VMs).

e More realistic elastic VM scheduling simulation with
VM allocation overhead (previously no overhead was
considered).

3 MAXIMUM SUSTAINABLE THROUGHPUT

In this section, we explain the motivating topic of this paper:
maximum sustainable throughput. We first show technical
background including a common data processing environ-
ment in Section 3.1, and we then introduce the concept
of maximum sustainable throughput (MST) and how to
measure it in Section 3.2. We also show how we can use
MST in SLAs for stream processing systems in Section 3.3.
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3.1 Technical Background of Stream Processing
3.1.1 Common Stream Processing Environment

Figure 1 shows a commonly used stream processing envi-
ronment, which works for frameworks including Storm [8],
Samza [8], Flink [10], [11], and Spark Streaming [13]. Data
streams flow from left to right, starting from the data pro-
ducer to the data store. The data producer sends events
at the input data rate of A(t) Mbytes/sec, and they are
appended to message queues in Kafka. Since the input data
rate fluctuates over time, A is a function of time. Kafka is a
message queuing system that is scalable, high-throughput,
and fault-tolerant [35] and is supported by major stream
processing frameworks. The stream processing system pulls
data out of Kafka as quickly as it can at the throughput of
7(m) Mbytes/sec, where m is the number of VMs. Note that
there can be multiple producers and consumers working si-
multaneously to avoid Kafka from being a bottleneck. After
the stream processing system processes events, it optionally
stores results in the data store (e.g., a file system or database).

Input data rate:
A(D)

AN

Processing
throughput: T(m)

Kafka Stream
Dt : Data
(message Processing |m==)
G broker) System Store

f (ex: Storm, Flink, ...)

Number of VMs: m

Fig. 1. Common stream processing environment.

3.1.2 Scaling Policy

To scale up the execution of stream processing applications,
We define an application-independent scaling policy. We
assume that the user writes stream applications in the
form of connected processing units (see the logical topology
shown on the left of Figure 2 as an example) and each of the
processing units can be duplicated to an arbitrary number
of threads when they are deployed on the cluster. Each
processing unit receives events from the preceding units and
emits processing results to the following units. The goal of
the scaling policy is to assign one thread per virtual CPU
(vCPU). Actual binding between threads and machines is up
to the stream processing system’s task scheduler. Parameters
for the scaling decision are shown as follows:

o n: Number of processing units.
o m: Number of virtual machines.
e 7v: Number of vCPUs per virtual machine.

Given these parameters, we can compute duplication factor
(or parallelism) d as follows.

d = max(L, [(m-7)/n)). M

This rule is a generalization of technique used in Yahoo
Streaming Benchmarks [36]. When n = 3,7 = 2, examples
of scaling to m = 3 and m = 5 are shown in Figure 2.

The stream processing system’s worker nodes interact
with Kafka and the data store as shown in Figure 3 . While
we fix the master node of the stream processing system,
we scale up the worker nodes by simply adding new VM

Duplication factor (d) = 2

Numbers of processing
units (n) = 3

— OO0

Logical topology

6 reads n 6 vCUs
Duplication factor (d) = 3

O : Processing unit

O : Thread

9 treads on 10 vCPUs

Actual deployment

(vCPUs per machine (y) = 2)

Fig. 2. Examples of scaling a topology with three processing units (n =
3) to three and five machines (m = 3 and 5) respectively. Each machine
has two vCPUs (v = 2).

instances of the same type. We assume Kafka and the data
store have enough resources to not become a bottleneck.
A series of messages (called a topic) in Kafka is stored
across p partitions, which are consumed by the worker
nodes in parallel. Since the number of partitions defines
the parallelism of data processing, the number of threads
consuming data from Kafka needs to match the number of
partitions.

1
Kafka 3 \
partition #1 2
partition #2 X} Data
: . store
partition #p

Worker Nodes

Fig. 3. Interactions between worker nodes and surrounding entities in
the stream processing environment.

3.2 Measuring MST

As we have defined in Section 1, MST is a metric to quantify
the maximum processing capacity for the stream processing
system. In this sub-section, we show how we measure
the true MST of the stream processing system for a given
number of VMs.

In the common stream processing environment in Fig-
ure 1, the processing throughput 7(m) never exceeds the
input data rate A(t) since the stream processing system
cannot process data unless they are provided by the data
producer. To obtain the true performance of the target
stream processing system, we have to ensure that the con-
dition A(t) > 7(m) always holds so that the data is always
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available to process for the stream processing system. How-
ever, the data producer or Kafka can be a bottleneck and
hinder the stream processing system from processing the
data at its maximum speed. To avoid this issue, we can load
enough data to Kafka in advance as shown in Figure 4, and
effectively simulate the condition A(¢) > 7(m).

Processing
throughput: T(m)

X,

Kafka Stream Dat
Preloaded (message Processing |=—=) ata
Data broker) System Store

t

Number of VMs: m

Fig. 4. Maximum sustainable throughput measurement environment.

Figure 5 shows an example of throughput transition over
time for a stream application that processes web access
logs (i.e., Unique Visitor in Section 5.1), observed in the
environment shown in Figure 4. In this setting, the stream
processing system pulls data from Kafka as quickly as
possible. The throughput gradually grows until 100 sec-
onds and then converges. After the convergence, we start
sampling the throughput, and that is the MST we measure.
In this example, MST is around 42 Mbytes/sec. To detect
convergence of the throughput, we use the following K out
of N method: we keep monitoring the latest N samples and
if K samples are within £6% from the previous samples,
we determine that the throughput is converged. For the
experiments in this work, we used N = 5, K = 4,§ = 5%.
As long as enough data is pre-loaded in Kafka, the stream
processing system is able to process the data indefinitely up
to the rate of MST.

Convegence detected

ﬁ 40 A4 LI P ATANAP et AN Ny 7 e,
£ /]VV
2 30

2 .

=25 4 Start sampling MST ——
3 20 P

-§, 15 7
2 10 1
S
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Fig. 5. Convergence of throughput for a web access log processing
streaming application.

3.3 Performance Objectives and Service Level Agree-
ments

The following performance objectives are commonly used in
event processing systems [37]: 1) maximize input through-
put, 2) maximize output throughput, 3) minimize average
latency, 4) minimize maximal latency, 5) latency leveling,
6) real-time constraints. Note that latency leveling refers to
minimizing the variance of the latency. The SLAs used in
previous works [16], [17], [18], [19] focusing on latency are
equivalent to #6 real-time constraints.
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In this work, the SLA of interest is related to #1 maximize
input throughput. For example, the objective is for the sys-
tem to keep up with the input data rate without completely
saturating the system capacity. So, the SLA is as follows:

A < MST, @)

where X is the input data rate and MST is the MST of
the system. Since latency and throughput are related and
important metrics in stream data processing, performance
objectives and SLAs may consist of multiple metrics in prac-
tice [37]. If the SLA in (2) is not satisfied, incoming messages
start accumulating in Kafka and thus it increases end-to-
end processing latency. If this situation persists, eventually
all the system resources are consumed and the system may
become inoperable in the worst case.

4 MST PREDICTION FRAMEWORK

In this section, we propose an MST prediction framework
that is designed with the following considerations.

1) Application as a black box: We see stream applications
as a black box so that our framework is generally appli-
cable to a wide range of stream processing frameworks.

2) Default task scheduler: Following the first assumption,
we use a default task scheduler and do not control task
scheduling.

3) Homogeneous VM type: We only use a single VM
type, namely m4.large on Amazon EC2. If different
stream processing tasks have different resource usage
requirements, there may be room for performance im-
provement by optimizing the task scheduling of these
tasks with heterogeneous VM types (e.g., maximizing
resource utilization or minimizing inter-machine com-
munication). However, since we choose to use a default
task scheduler and do not aim for performance opti-
mization, homogeneous VM types are sufficient.

4) Minimizing cost for training: We assume that users
want to minimize the time and cost for collecting train-
ing samples.

In the following sub-sections, we show the details of the
proposed framework. We first explain linear regression in
Section 4.1, give an overview in Section 4.2, and describe
the the following building blocks of the framework in order:
MST prediction models (Section 4.3), VM subset selection
(Section 4.4), and model training and selection (Section 4.5).

4.1 Linear Regression

We use linear regression [38] as a method to model the rela-
tionship between MST (dependent variable: y) and the num-
ber of VMs m (independent variable: x). Given a training
dataset Dipain = {(X1,%1)s -, (Xn,Yn)}, linear regression
looks for the optimal weight vector w in a prediction model
h(x) = wTx that minimizes the following mean square

error:
N

E(h) = < Z(h(xn) - yn)z- ©)

n=1
By taking the gradient of Equation (3), we can analytically
obtain the optimal w. Training is the process to obtain the
optimal w for the prediction model i(x) given the training
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dataset Dirain, Whereas testing is to evaluate the trained
model on a new test dataset.

4.2 Framework Overview

Figure 6 shows an overview of the proposed framework,
which consists of two phases as follows.

Phase 1: In this phase, we determine the most effective
set of VMs to obtain training samples. First, we collect
MST samples from representative benchmark applications
in terms of resource usage patterns. Next, we enumerate
subsets of a candidate training VMs set Vipain to create
various training sets. We train the models using linear
regression with each training set and select the best VM
subset S with the lowest test prediction error. We do this
process once offline.

Phase 2: In this phase, we train a new test application
that the user wants to predict the MST values. We collect
training MST samples only for the VM subset S determined
from Phase 1. After training the models with the collected
samples, we obtain extra validation samples that are not
included in § and select the model with lower validation
error. We run this process per test application.

4.3 MST Prediction Models

In this sub-section, we design two MST prediction mod-
els based on the stream processing environment we have
shown in Section 3.1. We assume that a combination of the
following factors determines the MST for a given number of
VMs m.

1) Parallel processing gain: Performance improves as m
increases.

2) Inputjoutput distribution overhead: Performance decays
linearly as m increases due to event transmissions from
Kafka to the m worker nodes and also due to result
transmissions from the m worker nodes to the data
store.

3) Inter-worker communication overhead: Performance de-
cays quadratically as m increases due to the m(m — 1)
communication paths between m worker nodes.

Based on these factors, we create the following two models.

Model 1: As shown in Equation (4), This model predicts
MST as a function of the number of VMs m. It is defined as
the inverse of event processing time, which is represented
as a polynomial of the number of VMs m. The terms have
the following meanings: serial processing time (wy), parallel
processing time (wy), input/output distribution time (ws),
and inter-worker communication time (ws). Note that all the
weights are restricted to be non-negative (i.e., w; > 0,7 =
0,...,3).

1 1

MST (m) = Time(m) -

4)
This model was inspired by Ernest [22], which models job
completion time for Spark’s batch processing jobs by con-
sidering computation and communication topology. Ernest
represents job completion time as a polynomial of the num-
ber of machines and the size of input data. We take the
inverse of processing time to model throughput.

wo + w1 - = 4 wa - M+ w3 - M3

5

Model 2: This model is a simple polynomial equation as
shown in Equation (5). The terms have the following mean-
ings: base throughput (wg), parallel processing gain (wy),
inter-worker communication overhead (ws). All the weights
are restricted to non-negative (i.e., w; > 0,7 = 0,1,2), but
we add a minus sign for wy to account for negative impact
of the inter-worker communication.

MST(Q)(m) = wp + wy - M — wy - M3, (5)

For Models 1 and 2, depending on the values of specific
weights after training (i.e., we and w3 for Model 1 and ws
for Model 2), predicted MST can have a peak at certain
VMs. This means that we can have more than two different
VM counts to obtain a certain value of MST. Since it is not
reasonable to choose the larger VM counts when the smaller
one can achieve the same MST, we can effectively see that
the predicted MST flattens out after its peak. Taking into this
“peak effect” consideration, we assume MST has a constant
value after its peak and compute prediction error under this
assumption.

4.4 Phase 1: VM Subset Selection

In this phase, we statistically determine the most effective
subset of VM counts for training in terms of prediction
error by exhaustive search. We first describe a method to
select such subset and then show the results of selected VM
subsets.

4.4.1 VM Subset Selection Method

As part of Phase 1, we perform the following steps to find
the best VM subset.

Step 1. Collecting MST samples: First, we run a set
of benchmark applications A = {ai,as,...} on each VM
count in V = {mgy, mao,...} for K times per application. V
contains the number of VM instances, for which the user
might need to predict the MST (e.g., up to 128 VMs). We
collect MST samples using the MST measurement method
in Section 3.2. After collecting MST samples, we normalize
the collected samples by the maximum MST value for each
application to avoid bias towards one specific application
when computing test prediction error in Step 2.

Step 2. Select the best VM subset: Let S be a subset of V
used to train Models 1 and 2. Our goal in this step is to find
the best subset that gives the lowest average prediction error
over all applications and models. We want to collect training
samples at a low cost, and so we define the maximum
number of VMs to search, Mi;ain, as shown in Figure 7.
Let Virain be the candidate set of training VM subsets to
choose S from: Vipain = {m; | m; < Mirain, m; € V}. Since
there are many possible way to choose such subset S from
Virain, We enumerate all possible subsets of VM counts that
have c elements in Subsets. The number of the enumerated
subsets is equal to (Iv“c"““l). For each S € Subsets, we create
a training dataset and use the same training data set to train
all the models. Using the trained models, we compute the
Root Mean Square Error (RMSE) over all applications and
models as shown in Equations (6)-(8). In Equation (6), we
compute the sum of square error (SSE) between actual and
predicted MST values: MST (a;, m, k) is the k-th actual MST
sample obtained for application a; running on m VMs, and
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Phase 1: Training VM subset selection
(do this once offline)
MST samples for
representative
benchmarks

Select
Training VM
Subset

Enumerated1 VM subsets

Vtrai n

Fig. 6. Overview of the MST prediction framework.

MST9 (a;,S;m) is a predicted MST value for m VMs using
Model j trained with a dataset created from a VM subset
S for application ;. Finally, we select the best subset S in
terms of prediction error that is computed from test samples
that are measured for V — &, as shown in Equation (8). Note
that increasing c leads to exponential growth in the size
of Subsets. Thus, we start from a small number for ¢ and
gradually increment it until the error becomes low enough.

SSE(S)

I
(]
™

(MST(ai7 k,m) — MKS'T(j)((lz‘ﬁS‘;T’l))2 (6)

argmin RMSE(S) (7)
SeSubsets

= argmin SSE(S)
SE,Sgubsets ‘-A| 2 K- IV_S|

®)
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Train model

using S
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" MST(m)
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subset S 1
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Fig. 7. Selecting VM count subset consists of less than or equal to
Mirain VMs.

4.4.2 VM Subsets Selection Results

We collect MST data from experiments and apply the VM
subset selection method presented in Section 4.4 to the

Phase 2: Model training & selection
(do this per test application)

@ D

Best VM subset: §
(ex:$=1{3,5,8))

Obtain Obtain
Training Validation
Samples Samples

Trained
Model
New application
under test

collected data.
Experimental settings: We run the following three simple

resource benchmarks with Apache Storm version 0.10.1 [8] on
Amazon EC2.

e Word Count: CPU intensive, typical word count for text
inputs.

e SOL (i.e., Speed-Of-Light): Network intensive, received
events are transferred to the following processing units
immediately without any processing.

e Rolling Sort: Memory intensive, received events are
accumulated in a ring buffer and are sorted every x
seconds.

We choose these three benchmarks since they have rep-
resentative orthogonal resource usage patterns (i.e., CPU,
network, and memory intensive), and thus, the training
samples obtained from these benchmarks can be general-
izable to other applications.

As described in Section 3.2, we pre-load data in Kafka
and let Storm pull the data as quickly as possible. After we
start the application, we wait until throughput converges
(see Section 3.2 for the convergence criteria) or until 90
seconds have passed. Subsequently, we monitor traffic go-
ing from Kafka to Storm slave nodes for 20 seconds and
compute the throughput as MST. For traffic monitoring,
we modified tcpdump [39] to enable monitoring network
traffic between specific nodes !. Kafka offers various metrics
including outgoing throughput through the Java Manage-
ment Extensions interface; however, since it only provides
one-minute moving average values and takes longer to
converge, we decided to monitor raw network traffic using
tcpdump. After the sampling, we shutdown the application
and wait for 10 seconds for the next round of sampling. We
repeat this process 6 times (i.e., K = 6) for all three simple
resource benchmarks with the following VM counts up to
128 VMs (EC2 instance type: m4.large):

V={1,2,3,..,7,8,12,16, 24, 32, 48, 64, 80, 96, 128}.  (9)

After we collect MST samples in the environment men-
tioned above, we apply the VM subset selection method

1. Available at https://github.com/imais/tcpdump.
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in Section 4.4.1 to the MST samples with the following
parameters:

« Combinations to search: ¢ € {3,4, 5}.
e Maximum number of VMs to include in the training
data set: Miain € {5,6,7,8,12,16, 24, 32}.
We could increase M qin up to 128 VMs and potentially
achieve good prediction results; however, this would incur
high time and cost penalties. Therefore, we limit M;,ain to
32 VMs (= 25% of 128 VMs).

_ Selected VM subsets: Table 1 shows the best VM subset
S and prediction error in the RMSE for each M qin. We
get a reasonably low error of 0.08, considering the fact that
the range of MST values is [0, 1] after normalization. Since
enumerated subsets created from a higher M, i, contains
all the elements of the ones created from a lower M; ain,
errors monotonically decrease as we increase Miy,in. For the
evaluation of Phase 2, we assume that the user have enough
budget to run up to 24 VMs, and we choose the best subset
S = {3,4,6,8,24} when M., = 24 or 32. Since we use
this subset to collect training samples in Phase 2, hereafter
we refer to this best subset as S, ain.

Figure 8 shows prediction results with Siyain. Model 1 fits
better than Model 2 for Word Count, whereas Model 2 fits
better than Model 1 for Rolling Sort. For SOL, both models
fit equally well. These results show that a single model is
not sufficient to capture the performance of all applications.
Therefore, we need to choose a better-fitting model for each
application from Models 1 and 2.

A TABLE 1
Best VM subsets S and prediction errors in RMSE for variable
maximum VM counts (Mi,ain = 5, ..., 32).

Mirain | Bestsubset: S | RMSE
5 12,4,5} 0.2864
6 {2,4,5} 0.2864
7 {2,4,5,7} 0.1394
8 {2,4,5,7} 0.1394
12 {2,4,5,7 0.1394
16 {6,8,16} 0.1263
24 {3,4,6,8,24} | 0.0813
32 {3,4,6,8,24} | 0.0813

4.5 Phase 2: Model Training & Selection

In Phase 2, we first take a new test application from the
user, which is subject to performance prediction. We obtain
training MST samples only for a selected subset Siyain from
Phase 1, and we train both Models 1 and 2 using the the
same set of training samples.

Followed by the model training, we compare trained
Models 1 and 2 using some extra validation samples to
estimate which model is more accurate. Then, we select the
model with the lower validation error as the final output of
Phase 2.

Validation data points selection: We collect validation
MST samples for VMs where their predicted MST val-
ues by both models start to diverge. If MST™) (m) and
MST®@ (m) intersect each other at one or more positive
real numbers of m, we take the ceiling of these numbers
and put them in a set Z = {my, mo,...,mr}, m; < m;qq. If
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Fig. 8. MST prediction results using the best VMs subset: {3, 4, 6,8, 24}.
X-axis: number of VMs. Y-axis: MST [Mbytes/sec].

the models do not intersect, Z = (). We get these intersecting
points analytically if possible. If not, we can numerically
estimate these intersecting points by plugging in multiple
integers for m. Assuming both models are well trained up
to the maximum VM counts in Si,ain, we should validate
models with VMs larger than any VM counts in Siain. Also,
to make sure there is some discrepancy between the two
models, we introduce a discrepancy threshold 7. Based on
these ideas, we determine validation data points as shown
in Algorithm 1. First, we filter the intersecting VMs set Z
with the maximum VM counts in Si;.in and store the filtered
VM set in Z' (Line 3). Even if 7 is empty, we still want to
search for divergent VMs starting from mmax(Strain) + 1
(Line 6). To search for one divergent VM count per element
in 7/, we loop through Z’' (Line 9-24). In Line 18, we
compute the discrepancy ratio between the predicted values
of Models 1 and 2. If it is greater than 7, we assume that
there is enough discrepancy between the two models and
add corresponding m to the validation set Sy,;. Note that
we need to obtain Sy, for each test application in Phase 2
whereas we obtain Si;ain only once in Phase 1.

Model selection through validation error: Once we get
Syal, we obtain MST values for the numbers of VMs in S,
and compute validation errors in the RMSE for both models.
Finally, we select the model with the lowest validation error.
If Sya is empty, which means the discrepancy between the
two models never goes above 7, so we select the model with
the lowest training error.

5 EVALUATION OF MST PREDICTION

In this section, we evaluate the MST prediction models that
are trained and selected by our framework.

5.1 Experimental Settings

We use the following typical use-case benchmarks from Intel
Storm Benchmarks [24].
o Grep: Match a given regular expression with text inputs
and count the number of matched lines of texts.
e Rolling Count: Count the number of words and output
the word counts every 60 seconds.
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Algorithm 1: Selection of validation data points

input : Z: intersecting VMs set, Styan: training VMs
subset, 7: discrepancy threshold
output: S,,: set of VMs for validation
// Filter Z with the max VM counts in
Strain
Mmax (Strain) = MaXm; €Strain (mg );
if Z # () then
‘ T = {mz ‘ m; > mmax('Strain)ami S I}/
end
else
‘ I'= {mmax(strain) + 1}/
end
Sval = @;
// Search for divergent VMs
9 fori=1,....|7'| do

W g Ul R W N

// mi: i-th element of 7'
10 Mstart = T,
1 | ifi=|7'| then
12 ‘ Menda = MAX _VMS;
13 end
14 else

// miz1: (i+1)-th element of 7’

15 Mend = Myi4+1 — 1;
16 end
17 for m = Mggart, ...,(Tend do "
18 d(m) = Jﬁf\/ﬁ*:ﬁfﬁ ()m)Jt/Il\igT(Qng)fJ));
19 if d(m) > 7 then
20 Sval - Sval U {m}/
21 break;
22 end
23 end
24 end

5 return S,,);

N

o Unique Visitor: Count the number of unique visitors to
websites from web access logs.

e Page View: Count the number of page views per website
from web access logs.

e Data Clean: Filter the logs with 200 HTTP status code
from web access logs.

Also, from Apache SAMOA [34], we use the following
stream machine learning application.

o Vertical Hoeffding Tree (VHT) [40]: Incrementally create a
decision tree from data streams.

For Grep and Rolling Count, we use the texts from The
Adventures of Tom Sawyer [41] as inputs. For Unique Vis-
itor, Page View, and Data Clean, we synthesize web access
logs that contain access to 100 randomly generated websites.
For VHT, we use a randomly generated data set with 200
features and 10 classes.

For each benchmark, we perform the following steps
corresponding to Phase 2 described in Section 4.5. First, we
measure MST values for Sirain = {3,4,6,8,24} using the
same environment as described in Section 4.4.2. Next, we
train Models 1 and 2 with samples measured for Siyain. After
training, we further obtain more samples for Sy, using
Algorithm 1 with a discrepancy threshold of 7 = 0.10 for

8

validation. Once we select a model for each benchmark, we
obtain new measurements for all VMs in Siyain and Syal.
Finally, we evaluate the predication error of the models
using the newly measured MST values.

5.2 MST Prediction Results

Table 2 shows the weights of Models 1 and 2 after training.
From the table, we can see that except for Data Clean and
VHT, the values of wy and w3 representing communication
penalties are 0 for Model 1. Also, for Model 2, the values of
wy corresponding to penalty for the inter-worker communi-
cation are small (up to 0.01).

In Figure 9, we plot actual and predicted MST values as
functions of the number of VMs. Actual measurements of
MST are shown in dots. Predicted values for Model 1 are
shown in solid lines and predicted values for Model 2 are
shown in dotted lines. From the figure, we can see that the
actual MST values either hit a bottleneck (i.e., Grep, Rolling
Count, Data Clean, and VHT) or linearly improving (i.e.,
Unique Visitor and Page View). Model 1 captures the bot-
tlenecks for Grep and Rolling Count relatively well. Model
2 is trained almost as a linear function (i.e., w9 is at most
0.0016) for Unique Visitor and Page View, and therefore, it
captures their linear behavior well. However, Model 2 fails
to capture the non-linear behavior of Grep. Both models are
equally well fitted to Data Clean and VHT.

Figure 10 shows the validation error in RMSE for model
selection. To obtain these results, we used the following val-
idation samples selected by Algorithm 1: 26 VMs for Grep,
25 and 72 VMs for Rolling Count, 25 VMs for Unique Visitor,
25 VMs for Page View. For Data Clean and VHT, since both
models produced very close predicted MST values, there
were no discrepancies larger than the 7 = 0.10 threshold.
Thus, the models for these two benchmarks were compared
using training errors. As the result of validation, Model 1
is chosen for Grep, Rolling Count, and Model 2 is chosen
for the rest of benchmarks. Looking at Figure 9, these model
selection results are visually convincing. Rolling Count has
similar RMSE errors for Model 1 and Model 2. However, due
to the second validation sample from 72 VMs, Model 2 is
selected. For Data Clean and VHT, both models are visually
very close and the training errors are almost identical.

Figure 11 shows prediction error in the Mean Abso-
lute Percentage Error (MAPE) by the selected models. The
MAPE is defined as:

1 -~ [t — pil
MAPE =100 - —
~>

; (10)
= [l

where n is the number of samples, t; is the i-th sample’s
true value, and p; is the i-th sample’s predicted value. The
figure plots MAPE error computed from the selected models
and MAPE error computed from the mean value of actual
MST samples. Since the mean value is known to minimize
the sum of squared error (3., (t; — pi)?), even though it
does not guarantee to minimize the MAPE, it shows low
error in MAPE. Overall, the MAPE error for our prediction
framework is up to 15.8%. Since there is some variance in
the actual MST samples, even the prediction made from the
mean has MAPE error up to 6.9%.
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TABLE 2
Weights of Models 1 and 2 after training.

B Model 1 Model 2
enchmark
wWo w1 w2 w3 wo w1 w2
Grep 0.01617 | 1.04913 | 0 0 0.63117 0.74233 | 0.00063
Rolling Count | 0.11748 | 2.75500 | 0 0 0.16593 0.27683 | 0.00322
Unique Visitor | 0.02050 | 1.67805 | 0 0 0.01615 0.56212 | 0.00160
Page View 0.03512 | 1.61983 | 0 0 0.27180 0.49439 | 0.00089
Data Clean 0.11039 | 1.62948 | 0 0.00004 | 0.12286 0.49693 | 0.01233
VHT 0.01958 | 0 0.00005 | O 50.69306 | 0 0.00394
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Fig. 9. MST prediction results for typical use-case benchmarks: (a) Grep, (b) Rolling Count, (c) Unique Visitor, (d) Page View, and (e) Data Clean,
and a machine learning application: (f) VHT, using Sirain = {3,4, 6, 8,24} for Models 1 and 2. X-axis: number of VMs. Y-axis: MST [Mbytes/sec].
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6 [EVALUATION OF SIMULATION-BASED ELASTIC
VM SCHEDULING

We evaluate the cost efficiency and SLA violations of the
framework we proposed in Section 4 with simulation-based
elastic VM scheduling. We run the simulation on a realistic
workload while considering a constant overhead for VM
allocation and application reconfiguration.

6.1 Experimental Settings

The workload we use is based on the FIFA World Cup 1998
website access logs over three weeks time (500 hours) [42],
as shown in the light blue regions of Figure 12. We simulate
elastic VM scheduling separately for the five typical use-case
benchmarks from Intel Storm Benchmarks and VHT from
SAMOA that we used in Section 5. The original workload is
presented in the numbers of access to the website. Therefore,
we need to convert it to input data rates to be able to
apply our framework. We normalize the input data rates
by 90% of the maximum MST samples observed for each
benchmark. After this conversion, the peak input data rates
are: 32, 10, 48, 46, 5, and 49 Mbytes/sec for Grep, Rolling
Count, Unique Visitor, Page View, Data Clean, and VHT
respectively. One can think as if we simulate web-based
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data processing services, which need to serve fluctuating
user requests over time.

We denote the sequence of hourly input data rates as
A(t) for t = 0,1, ...,499 hours. Our SLA is to keep higher
MST than input data rates (ie, A < MST as shown in
Section 3.3). The scheduling interval of the simulation is one
hour. For every ¢, our VM scheduler has a chance to allocate
or deallocate one or more VMs. We schedule the minimum
number of VMs 71 to satisfy the SLA as follows:

m=min MST(m) st A({t) < MST(m), (11)

where 7 is given by the prediction model. In case even the
maximum number of VMs (i.e., 128 VMs) cannot satisfy the
SLA, we schedule 128 VMs. After the scheduler makes a
scheduling decision, we consider one minute delay includ-
ing overhead expected for VM allocation and the stream
processing system’s reconfiguration such as rebalancing
tasks. Thus, we need to keep using allocated VMs from the
previous scheduling time slot during this delay period.

To evaluate our framework, we define the ground truth
model MST¢., as follows: Given a VM count m, MST .,
returns the average of actual MST values measured for m.
Using the ground truth model, SLA violations are counted
if the following condition is met:

MST (1) < A(t). (12)

Violations are evaluated as the percentage of violation time
to the total simulation time of 500 hours.

For each benchmark, we train Models 1 and 2 with MST
values measured for Siain = {3,4,6,8,24}. We use the
m4.large instance type of Amazon EC2 which costs $0.10 per
hour (as of August 2017). We compare the following scaling
policies in terms of hourly cost and SLA violation rate:

o Static (peak): Static VM allocation policy that covers the
peak load.

o Static (average): Static VM allocation policy that covers
the average load.

e Elastic (ground truth): Scaling policy based on the
ground truth model. We plug in MSTY,, for MST in
Equation (11) and schedule the predicted minimum
number of VMs 7. Also, no delay for VM alloca-
tion and application reconfiguration is considered. This
corresponds to instantaneous reconfiguration, which is
impossible in current cloud computing environments.
This policy simulates an extremely ideal case and allo-
cates minimum VMs with 0% violation rate.

e Elastic (OP: x%): Scaling policy based on the se-
lected MST prediction models in Section 5 with over-
provisioning. When we apply 2% of over-provisioning,
we allocate [(1+ 155)M | VMs. We test z € {0,5,10,20}
[%].

e Elastic (OP: 1% violation): Scaling policy based on the
selected MST prediction models in Section 5 with
over-provisioning. We gradually increase the over-
provisioning rate starting from 1% until the violation
rate becomes less than 1%. We test this policy to eval-
uate the cost-efficiency of our prediction models when
we get a comparable violation rate to the “Static (peak)”
and “Elastic (ground truth)” policies.

Note that moderate over-provisioning is a common practice
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in actual VM provisioning to account for the inaccuracy of
prediction models.

6.2 Cost Efficiency Results

Table 3 shows results of average hourly VM usage cost and
SLA violations for the tested benchmarks. From the “Elastic
(OP: 1% vio.)” policy, Grep, Rolling Count, Unique Visitor,
and VHT achieve less than 1% violations with reasonably
low over-provisioning rates: 1, 1, 4, and 0% respectively.
Grep and Unique Visitor required 17% and 8% more cost
per hour compared to the “Elastic (ground truth)” policy
to achieve less than 1% violations, whereas Rolling Count
required 57% more cost per hour. This is due to the conser-
vative prediction of Model 1, as shown in Figure 9(b): the
predicted values are consistently lower than the actual MST
values, and thus, Model 1 predicts more VMs than neces-
sary. For Grep, violation rates are increased from 0.077% to
0.637% when we increase the over-provisioning rate from
5% to 10%. This is due to the fact that the actual MST values
are lower for m = 80 and m = 96 than for m = 64 as shown
in Figure 9(a); however, the violation rates are quite low (less
than 1%) for both 5% and 10% over-provisioning. VHT does
not require over-provisioning at all due to its non-scalable
behavior. In fact, static scheduling with one VM ends up
with no violations.

Unlike the rest of the test applications, Page View and
Data Clean required large over-provisioning rates, 19% and
34%, to achieve less than 1% violations with the “Elastic
(OP: 1% vio.)” policy. For Page View, this is due to under-
provisioning caused by Model 2 for 64 to 80 VMs as shown
in Figure 9(d). In contrast to what happened with Rolling
Count, for these VM counts, the model predicts higher MST
values than the ground truth MST. Therefore, to compensate
for under-provisioning, Model 2 requires the large over-
provisioning rate of 19% to avoid violations. For the same
reason, Model 2 causes under-provisioning for Data Clean.
Since most of violations occurred in a lower MST range (i.e.,
around 1.5 to 3 Mbytes/sec), it is not visibly apparent from
Figure 9(e).

Overall, despite the different values of over-provisioning
rates, compared to the “Static (peak)” policy, the “Elastic
(OP: 1% vio.)” policy saves at least 36% cost to achieve
the same level of violations. Also, using a 20% of over-
provisioning rate with “Elastic (OP: 20%)” policy, we
achieved less than 0.1% violation rates except for Data
Clean, which violation rate remained 4.013%. However, in
practice, the demand usually oscillates, as we can see in Fig-
ure 12. As long as a model both under-provisions and over-
provisions for different phases of the oscillating demand,
the stream processing system can eventually processes data
in Kafka that are accumulated during the under-provisioned
phases.

Figure 12 presents the sequences of input data rates and
allocated VMs/MST values scheduled by different policies
in Table 3. For visual clarity, we only plot “Elastic (OP:
0%)” and “Elastic (OP: 1% vio.)” for our models. We plot
these sequences for (a) Grep, (b) Rolling Count, and (c)
Page View benchmarks. For Grep in Figure 12(a) and Page
View in Figure 12(c), we can see that the allocated MST and
VMs for our elastic scheduling policies closely follow the
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TABLE 3
Average hourly VM usage cost and SLA violations for the typical use-case benchmarks (Grep, Rolling Count, Unique Visitor, Page View, and Data
Clean) from Intel Storm Benchmarks and a machine learning application (VHT) from SAMOA.

Grep Rolling Count Unique Visitor Page View Data Clean VHT
Policy (Model 1) (Model 1) (Model 2) (Model 2) (Model 2) (Model 2)
Cost/hr | Vio.[%] | Cost/hr [ Vio.[%] | Cost/hr | Vio.[%] | Cost/hr [ Vio.[%] | Cost/hr | Vio.[%] | Cost/hr [ Vio.[%]
Static (peak) 5.300 0.000 11.900 0.000 11.400 0.000 11.500 0.000 1.600 0.000 0.100 0.000
Static (average) 2.400 44.600 2.800 44.600 5.600 44.800 6.600 45.600 0.800 28.400 0.100 0.000
Elastic (ground truth) 2482 0.000 3.651 0.000 5.678 0.000 5.991 0.000 0.714 0.000 0.100 0.000
Elastic (OP: 0%) 2.808 6.140 5.643 1.460 5.876 34.637 5.716 49517 0.712 28.480 0.100 0.000
Elastic (OP: 5%) 2.998 0.077 5.815 0.010 6.193 0.290 6.051 35.493 0.813 4.050 0.200 0.000
Elastic (OP: 10%) 3.137 0.637 5.950 0.003 6.451 0.107 6.333 25.453 0.831 4.050 0.200 0.000
Elastic (OP: 20%) 3.410 0.007 6.200 0.003 6.932 0.030 6.872 0.097 0.896 4.013 0.200 0.000
Elastic (OP: 1% vio.) 2.908 0.087 5.723 0.010 6.142 0.330 6.825 0.100 1.019 1.000 0.100 0.000
[ OP rate [%] 1 1 19 34 0

“Elastic (ground truth)” policy; however, for Rolling Count
in Figure 12(b), there is wasted VMs/MST capacity between
our elastic scheduling policies and the “Elastic (ground
truth)” policy. This is due to over-provisioning caused by
Model 1 as shown in Figure 9(b). When the ground truth
policy allocated only 43 VMs to satisfy 7.22 Mbytes/sec de-
mand, “Elastic (OP: 0%)” policy allocated 128 VMs. Since the
maximum number of VMs allowed to schedule is 128, the
sequence looks flattens out at 128 VMs around the demand
peaks. Looking at Figure 12(c) for Page View, “Elastic (OP:
0%)” frequently schedules lower VMs/MST values than the
input data rates due to under-provisioning; however, using
19% of over-provisioning rate, the “Elastic (OP: 1% vio.)”
policy effectively pushes MST values above the input data
rates.

In summary, we need to give a relatively large over-
provisioning rate to compensate for the large variance for
Data Clean; however, other than Data Clean, our framework
is able to achieve less than 0.1% SLA violations with 20%
over-provisioning. Moreover, we save 36% cost compared
to a static VM scheduling that covers the peak workload
to achieve the same level of SLA violations. These simu-
lation results show that the prediction models trained by
our framework are useful for cost-efficient elastic stream
processing.

7 DISCUSSION

In this section, we discuss the results from the experiments
we have done in Sections 5 and 6.

Qualitative characteristics of prediction in elastic
scheduling: In Section 5, we looked at prediction perfor-
mance of our models through RMSE and MAPE, which
evaluate absolute differences between actual and predicted
MST values. However, when we use a trained model for
elastic VM scheduling in Section 6, the relationship between
the model and actual measurements becomes more impor-
tant than the absolute differences. For example, Model 1 for
Unique Visitor (Figure 9(c)) and Page View (Figure 9(d))
show consistently lower prediction values than the actual
MST values. As a result, the framework allocates more VMs
than needed. On the other hand, Model 2 for Grep (Fig-
ure 9(a)) predicts consistently higher MST values than are
actually obtained. Thus, the framework under-provisions
VMs. In a realistic use-case, service providers may want to

over-provision VMs to provide consistent user experience
rather than under-provision VMs to save some cost. In
Section 6, we used over-provisioning rates to compensate
for models that predict too few VMs. An alternative solu-
tion could be to use a metric that favors over-provisioning
models over under-provisioning ones when we select VM
subsets in Phase 1 and also select models in Phase 2.

Likely cause of the bottlenecks: From the experiments
in Section 5, the scalability for Grep, Rolling Count, Data
Clean, and VHT is limited. The reason seems to be load
imbalance between workers. For the Grep benchmark, to
compute the total count of matched patterns, the global
counter is incremented by a single thread, and MST is
bounded by the performance of that single thread. For
Rolling Count, the bottleneck may be caused by imbalanced
distributions of words. Just as the map-reduce program-
ming framework [30], once the first layer of processing
units splits texts into words, the next processing units are
determined by the hash value of a word. Thus, depending
on the distribution of words, some nodes are more loaded
than other nodes. Similar to Grep, maximum performance is
bounded by the nodes that are assigned frequently appear-
ing words. The Data Clean’s performance limitation seems
to be caused by a similar reason to Grep: URLSs filtered by
the 200 status code go to the same node. Since the objective
of our prediction framework is to accurately predict MST
for larger numbers of VMs, we are not concerned about
application-specific bottlenecks in this paper; however, clar-
ifying the mechanism behind these bottlenecks could help
improve the accuracy of prediction models in future.

Time complexity and generalization of the proposed
framework: Due to the exhaustive search, the time complex-
ity of the subset search method presented in Section 4.4.1 is
O(|Virain|© - |A]). With an implementation using octave, the
search with Miyain = 32 took only a few minutes to find the
best VM subset Sirain 0n a laptop PC with Intel Core i5 CPU.
As we increase the size of Vipain through Miyain and/or ¢,
the runtime is expected to grow exponentially. One way to
keep the runtime manageable is to use random sampling
to identify Sirain, rather than performing an exhaustive
search over all subsets. We should be able to find the right
balance between the runtime and the likelihood of finding
the optimal subset.

Currently when we determine data points for validation
in Algorithm 1, we assume the framework only uses the
two models we presented in Section 4.3. We can generalize
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Fig. 12. Input data rate sequence created from the FIFA World Cup 1998 website access logs and MST generated by elastic VM scheduling based
on prediction models for (a) Grep, (b) Rolling Count, and (c) Page View benchmarks.
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this algorithm to support /N models by defining the average
pairwise discrepancies between N models as follows:
1 |MST@ (m) — MSTY) (m)]

Am) = Tay- e min(MST (m), MSTD (m))’

(13)

With this change, the entire framework will be compatible
to N models.

SLA violations in practical settings: In Section 6, we
strictly counted the time when allocated VMs failed to
satisfy Inequality (12); in practice, we can catch up accumu-
lated events in Kafka using extra processing power afforded
by over-provisioned VMs. Therefore, even if the input data
rate is greater than the stream processing system’s MST, as
long as this situation is temporary, the stream processing
system can keep operating normally with a temporary in-
crease in latency.

8 CONCLUSION

We have presented a framework to predict the maximum
sustainable throughput (MST) for cloud-based stream pro-
cessing applications. We identified a common data pro-
cessing environment used by modern stream processing
systems and presented two models for MST prediction. We
statistically determine the best subset of VM counts in terms
of prediction error to collect training samples. For each
new application, we train the framework models using this
subset. The framework takes several trained models and
selects the model that is expected to predict MST values
for the target application with the lowest error. We evalu-
ated our framework on streaming applications in Apache
Storm, using up to 128 VMs. Experiments showed that our
framework can predict MST with up to 15.8% average pre-
diction error. Further, we evaluated our prediction models
with simulation-based elastic VM scheduling for a realistic
data streaming workload. Simulation results showed that
with 20% over-provisioning, our framework was able to
achieve less than 0.1% SLA violations for the majority of the
applications we tested. We also saved 36% cost compared
to a static VM scheduling that covers the peak workload to
achieve the same level of SLA violations.

In future work, we plan to apply the proposed prediction
framework to other stream data processing engines such as
Flink to confirm the applicability of our approach. Other
interesting future directions include online learning to im-
prove the performance prediction model accuracy over time,
the use of meta-algorithms such as ensemble learning to
construct a prediction model from multiple weak models,
and even larger-scale performance simulation using a cloud
environment simulator such as CloudSim [43].

ACKNOWLEDGMENTS

This research is partially supported by the DDDAS program
of the Air Force Office of Scientific Research, Grant No.
FA9550-15-1-0214 and NSF Awards, Grant No. 1462342,
1553340, and 1527287. The authors would like to thank
an Amazon Web Services educational research grant and
a Google Cloud Credits Award.

13
REFERENCES

[1] S. Imai, R. Klockowski, and C. A. Varela, “Self-healing spatio-
temporal data streams using error signatures,” in IEEE 2nd In-
ternational Conference on Big Data Science and Engineering, 2013, pp.
957-964.

[2] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, and J. B. In-
gram, “Spark-based anomaly detection over multi-source VMware
performance data in real-time,” in IEEE Symposium on Computa-
tional Intelligence in Cyber Security, 2014, pp. 1-8.

[3] A.Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. N. Koutsopoulos, M. Rahmani, and B. Gii, “Real-time
traffic information management using stream computing,” IEEE
Data Engineering Bulletin, vol. 33, pp. 64-68, June 2010.

[4] S. Imai, S. Patterson, and C. A. Varela, “Elastic virtual ma-
chine scheduling for continuous air traffic optimization,” in 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, 2016, pp. 183-186.

[5] C. Hochreiner, M. Vogler, S. Schulte, and S. Dustdar, “Elastic
stream processing for the internet of things,” in 9th IEEE Inter-
national Conference on Cloud Computing, 2016, pp. 100-107.

[6] C.Hochreiner, S. Schulte, S. Dustdar, and F. Lecue, “Elastic stream
processing for distributed environments,” IEEE Internet Comput-
ing, vol. 19, no. 6, pp. 54-59, Nov 2015.

[7] A. Shukla and Y. Simmhan, “Benchmarking distributed stream
processing platforms for IoT applications,” arXiv preprint
arXiv:1606.07621, 2016.

[8] Apache Software Foundation, “Apache Storm,” http://storm.
apache.org/, Accessed: 2017-08-02.

[9] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in SIGMOD Interna-
tional Conference on Management of Data, 2014, pp. 147-156.

[10] Apache Software Foundation, “Apache Flink,” http://spark.
apache.org/, Accessed: 2017-08-02.

[11] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a
single engine,” IEEE Data Engineering Bulletin, in the special issue
on Next-gen Stream Processing, vol. 38, no. 4, Dec 2015.

[12] Apache Software Foundation, “Apache Samza,” http://samza.
apache.org/, Accessed: 2017-08-02.

[13] ——, “Apache Spark,” http:/ /spark.apache.org/, Accessed: 2017-
08-02.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized streams: Fault-tolerant streaming computation at scale,”
in 24th ACM Symposium on Operating Systems Principles, 2013, pp.
423-438.

[15] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review
of Auto-scaling Techniques for Elastic Applications in Cloud En-
vironments,” Journal of Grid Computing, vol. 12, no. 4, pp. 559-592,
Dec 2014.

[16] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework for
fast and distributed stream data processing,” in IEEE International
Conference on Big Data, 2015, pp. 333-338.

[17] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-
aware elastic scaling for distributed data stream processing sys-
tems,” in Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems, 2014, pp. 13-22.

[18] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing
with latency guarantees,” in 35th IEEE International Conference on
Distributed Computing Systems, 2015, pp. 399-410.

[19] T.Z.]. Fu,]. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,
“DRS: Dynamic resource scheduling for real-time analytics over
fast streams,” in 35th IEEE International Conference on Distributed
Computing Systems, 2015, pp. 411-420.

[20] A.Ishiiand T. Suzumura, “Elastic stream computing with clouds,”
in 4th IEEE International Conference on Cloud Computing, 2011, pp.
195-202.

[21] P. Lama and X. Zhou, “AROMA: Automated Resource Allocation
and Configuration of MapReduce Environment in the Cloud,” 9th
ACM International Conference on Autonomic Computing, p. 63, 2012.

[22] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics,” in 13th Usenix Conference on Networked Systems Design
and Implementation, 2016, pp. 363-378.

[23] G. Mariani, A. Anghel, R. Jongerius, and G. Dittmann, “Pre-
dicting cloud performance for hpc applications: a user-oriented



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
(37]
(38]
(39]

[40]

[41]

approach,” in Proceedings of the 17th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing. 1EEE Press, 2017, pp.
524-533.

Intel Corporation, “Storm benchmark,” https://github.com/
intel-hadoop /storm-benchmark, Accessed: 2017-02-15.

B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-
storm: Resource-aware scheduling in storm,” in 16th ACM Annual
Middleware Conference, 2015, pp. 149-161.

L. Fischer and A. Bernstein, “Workload scheduling in distributed
stream processors using graph partitioning,” in IEEE International
Conference on Big Data, 2015, pp. 124-133.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Mod-
els and issues in data stream systems,” in 21st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems.
ACM, 2002, pp. 1-16.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in ACM SIGMOD International Conference on
Management of Data, 2015, pp. 239-250.

A. Verma, L. Cherkasova, and R. Campbell, “ARIA:
Automatic Resource Inference and Allocation for MapReduce
Environments,”  8th ACM  International — Conference  on
Autonomic Computing, pp. 235-244, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1998637

J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing
on Large Clusters,” 6th Symposium on Operating Systems Design and
Implementation, pp. 137-149, 2004.

Microsoft, “Measuring maximum sustainable engine throughput,”
https:/ /msdn.microsoft.com/en-us/library/cc296884(v=bts.10)
.aspx, Accessed: 2017-02-15.

C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach
and case study of cloud instance type selection for multi-tier
web applications,” in 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. 1EEE, 2017, pp. 534-543.

S. Imai, S. Patterson, and C. A. Varela, “ Maximum Sustainable
Throughput Prediction for Data Stream Processing over Public
Clouds,” in 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, May 2017.

G. D. F Morales and A. Bifet, “SAMOA: Scalable Advanced
Massive Online Analysis,” Journal of Machine Learning Research,
vol. 16, pp. 149-153, Jan 2015.

J. Kreps and L. Corp, “Kafka : a distributed messaging system
for log processing,” ACM SIGMOD Workshop on Networking Meets
Databases, p. 6, 2011.

Yahoo! Inc., “Yahoo streaming benchmarks,” https:/ /github.com/
yahoo/streaming-benchmarks, Accessed: 2017-08-02.

O. Etzion and P. Niblett, Event processing in action. =~ Manning
Publications Co., 2010.

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
data. New York, NY, USA: AMLBook, 2012.

Luis Martin Garcia, “TCPDUMP/LIBPCAP public repository,”
http:/ /www.tcpdump.org/, Accessed: 2017-08-02.

N. Kourtellis, G. D. F. Morales, A. Bifet, and A. Murdopo, “Vht:
Vertical hoeffding tree,” in Big Data (Big Data), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 915-922.

Mark Twain, “The project gutenberg ebook of the adventures
of tom sawyer,” https:/ /www.gutenberg.org/files/74/74-h /74-h.
htm, Accessed: 2017-08-02.

14

[42] M. Arlitt and T. Jin, “A workload characterization study of the
1998 world cup web site,” IEEE Network, vol. 14, no. 3, pp. 30-37,
May 2000.

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience, vol. 41, no. 1,
pp- 23-50, Jan 2011.

Shigeru Imai is a PhD candidate in the De-
partment of Computer Science at Rensselaer
Polytechnic Institute. He received his B.E. and
M.E. from Tokyo Institute of Technology, Japan.
His research interests include performance pre-
diction and elastic resource scheduling for cloud-
based systems.

Stacy Patterson is the Clare Boothe Luce As-
sistant Professor in the Department of Computer
Science at Rensselaer Polytechnic Institute. She
received the MS and PhD in computer science
from the University of California, Santa Barbara
in 2003 and 2009, respectively. From 2009-2011,
she was a postdoctoral scholar at the Center for
Control, Dynamical Systems and Computation
at the University of California, Santa Barbara.
From 2011-2013, she was a postdoctoral fellow
in the Department of Electrical Engineering at
Technion - Israel Institute of Technology. Dr. Patterson is the recipient
of a Viterbi postdoctoral fellowship, the IEEE CSS Axelby Outstanding
Paper Award, and an NSF CAREER award. Her research interests
include distributed systems, cloud computing, sensor networks, and the
Internet of Things.

Carlos A. Varela is an Associate Professor in
the Department of Computer Science at Rens-
selaer Polytechnic Institute. Dr. Carlos A. Varela
received his B.S. with honors, M.S., and Ph.D.
in Computer Science at the University of lllinois
at Urbana-Champaign. Dr. Varela is Associate
Editor and Information Director of the ACM Com-
puting Surveys journal, and has served as Guest
Editor of the Scientific Programming journal. Dr.
Varela is a recipient of several research grants
including the NSF CAREER award, two IBM
SUR awards, and two IBM Innovation awards. His current research inter-
ests include data streaming, cloud computing, middleware for adaptive
distributed systems, concurrent programming models and languages,
and software verification.



