A Performance Study of Geo-Distributed
IoT Data Aggregation for Fog Computing

Shigeru Imai, Carlos A. Varela, and Stacy Patterson
Department of Computer Science, Rensselaer Polytechnic Institute
imais2@rpi.edu, {cvarela, sep}@cs.rpi.edu

Abstract—We investigate MapReduce-based data aggregation
for Internet-of-Things data in a multi-tier, geo-distributed data-
center architecture. Specifically, we consider 1) end-to-end hier-
archical data aggregation and 2) query response for aggregated
data requests made by geo-distributed clients. We first develop a
realistic performance model based on previous empirical studies.
We then study application performance for various deployment
architectures, ranging from a purely cloud-based approach to
a geo-distributed architecture that combines cloud, fog, and
edge resources. From simulations created based on U.S. Census
data, we characterize the trade-off between end-to-end data
aggregation time and query response time. Qur experiments show
that for data aggregation, a purely-cloud based deployment is
53% faster than a deployment with edge resources; however, for
query response, the edge approach is 46% faster due to the edge
resource proximity to query clients.

Index Terms—geo-distributed, map-reduce, edge, fog

I. INTRODUCTION

In 2017, Gartner forecasted that there will be 20.4 billion
Internet-of-Things (IoT) devices by 2020 [1]. IoT devices,
such as smartphones or power plant sensors, are distributed
across the world and will generate an enormous amount of
geo-distributed data. The scalability of cloud computing has
enabled centralized processing of big data; however, con-
sidering the unprecedented scale of growing IoT adoption,
transferring data directly from IoT devices to cloud datacenters
is not always feasible due to higher latencies, large data
volume, and bandwidth consumption [2], [3].

To fill the gap between cloud and IoT devices, a new
computing paradigm called fog computing [2] (or edge com-
puting [3]), has been proposed. Fog computing envisions to
bring computing power closer to network edges so that the data
produced by IoT devices can be processed with lower latency.
These edge servers can then transmit aggregated data to the
cloud for further processing, reducing bandwidth utilization
in the core network. This approach can naturally be extended
to a hierarchical architecture, where computing resources of
varying power are available for different computing tasks. For
example, local micro data centers can process [oT data within
a single municipality. Aggregated data can then be transmitted
to county and/or state data centers to generate statistics for
multiple municipalities, and these results can be passed to the
cloud to perform analysis on regional data.

This research is partially supported by the DDDAS program of the Air
Force Office of Scientific Research, Grant No. FA9550-15-1-0214 and NSF
Awards, Grant No. 1462342, 1553340, and 1527287. The authors would like
to thank an AWS Cloud Credits for Research award.

Motivating applications are location-based information ser-
vices, such as Dark Sky (weather information) [4] and Waze
(traffic information) [5], which provide useful local informa-
tion to users. These services have two aspects that make them
good candidates for hierarchical processing: (1) aggregation
of a massive amount of geo-distributed IoT sensor and/or
crowdsourced data (e.g., barometer data collected from smart-
phones [4], [6]), and (2) processing queries for the aggregated
results requested from geo-distributed users.

We consider a hierarchical data-aggregation topology based
on multiple map and reduce operations, as shown in Fig. 1 (de-
scribed in detail in Sec. II). The hierarchical data aggregation

Region-level (Level 4)

reduce

/517%9(11109 }\State—level (Level 3) i
! i

reduce R}ounty-level (Level 2)5
%{ map &

! }) City-level (Level 1) :
1444 reduce ! '

IoT sensors / Crowdsources
(Level 0)

.
1

Fig. 1. Logical topology of hierarchical data aggregation with map and reduce
operations.

provides users with useful location-dependent information for
multiple geographical levels, such as cities, counties, states,
and regions (e.g., northeast & midwest U.S.). Users request
this information through queries, for example, “What is the
average temperature of city X?” and “What are the current traf-
fic conditions in county Y?”. Information obtained from IoT
sensors and crowdsources are gradually aggregated towards
the root of the aggregation topology. Each node corresponds
to a geographical area and offers aggregated data about its own
area. We deploy this topology over multi-tier geo-distributed
datacenters. Such hierarchical data processing has been studied
for two-tier MapReduce [7], [8] and recently for a multi-tier
serverless computing framework [9].

Our aim is to characterize the performance trade-offs of
such hierarchical MapReduce jobs in different fog-based ar-

chitectures vs. a purely cloud-based approach. We develop
performance models for hierarchical data aggregation with
MapReduce and for query response for aggregated data.
Using these models, we systematically investigate how dif-
ferent mappings between the logical hierarchical aggregation
topology and the physical datacenter resources affect the
performance of geo-distributed data aggregation and query
response. To perform realistic performance simulations, we
use real-world geography and population data obtained from
the U.S. Census [10], [11]. The simulation results confirm
that there is a trade-off relationship between end-to-end data
aggregation time and query response time. A purely-cloud
based deployment executes the MapReduce tasks 53% faster
than a deployment with edge resources; however, for query
response, the approach with edge resources 46% faster due to
client proximity.

The rest of this paper is organized as follows. In Sec. II,
we define our logical and physical architectures. In Sec. III,
we present a performance model for end-to-end hierarchical
data aggregation and an average query response time model
to retrieve aggregated data. Sec. IV gives performance re-
sults comparing several mappings of logical data aggregation
topologies to multi-tier datacenters. We conclude in Sec. V.

II. HIERARCHICAL DATA AGGREGATION

In this section, we describe how to aggregate geographically
distributed data through hierarchical map and reduce opera-
tions. The hierarchical data aggregation provides users with
statistical information for multiple geographical levels.

From the MapReduce application developers’ perspective,
they only need to provide a pair of map and reduce functions;
however, to enable applying reduce operations repetitively, the
reduce function must be associative. Our model assume that
data aggregation is performed periodically with a fixed time
interval, i.e., micro-batch processing.

A. Logical Topology

We model the logical topology of a hierarchical MapReduce
job as a tree of nodes, as shown in Fig. 1. The tree consists of
L levels, where level L corresponds to the root node and level
1 corresponds to leaf nodes that receive raw input data from
level 0 sensors. We consider four levels of nodes in this work:
city-level (level 1), county-level (level 2), state-level (level 3),
and region-level (level 4). Each node represents a cluster of
machines, in a to-be-defined physical location, that processes
data from lower level nodes and transmits results to a parent
node, which corresponds to a wider geographical area. Level
1 nodes apply a map operation to the input data, followed
by a reduce operation. All the upper level nodes only use
reduce operations to aggregate data. We assume the logical
topology is a perfect tree in this work for simplicity; however,
the models we present in Sec. III can be applied to arbitrary
trees (e.g., level O sensors can be connected to level 3 nodes
directly). Since each node only sends data to its parent, there is
no need to shuffle data across multiple nodes. Instead, shuffle
operations are performed within each node.

There are query clients that send queries to different levels
of nodes to request aggregated data. We assume aggregated
data for the node’s level are stored in a storage system at that
logical node and are available for requests from clients.

B. Mapping to Virtual Machine Clusters

We denote the i-th logical node at level ¢ by z¢ and the set
of nodes at level £ by X* = {aF| k = ¢} for £ = 1,..., L.
There is a set of N datacenters DC = {dc;,dcs, ...,den},
and a cluster of virtual machines (VMs) may be allocated
in each datacenter. We denote a cluster in dc; by y; and a
number of allocated VMs for the cluster y; by m(y;). We
define a mapping from a logical node x¢ to a cluster 1y; with
yi = f (zf). A cluster is managed by a resource management
system such as YARN [16] and the VMs associated with the
cluster can be shared by multiple logical nodes. Note that we
assume a cluster only processes one level of logical node data
at a time, and thus it cannot start the next micro-batch until it
has finished with all of the data from the current micro-batch.

The mappings we study shown in Fig. 2. Mapping A
uses datacenters at all levels and assigns each logical node
to its corresponding area’s datacenter. Thus, f is a one-to-
one mapping. Since this mapping places city-level logical
nodes at edge city datacenters, we can interpret it as an edge
computing deployment. Mapping B does not use city and
county datacenters, but uses state and region datacenters only.
Logical city and county nodes are mapped to their state’s
datacenters. Mapping C only uses the root region datacenter,
which means f is an all-to-one mapping. We can interpret this
mapping as a cloud computing deployment.

IoT sensors / Crowdsources IoT sensors / Crowdsources

Mapping A Mapping B

IoT sensors / Crowdsources
Mapping C
Fig. 2. Mappings between logical topologies and datacenters. Mapping A: all

level DCs are used. Mapping B: city and county DCs are not used. Mapping
C: only the region DC is used.

III. PERFORMANCE MODELS

In this section, we present our performance models for end-
to-end data aggregation and query response.

A. Data Aggregation Time Model

Our processing time models for map and reduce operations
are defined as follows, respectively:

d
B-m’

d

tr(mv da ’7) = mv (2)

tm(m, d; B) = 6]

where m is the number of VMs. For both models, d is the
amount of data to process in Mbytes. This linear scaling,
in the number of VMs, of both map and reduce opera-
tions matches the observations reported in [12]. In [12],
the throughput for a massively parallel, compute-intensive
Hadoop application ranges from 0.1 to 1.2 Mbytes/sec/VM.
As a middle ground between these throughput values, we use
8 = 0.5 Mbytes/sec/VM for map. Assuming the required
computational resources for reduce is much less than that of
map, as observed in [12], we use a higher throughput value of
v = 1.0 Mbytes/sec/VM for reduce. In Sec. IV-B, we use these
models with up to m = 112 VMs, which is comparable to the
number of VMs studied in [12]. We note these models may
not accurately capture performance with significantly larger
numbers of VMs because the throughput of map and reduce
operations cannot scale up infinitely.
As a communication time model, we use the following:

teomm (Y1, Y2, d; 00,01) = 0o+01-0(y1, y2)+L7 3)
w(y1,y2)

where d is the amount of data to transfer in Mbytes, 6(y1, y2)
is the distance between two clusters y; and y» in miles, and
w(y1,yz2) is the network bandwidth between the two clusters in
Mbytes/sec. In this model, we extend the Hockney and Berry’s
communication time model [13] to include a linearly increase
latency term (i.e., o1 - 0(y1,y2)) as observed in [14]. We use
oo = 4.852 - 1072 sec and o1 = 0.022 - 10~ sec/mile as
reported in [14]: Depending on the type of communication
between source and destination datacenters, we use three
different bandwidths: wponile for mobile, wpan for LAN,
and wwan for WAN communications. For mobile and WAN
communications, we use the bandwidth values reported from
Speedtest for Q1-Q2 2017 [15]: wmobile = 1.064 Mbytes/sec
and wwan = 2.849 Mbytes/sec. For LAN communication,
we measured actual bandwidth using iperf on Amazon EC2
with two mb5.large instances and obtained wran = 1288.8
Mbytes/sec.

Next, we describe how we estimate the time to aggregate
and transfer data for each logical node as shown in Fig. 3. A
logical node ¢ at level £ receives some amount of data d(x?!)
from lower level nodes or sensors. When ¢ = 1, it receives
input data from a set of IoT sensors at level 0. When ¢ > 1,
it receives input data from its children nodes in level ¢ — 1,
{at71 | k € C(x¢)}, where C(a?) is the set of children of z?.

Children nodes

kec (xie) Total

input data
d(x))

1
: i

1 H \

£-1 £-1

Pl st dOg) !
Xk n T
1 ! : [
i : i \‘,.'
! H

! 1

\

.......

s
1

Output data Parent node

t £
s d(x; 2+1
() =O o)

Level £ — 1 Level ¢ Level £+ 1

Fig. 3. Data processing at logical node zf and data transfer to its parent node
for £ > 1.

Once the logical node x¢ receives the input data, it aggregates
the data and transfers the aggregated data to its logical parent
node. The amount of aggregated output data is s*-d(z¢), where
s* > 0 is the data selectivity as the result of data aggregation.
The amount of total data, in Mbytes, received by ¢ is defined
as follows:

Z; (=1,
Z s d(a

keC(xz?t)

otherwise, 4)

where Z; is the amount of input data received from level O
sensors, in Mbytes. As shown in Fig. 1, data aggregation is a
combination of map and reduce operations for level 1 nodes
and a reduce operation for upper-level nodes. Let s, > 0
and s, > 0 represent the data selectivities for map and reduce

operations, respectively; then, st = s, -8 for £ = 1 and

s! = s, otherwise.

We consider a logical node z¢ as a single map or a reduce
job (a map & reduce job for level 1) deployed on a mapped
cluster y; = f (x%). When multiple map/reduce jobs run on
the same cluster 7;, we assume a scheduler (e.g., YARN [16])
assigns a fraction of the computing power of the cluster’s VMs
to each logical node; that fraction is proportional to the logical
node’s input data size. Let Z(y, £) represent the set of level-¢
logical nodes mapped to cluster y (i.e., Z(y,£) = {zf | y =
f(z£)}). We define the total amount of data processed by the
map function, denoted, D.,(y) and the total amount of data
processed by the reduce function, denoted D, (y, £), as follows:

Duw(y)= Y. d}), 5)

z;€Z(y,1)

Dy(y,0) = o Dn(y) =1
= mfez(y’é)d(xf) otherwise.

(6)
For xt € X* ¢ =1,.... L, we define the time to aggregate

data from its children nodes or sensors and to transfer the

aggregated data to its parent node, denoted xf;zr;e), as:

s a]) = b (m(sa1) 28 e

Dun(f(x}))
+th (m(f(xi)) : % o - d(xg)>

+ tcomm (f(%‘), f (l"iwg))’ s' 'd(mg)) M

4
g () = 1 (m(f(wf)) - % d(ﬁ))

teomm (F(20), f (2500)) 5 s - d@h)) 1 <0< L, ®)

tager (1) = b (m(f(mf)) : % d(xf)) .)

Finally, assuming the data aggregating operations are syn-
chronized (i.e., processing at logical level ¢ + 1 starts when
aggregated data from all of level ¢ nodes are transferred), we
define the end-to-end data aggregation time as follows:

L
Th =
=1

4
ax, tager (T;)- (10)

We take a synchronized approach in (10), and thus the slowest
node at each level dictates the final data aggregation time.
Asynchronous processing may lead to faster data aggregation,
in which case our model provides an upper bound on aggre-
gation time.

B. Query Response Time Model

For modern data stores, it is reported that the maximum
read throughput linearly scales up as the number of machines
increases [17]. It is also observed when input read workload
is less than the maximum read throughput, the read latency
decreases linearly as the workload decreases [17]. We capture
these characteristics in the following query time model:

q

tquery(m7 q; 03 A) =5)‘7

T an

where m is the number of VMs, ¢ is the read requests
per second, 6 is the maximum read throughput per VM in
requests/sec/VM, and A is the read latency at maximum read
workload in sec. The observed value of # ranges from 1,750 to
14,000 requests/sec/VM, depending on the type of the storage
system [17]; we use § = 5,000 requests/sec/VM.

Next, we model the average query response time for K
query requests. Each query k = 1, ..., K is associated with a
source client ¢ and a logical destination node xj. For a cluster
y = f(x), we denote the query requests per second received
by the cluster y by ¢(y). Let the data sizes for a query and
its response be dquery (= 128 bytes) and dyesp, (= 2 Kbytes),
respectively, the response time for the k-th query is:

tresp(cka xk) = tcomm (Ckv f(xk)a dquery)
+ taquery (m(f(21)), ¢(f (21)))
+ tcomm (f(xk‘)a Ck, dresp))

(12)

where tcomm 1S as defined in (3). The average query response
time over all K queries is:
1K
TQ = ? ;tresp(cka Ik).

13)

IV. PERFORMANCE STUDY

We now use our models to study the application perfor-
mance for the three mappings shown in Fig. 2. Our study uses
real-world geographical and population data obtained from the
U.S. Census [10], [11] to determine the IoT data generation
rate and client and sensor locations.

A. Evaluation Setup

We consider data generated from IoT sensors or crowd-
sources spread across the nine Northeastern U.S. states:
Connecticut, Maine, Massachusetts, New Hampshire, Rhode
Island, Vermont, New Jersey, New York, and Pennsylvania.
To process the logical hierarchical topology in Fig. 1, we
assume there is a datacenter in every city (including towns and
villages), county, and state in the Northeastern U.S., based on
the locations defined in the U.S. Census [11]. We also have
the regional datacenter located in Northern Virginia, as AWS
hosts its U.S. East region datacenter there. The mobile network
is used for level O sensors to transfer the input data to level 1
nodes. LAN is used for communications between logical nodes
within the same datacenter while WAN is used for communica-
tions between logical nodes across different datacenters. Since
the value of A differs by orders of magnitude for different
storage systems [17], we test A = {0.1,1,10,100} ms. in
Sec. IV-C.

For each cluster y;, we use the following resource alloca-
tion policies. These policies apply only to the clusters with
associated logical nodes (e.g., no VMs are allocated for city
datacenters in mapping C).

a) Population: We determine the number of VMs pro-
portional to the number of people:

i) = [population(yj)—‘ |

14
5 x 105 (14)

where population(y;) is the population of the local govern-
ment to which the cluster y; belongs. Table I shows the number
of datacenters and the calculated number of VMs.

TABLE I
DATACENTERS AND VMS ALLOCATED BY THE POPULATION POLICY.

[| City [County | State [Region]

Number of DCs | 8384 217 9 1
Number of VMs
Average 1.01 1.07 12.11
Minimum 1 1 1 112
Maximum 5 5 39
Total 8396 234 109

b) Fixed: We assign the fixed number of VMs: 1, 4, 16,
64 VMs for city, county, state, and region clusters, respectively.

B. Data Aggregation Performance

1) Parameters: For the map selectivity, we use s, =
{0.25,0.5,1.0,2.0} to test different data amounts while the
reduce selectivity is fixed as s, = 0.6. We assume a fraction
of IoT sensors or users in each city produces some amount of

data over a certain time window. For each level 1 city node
xl € X1, we specify the amount of input data size as follows:

d(x}) = population(x}) x sensors_per_person (15)

X bytes_per_sensor_per_time_window,

where population(x}!) represents the number of people

in the city for x%, sensors_per_person = 1, and
bytes_per_sensor_per_time_window = 128 bytes.

2) Results: The data aggregation results for mappings A,
B, and C, for s, = {0.25,0.5,1.0,2.0} are shown in Fig. 4.

Figs. 4(a) and 4(b) give the total data aggregation time for the

= Mapping A == Mapping B
2500

Mapping C| | === Mapping A == Mapping B

2500 -
2000 -
21500
1000 -~
500

Mapping C

2000 -
500
000 -~

1
1

Time [sec
L)
\
Time [se

o

=)

S
|
T

0O +——+ 77

=3
I
‘ []
Total Data Aggregation

Total Data Aggregation

(a) Total data aggregation time (b) Total data aggregation

for population policy. time for fized policy.

B Mobile 00WAN [LAN

Transferred Data

Mapping A Mapping B Mapping C

(c) Transferred data between clusters.

Fig. 4. A comparison of data aggregation results between three mapping
strategies for s, = {0.25,0.5,1.0,2.0}.

population and fixed policies, respectively. Since the amount
of transferred data between clusters is not affected by the
resource allocation policies, it is the same for both policies
as shown in Fig. 4(c).

On average, the population policy is 84% faster than the
fixed policy. This is due to the lower number of VMs allocated
for the region datacenter by the fixed policy (fixed: 64 VMs
vs. population: 112 VMs). Another reason is load imbalance
between logical nodes caused by the fixed VM allocation
policy. The population policy achieves more balanced load
since it allocates VMs in proportion to population, and thus
in proportion to the amount of data that is processed.

For both policies, the total data aggregation time increases
linearly as the value of s,, increases. The reason is that s' =
Sm - Sy dictates the amount of data coming out of level 1 nodes,
and it linearly affects the aggregation and communication time,
as we can see in (1), (2), and (3).

The relationship between the total data aggregation time
for the different mappings does not change, as observed
in Figs. 4(a) and 4(b). Mapping C is always the fastest,
followed by mappings B and A. On average, mapping C
is 53% and 62% faster than mapping A for the population

and fixed policies, respectively. This is caused by asymmet-
ric communication performances between the three network
types and the number of VMs available for datacenters. In
Fig. 4(c), all the mappings have the same amount of mobile
communication; however mapping A has no LAN, but has
WAN communication, whereas mapping C has no WAN, but
has LAN communication. Mapping B has about 1 Gbytes of
LAN and 4.2 Gbytes of WAN communication. Since LAN is
about 450 times faster than WAN (wp,an = 1288.8 Mbytes/sec
vs. wwaN = 2.849 Mbytes/sec), the ratio of different types of
communication affects the data transfer time significantly. Typ-
ically, mobile and WAN communications are charged while
LAN communication is free of charge. In terms of monetary
cost for data transfer, mapping A is the most expensive since
it only contains mobile and WAN communications while other
mappings contain LAN communication.

C. Query Response Performance

1) Parameters: We determine the number of adult smart-
phone owners based on the U.S. Census, which reports that
77.4% of the population are adults, and of those, 70% own
smartphones [11]. We assume these people are the query
issuers for our location-based information service. For each
city in the Northeastern U.S, nguery queries are sent per
second, where

Nquery (€ity) = 0.774 x 0.7 - population(city)

X queries_per_smartphone_per_hour /3600.

We use 1.0 for queries_per_smartphone_per_hour.

We model each city as a perfect circle; we estimate the
radius of the city from its land area and randomly select the
source location for each query within the circle. To determine
the logical destination nodes for these queries, we randomly
choose them from the following local-heavy probability dis-
tribution:

o City-level: Own city=0.56, a city in own county=0.14

e County-level: Own county=0.12, a county in own
state=0.03

o State-level: Own state=0.08, a state in own region=0.02

o Region-level: Own region=0.05

2) Results: The average query response time for mappings
A, B, and C with A = {0.1,1,10,100} ms are shown in
Fig. 5. Figs. 5(a) and 5(b) are the results for the population
and the fixed policies, respectively. For both policies, the
relative performance of the mappings is the reverse of the
data aggregation time results. Mapping A is consistently the
fastest among the three mappings, regardless of the value of .
On average, mapping A is 46% and 47% faster than mapping
C for the population and fixed policies, respectively. This is
due to the proximity between edge data centers and client
locations, as well as the local-heavy distribution of the query
destinations. The value of A\ does not affect the average query
response time until A = 10, and the response time starts to
diverge when A\ = 100. The reason is that the query time is
so small compared to the communication time until A = 10;

however, when A = 100, the query time becomes significant
and starts affecting the total response time. For the same
reason, the effect of the difference in the numbers of VMs is
small between the population and fixed policies: on average,
the population policy is only 4% better than the fixed policy.

—o—Mapping A = 4= Mapping B Mapping C| | =#=Mapping A == Mapping B Mapping C|
T 40 3 40
8 g
Lo 30 2 3 <y
Z g -3 3 -
P& 2 =2 = Eo -2
% 9 Beee—— === - g % | S a—-----B -
5510 g Ew
<5 o B
g o ; : SR R : . .
g
0.1 1 10 100 4 0.1 1 10 100
A (log scale) < A (log scale)

(a) Average query response time (b) Average query response time

for population policy. for fized policy.

Fig. 5. A comparison of average query response time results for mappings
A, B, and C with A = {0.1,1,10,100} ms.

Fig. 6 shows the cumulative probabilities of query response
times for mappings A, B, and C with A = 10 ms and
A = 100 ms. Figs. 6(a) and 6(b) compare the cumulative
probabilities between the population and fixed policies. For
both policies, the effect of large A can be confirmed: the
curves in Fig. 6(a-1) are shifted to the right by about 10 ms.
in Fig. 6(a-2).

>

£ 1 z 1 S—

= 0.8 1 ! 0.8 / ¥

0.6 a 506 £

E(L-’i ," =Mapping A DE 0.4 _,—‘I__ == Mapping A

'ﬁ' 0.2 ! === Mapping B 2 02 -) & | === Mapping B

e ,' Mapping C .E ’ } Mapping C

E 0 T T T 1 £ 0 T T T T 1

° 10 2 30 40 5 60 O 10 2 30 40 50 60

Query Response Time [ms] Query Response Time [ms]
(a-1) A= 10. (a-2) A= 100.

(a) Cumulative probabilities for population policy.

T e F 1

E o8 ! 208 :

® Y- . 4

206 I/ 3 Vel

2 0. =0.6

~ / =——Mapping A [I ’/ i

S 0.4 £ Mapping S04 - v [——Mapping A

-g 0.2 h === Mapping B i 0.2 7 === Mapping B
. NP 2

= ’,' Mapping C 5 /s Mapping C

20 e £ 0+

&) o

0 10 20 30 40 50 60
Query Response Time [ms| Query Response Time [ms|

(b-1) A= 10. (b-2) A = 100.
(b) Cumulative probabilities for fized policy.

10 20 30 40 50 60

Fig. 6. A comparison of query response time results between three mappings
A, B, and C for the fixed policy.

The results from Sections IV-B2 and IV-C2 show that
there is a performance trade-off between data aggregation and
query response. A cloud-based approach achieves faster data
aggregation times, while query response time is minimized
with an edge-based deployment.

V. CONCLUSION

We have presented a performance model for end-to-end
hierarchical MapReduce-based data aggregation and query re-
sponse for aggregated data, executed in highly geo-distributed
multi-tier datacenters. We studied application performance for
three different mappings created from real-world geography
and population data from the U.S. Census. These evaluations
demonstrated that there is a trade-off between end-to-end data
aggregation time and query response time. For data aggre-
gation, a mapping with cloud resources only is on average
53% faster than a mapping with edge resources due to the
cloud’s fast network and plentiful compute resources; however,
for query response, the edge hierarchy is 46% faster due to
resource proximity to query clients. This work is a first step
towards optimizing the deployment of hierarchical MapReduce
jobs over fog computing environments.

REFERENCES

[1] Gartner, Inc., “Gartner Says 8.4 Billion Connected “Things” Will Be
in Use in 2017, Up 31 Percent From 2016,” 2017. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917

[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for Internet of Things and analytics,” in Big data and Internet
of Things: A roadmap for smart environments. Springer, 2014, pp.
169-186.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

[4] The Dark Sky Company, “Dark Sky,” 2018. [Online]. Available:
https://darksky.net/

[5] Waze Mobile, “Waze: Free Community-based GPS, Maps and Traffic
Navigation App,” 2018. [Online]. Available: https://www.waze.com

[6] K. ‘Waddell, “How Phones Can Help Pre-
dict Thunderstorms,” 2018. [Online]. Available:
https://www.theatlantic.com/technology/archive/2016/08/how-phones-
can-help-predict-thunderstorms/495389/

[71 Y. Luo and B. Plale, “Hierarchical MapReduce programming model and
scheduling algorithms,” Proc. IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing (CCGrid 2012), pp. 769-774, 2012.

[8] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer, “A survey on
geographically distributed big-data processing using mapreduce,” arXiv
preprint arXiv:1707.01869, 2017.

[9] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. de Lara,

“Cloudpath: a multi-tier cloud computing framework,” in Proc.

ACM/IEEE Symp. on Edge Computing, 2017, p. 20.

Brandbert Ltd., “US cities list,” 2018. [Online].

http://www.uscitieslist.org/

U.S. Department of Commerce, “United States Census,” 2018. [Online].

Available: https://www.census.gov/

[12] A profile of Apache Hadoop MapReduce

computing efficiency, “Cloudera,” 2010. [Online].

Available: http://blog.cloudera.com/blog/2010/12/a-profile-of-hadoop-

mapreduce-computing-efficiency-continued/

R. Hockney and M. Berry, “Public international benchmarks for paral-

lel computers: Parkbench committee: Report-1," Scientific Computing,

vol. 3, no. 2, pp. 100-146, 1994.

R. Goonatilake and R. A. Bachnak, “Modeling latency in a network

distribution,” Netw. and Commun. Technologies, vol. 1, no. 2, p. 1, 2012.

Speedtest, “Speedtest market reports Q1-Q2 2017 - United States,” 2017.

[Online]. Available: http://www.speedtest.net/reports/united-states/2017/

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop

Yarn: Yet another resource negotiator,” in Proc. ACM Symp. Cloud

Computing, 2013, pp. 5:1-5:16.

T. Rabl, S. Gémez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A.

Jacobsen, and S. Mankovskii, “Solving big data challenges for enterprise

application performance management,” Proc. VLDB Endowment, vol. 5,

no. 12, pp. 1724-1735, 2012.

[10] Available:

[11]

[13]

[14]
[15]

[16]

[17]

