
RPI Computer Science Technical Report

Organic and Hierarchical Concentric Layouts for

Distributed System Visualization

Jason LaPorte and Carlos Varela

Abstract— Distributed systems, due to their inherent complexity and nondeterministic nature, are programmed using high-level
abstractions, such as processes, actors, ambients, agents, or services. There is a need to provide tools which allow developers to
better understand, test, and debug distributed systems. OverView is a software toolkit which allows online and offline visualization
of distributed systems through the concepts of entities and containers, which preserve the abstractions used at the programming
level and display important dynamic properties, such as temporal (that is, when entities are created and deleted), spatial (that is,
entity location and migration events) and relational (that is, entity containment or communication patterns).
In this paper, we introduce two general layout mechanisms to visualize distributed systems: a hierarchical concentric layout that
places containers and entities in a ring of rings, and an organic layout that uses the dynamic properties of the system to co-locate
entities. We define visualization quality metrics such as intuitiveness, scalability, and genericity, and use them to evaluate the
visualization layouts for several application communication topologies including linked lists, trees, hypercubes, and topologies arising
from structured overlay networks such as Chord rings.

Index Terms—Graph and network visualization, software visualization, multiple views, scalability issues.

F

1 Introduction

Distributed systems have recently become very popular, due
to their versatility and the relatively low expense of increased
computation power through networking. However, these sys-
tems are much more complex than their serial counterparts,
and thus the burden on programmers and researchers to de-
velop these systems has increased.

For example, consider the problem of observing the computa-
tional activity of the computers comprising SETI@home[10], or
other applications built upon the BOINC infrastructure[1]. Or,
consider visualizing the structure of a BitTorrent[2] swarm as
its activity spikes and dwindles over time. Consider a computa-
tional scientist who would like to view the interactions between
the computers running a high-performance parallel simulation,
or a middleware developer who might be interested to verify
the locations of various parts of a distributed program, to en-
sure that it’s structure on the network is conducive to efficient
inter-process communication. Visualizing autonomous applica-
tions, whose reconfiguration is driven by adaptive middleware,
is critical to understand the efficiency and stability properties
of the middleware’s policies.

Since we humans are a fundamentally visually-oriented
species, greater productivity and deeper understanding can be
given to the designers and maintainers of these systems if there
is an available means of visually analyzing distributed systems.
Furthermore, effective visualization can also be used as an aid
to teach students concepts of distributed systems in an intuitive
manner.

In order to properly judge a distributed system visualiza-
tion’s quality, we must first set forth metrics which we can use
to more fully gauge its performance.

• Intuitiveness: The visualization should provide an in-
tuitive display of both the application-level topology and
the physical topology of the network on which it resides.
Furthermore, actions should be animated so that it is easy
to distinguish changes in the system as they are occurring.

• Information Content: The visualization should provide
as much insight into the distributed system as it’s abstrac-
tions permit, unless the user specifies otherwise.

• Rensselaer Polytechnic Institute, laporj2@rpi.edu.
• Rensselaer Polytechnic Institute, cvarela@cs.rpi.edu

• Scalability: The visualization should be as intuitive and
intelligible at large scales (for example, with ten thousand
distributed system components) as it is in small scales (for
example, with thirty).

• Genericity: The visualization should be agnostic to the
particular type of distributed system in use (for example,
it should not matter if the basic computational unit is an
actor, a process, or a web service).

• Interactivity: The visualization should provide to the
user free and intuitive controls, with which they can alter
their view of the system at will.

One can immediately sense the difficulty inherent in design-
ing a good visualization: there are essential compromises to be
made among different metrics. For example, one must strive
to give a high level of information content, yet not clutter the
display so as to hamper the visualization’s intuitiveness. Well-
designed user interfaces should be highly interactive to let users
move in the metric space.

In Section 2, we introduce OverView, the toolkit upon which
we have constructed the visualizations we examine in this pa-
per. In Section 3, we describe the visualization modules which
we have constructed. In Section 4, we examine how these vi-
sualizations perform on some common application communica-
tion patterns. In Section 5, we evaluate these visualizations in
terms of the five visualization quality metrics laid out above,
and discuss some of the future work to be done on OverView
and the visualization modules described. Finally, in Section 7,
we discuss related work.

2 Background

OverView[3]1 is a toolkit which permits visualization of Java-
based systems; in particular, distributed systems such as those
previously described.2 The toolkit includes three programs,
each of which performs a different task (see Figure 1):

1http://wcl.cs.rpi.edu/overview/
2OverView versions 0.1 and 0.2 were developed as a plugin for the

Eclipse IDE. It has since been made stand-alone, so that it might
appeal to those who do not use Eclipse, and so more interesting
features might be added: for example, the ability to run the visual-
ization from within a web browser as a Java applet. At the time of
writing, the current version of OverView is 0.4.1.

1



Fig. 1. The OverView framework, showing both compile-time operations
and the layout of the run-time architecture.

• The OverView Instrumenter, or OVI, which allows the
abstraction of a Java program’s execution into a set of
visualizable events by inserting unobtrusive event-sending
behavior into existing Java bytecode.

• The OverView Presenter, or OVP, which receives and in-
terprets events into a meaningful, interactive, graphical
representation of the state of the distributed system. OVP
has several visualization modules, each of which can dis-
play the distributed system in a different layout.

• The OverView Daemon, or OVD, which acts as an event
relay, collecting events sent by event sources (that is,
any active instrumented program), and forwarding those
events to event sinks (that is, any listening visualization
program).

Users add event-sending behavior to any existing Java pro-
gram by writing an Entity Specification Language file, which
uses a simple, declarative syntax to map Java method invoca-
tions to OverView events. These events are sent, at run-time,
over a network to a listening OVD. For a more detailed discus-
sion of OVI’s instrumentation and profiling, we refer the reader
to [3].

OVP can listen for incoming events from multiple sources,
both online network connections and offline log files. It will
multiplex these events and forward them to a visualization
module, in addition to timestamping and logging them, so that
they might be played back at a later date, if desired. OVP
maintains an internal log of all events received, providing the
ability to “rewind,” “pause,” and “fast-forward” any visualiza-
tion at run time. OverView visualization modules are written
using the Processing Development Environment,3 due to it’s

3http://www.processing.org/

simple and powerful graphical API, it’s support for interactiv-
ity, and it’s speed compared to other graphical frameworks in
Java.

OverView has been used to visualize various distributed en-
vironments, most notably by instrumenting the SALSA pro-
gramming language[11],4 which is a general-purpose actor-
oriented programming language, implemented as an extension
to Java. This means that any program written in SALSA will
automatically have event-sending behavior simply by using an
OverView-instrumented bytecode distribution. Classes of pro-
grams which OverView has been used to visualize include par-
allel iterative and recursive computations.

2.1 Events

OverView’s visualization model is based on two fundamental
units, called entities and containers. An entity embodies the
concept of a discrete unit of computation, which could refer to
an object, an actor, an ambient, a process, or even a virtual
machine. A container refers to the environment in which an
entity exists; for example, a physical machine (in the case of
processes), a virtual machine (in the case of Java objects), or
a theater (in the case of actors). Every OverView visualization
is composed of some aggregation of these two basic elements.

The events OverView understands take the form of an event
type, followed by a variable number of parameters, each of
which must be the identifier of some entity or container.
OverView visualization modules may each separately define
what events they understand; however, the ones we have cre-
ated understand the following:

• Position/1: Tells OverView to create a particular entity,
or to move one if it already exists, outside of any container.

• Position/2: Tells OverView to create a particular entity
inside a particular container. Again, if the entity already
exists, it is moved instead of being created. If the con-
tainer does not yet exist, it is created and placed outside
any other container.

• Deletion/1: Tells OverView to delete a particular entity.
If such an entity does not exist, nothing happens.

• Communication/2: Tells OverView that two entities
have communicated (for example, via method invocation
or message passing).

It is worth noting that some visualization modules do not
differentiate between entities and containers. This means that
one may recursively nest entities inside of other entities, or
delete containers (in which case, all entities within are deleted
as well).

3 Visualization Modules

3.1 Hierarchical Concentric

The first module, called Hierarchical Concentric, is an exam-
ple of a visualization in which there is no enforced distinction
between entities and containers. All top level entities and con-
tainers are arranged in a ring around the center of the screen,
each scaling to fit if necessary. Those which are containers are
differentiated from entities by being drawn as a square, rather
than a circle; furthermore, any entities or containers it contains
will be arranged in a circle within it. All interactions that oc-
cur feature interpolated animation, using a technique known
as easing, to animate what is happening. Lines are drawn be-
tween communicating entities, which fade over time, but never
completely disappear; the benefit of this is to be able to see
when two entities are communicating, and also when two en-
tities have communicated in the past, which provides insight

4http://wcl.cs.rpi.edu/salsa/

2



RPI Computer Science Technical Report

Fig. 2. An example of Hierarchical Concentric, with a random applica-
tion topology containing twelve entities.

into the application’s topology. See Figures 2 and 3 for an
example of this visualization. Since there is no enforced dis-
tinction between an entity and a container, the semantics of
this visualization is such that any entity which contains one
or more entities is considered a container. User interactions
include being able to control the camera’s position and zoom
by clicking and dragging the mouse, and displaying the name
of an entity or container by hovering over it with the mouse.

Fig. 3. An example of Hierarchical Concentric, with a random applica-
tion topology containing two hundred entities.

3.2 Organic

The second visualization module, Organic, uses a much more
fluid model (see Figures 4 and 5). In this visualization, entities
and containers are fully distinct, with only entities being di-
rectly drawn, while containers being distinguished by the color
of the entity. Entities have no rigid constraints on their posi-
tion, and float freely on the screen. Two forces act upon each

Fig. 4. An example of Organic, with a random application topology
containing twelve entities.

entity: first, every entity repels every other entity with a force
proportional to the inverse square of distance between them.
Secondly, when two entities are connected by a communication,
a linear spring force is applied (the magnitude of which scales
as communication frequency is increased). Since entities that
communicate are likely to be related, these two rules tend to
cause related entities to cluster together. Furthermore, since
each is colored based on it’s container, clustered colors tend
to mean that the entities of the distributed system are placed
such that there is minimal communication latency, which is a
desirable property in distributed systems. Using the Organic
visualization, users can click and drag the mouse to change the
position of entities.

Fig. 5. An example of Organic, with a random application topology
containing two hundred entities.

3



Fig. 6. Example visualization of a linear application topology.

Fig. 7. Example visualization of a grid-based application topology.

Fig. 8. Example visualization of a ring application topology.

4



RPI Computer Science Technical Report

4 Visualizing Common Application Communication Patterns

Herein, we examine the performance of the Hierarchic Concen-
tric and Organic visualizations upon several common applica-
tion topologies seen in distributed computation.

4.1 Linear- and Grid-based Topologies

Linear- and Grid-based topologies are characterized by having
a number of nodes set up in some N-dimensional lattice, with
each node connected to and communicating with its neighbors.
The most common class of programs that use such a structure
are physical simulation programs, such as heat distribution or
fluid dynamics applications, where each node represents an area
in space.

Figures 6 and 7 show Hierarchical Concentric and Or-
ganic visualizations on both a 1-dimensional space and a 2-
dimensional space, respectively. Both visualizations are effec-
tive on a linear topology, while only Organic is effective on a
grid topology. However, for topologies such as these, if it is
intelligible at a small scale, it will generally scale indefinitely;
and this is true for both visualizations. An exception worth
noting is that in the Hierarchical Concentric visualization, the
order in which the entities are created is very important. If
created in order, they will appear as in Figure 6; if they are
created in an arbitrary or random order, however, the lines de-
noting their connection to their neighbors will criss-cross across
the ring, and become quite difficult to understand. However,
regardless of creation order for Organic, the visualization will
settle into the configuration shown in Figures 6 and 7.

4.2 Ring-based Topologies

Ring-based topologies find a common application in peer-to-
peer networks. This is because they are easy to construct with
only local knowledge, and information queries, while not nec-
essarily efficient, are very simple (usually as simple as merely
passing queries around the ring in one direction until they are
answered). As an optimization upon this, Chord[9] increases
the number of neighbor links from a constant number to a log-
arithmic number (based on the size of the network), which de-
creases the search time from linear to logarithmic as well; this
makes it possible to construct simple and high-performance
peer-to-peer networks.

Figures 8 and 9 show how the two visualizations perform
on these structures. While, once again, these topologies scale
well (for all except Organic on the Chord ring), the Hierar-
chical Concentric visualization is very dependent on the order
in which the entities are created. Interestingly, while Organic
usually fares well under many application topologies, the com-
munication pattern for Chord is sufficiently dense such that it
compacts together heavily, becoming unreadable.

4.3 Hypercube-based Topologies

Cubes, hypercubes, and other N-cubes have a number of no-
table properties useful to distributed computation; among
them is the upper bound on hops between any two nodes on
the network, while maintaining only a small number of edges
between nodes.

Hypercubes are also notable for having a very structured
4-dimensional organization, which is difficult to map to 2-
dimensions well. This can be seen in Hierarchical Concentric,
since while it is intelligible, it is not at all intuitive. How-
ever, Organic performs well on the hypercube, placing nodes
in a well-spaced layout (see Figure 10). Unfortunately, though,
neither perform well at larger scales, as the increasing number
of dimensions makes it increasingly complex to understand.

4.4 Recursive Topologies

Recursive computation is as important in distributed compu-
tation as it is elsewhere; many divide-and-conquer recursive
algorithms can be made to run in a distributed setting.

When nodes are created with a particular ordering, the Hier-
archical Concentric visualization can perform reasonably well
on binary trees; fortunately, this is not uncommon with recur-
sive algorithms. However, even on top of this, Organic per-
forms excellently with trees, which tend to balance well and
have a clear representation, with the root generally centered
and branches evenly spaced apart. Figure 11 uses the exam-
ple of the recursive computation of the sixth number in the
Fibonacci sequence; noting its fractal nature in Organic is par-
ticularly simple.

5 Discussion and Future Work

5.1 Visualization Modules

Hierarchical Concentric was designed as a straightforward re-
finement upon previous visualizations, which laid out entities
and containers in a simplistic grid fashion—left-to-right, and
top-to-bottom. Instead of this, Hierarchical Concentric places
entities around a hierarchical series of rings. This placement
mechanism was selected for several reasons: firstly, it min-
imizes ambiguous communications—that is, communication
lines overlapping multiple entities, so one cannot determine at a
glance which entities are referred to; this is a commonly-arising
problem in grid-based visualizations, since many communica-
tions will either be purely horizontal or purely vertical and
reach across entire rows or columns. Secondly, it can display
a hierarchy of elements intuitively, even with näıve placement
of new elements at the end of the list, allowing it to support
recursive computations with reasonable effectiveness. This hi-
erarchical, concentric structure is both intuitive and generic,
mapping naturally both to flat systems (such as actors within
theaters) and nested systems (such as mobile ambients).

In Hierarchical Concentric, when two entities communicate,
a simple line is drawn between them, which fades over time.
While this tells one of instantaneous communication informa-
tion, most of the historical communication information—other
than knowing the binary fact of whether two entities have com-
municated or not—is lost. This causes the visualization to fall
somewhat short of the amount of information content it could
display.

Hierarchical Concentric’s main drawback is in scalability.
While it is effective for small numbers of entities, it rapidly
breaks down and becomes confusing with as few as one hun-
dred entities, with “spider-webbing” communications filling the
rings. Furthermore, logically grouped entities may be placed
far from each other by the visualization, and since one cannot
zoom in upon both sides of the ring at once, it can become
difficult or impossible to understand what is occurring in parts
of a system.

However, despite these weaknesses, the visualization can be
very effective for some application topologies, such as linear
and circular topologies, as demonstrated above.

Organic was primarily developed to remedy some of the
shortcomings of Hierarchical Concentric. Unlike it, there is no
hierarchical placement; entities are only placed upon the pri-
mary visualization surface, and cannot be nested. It uses only
two simple placement rules; however, these two rules provide a
surprisingly effective visualization, causing application topolo-
gies to emerge in clear patterns. Furthermore, if like colors are
well-clustered, it demonstrates that entities that communicate
frequently are near each other physically, which is a very nat-
ural notion for the visualization to convey. We note, therefore,
that Organic provides a very intuitive visualization, especially
in reference to the application topology.

Since Organic’s placement algorithm is based on local rules,
it may not always find the best placement scheme. However,
users may click and drag objects to place them wherever they
wish. This is simple, intuitive, and easily remedies the system’s
placement weaknesses.

5



Fig. 9. Example visualization of a Chord ring.

Fig. 10. Example visualization of a hypercube application topology.

Fig. 11. Example visualization of a recursive application topology.

6



RPI Computer Science Technical Report

H. C. Organic

Intuitiveness

Linear
Grid
Ring
Chord
Hypercube
Recursive

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆

Information Content ⋆ ⋆ ⋆

Scalability

Linear
Grid
Ring
Chord
Hypercube
Recursive

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆

⋆ ⋆

Genericity ⋆ ⋆ ⋆ ⋆ ⋆

Interactivity ⋆ ⋆ ⋆

Fig. 12. A table, referencing the relative effectiveness of each visualiza-
tion with each application topology, along each metric laid out in the
introduction. The scale goes from zero stars, for poor, to three stars,
for excellent.

Organic is less generic than Hierarchical Concentric, lacking
support for nested distributed systems. However, balancing
this, it also scales much better than Hierarchical Concentric
does, able to handle several hundred entities and remain com-
prehensible. Finally, since repeated communication pulls en-
tities closer together, one can also get a sense of how tightly
two entities are coupled, preserving frequency of communica-
tion information, giving somewhat more information content
than Hierarchical Concentric.

Our experiences with these two visualizations thus demon-
strate that neither is a panacea; while we developed Organic
to be more effective than Hierarchical Concentric, it is only
demonstrably so in particular cases, as Figure 12 illustrates.

5.2 Future Work

While the development of a better visualization is an open-
ended process, there are several directions in which we are cur-
rently working.

The most important short-term goal which we are striv-
ing towards is scalability; both in visualization and in event-
transmission framework. Organic is our current attempt at
moving towards more scalable visualizations; while Ring can
only present a few dozen entities effectively, Organic can ef-
fectively present a few hundred or more; techniques learned
include designing for adaptivity (hard-coded schemes do not
scale well), and that interactivity is key (allowing a user to
move objects around allows them to fix any problems the visu-
alization is unable to on its own).

Concerning making a more scalable framework, we are cur-
rently focused on the development of event filters, which will
allow one to filter out unwanted messages at run time. By push-
ing these event filters from the event sinks to the OVD relays,
and indeed, as close to the event sources as possible, we can
reduce the number of events that need to be sent, which makes
better use of network bandwidth; more importantly still, it can
reduce the amount of information to be visualized, which can
simplify scaling up the visualization. Since multiple event sinks
can exist on the network, there must be a mechanism to de-
termine the smallest set of events which need to be forwarded,
based on the different requirements of the various filters. How-
ever, this is not an insurmountable problem, and with careful
selection of filters, we expect to be able to reduce visualization
network traffic and visual clutter markedly.

Finally, we are also interested in developing a generic data
structure which contains all information necessary for visual-
ization modules to render a visualization. The motivation for

this is that, currently, different visualization modules may only
be selected starting an execution; it is important to be able to
toggle between various visualization modules as the visualiza-
tion is running.

6 Related Work

Frishman and Tal[4] have developed a visualization tool which
bears a number of similarities to our own. While it is limited
to using mobile objects (a single model of distributed systems,
and thus is less generic), it takes an interesting approach to
scalability. It suggests providing the user a means to select one
or more points or focus; that is, parts of the visualization that
are of interest. Then, the software visualization will use an
algorithm to determine which mobile objects it can filter out
as being uninteresting to the user. This stands in contrast to
its negative: the approach of selecting the objects one wishes
to filter out. Such a means might provide a better-scaling vi-
sualization; ultimately, there will always be fewer entities one
is interested in than entities one is not.

Another software visualization framework which is similar to
OverView is EVolve[12], having the notion of events which de-
scribe the runtime behavior of an application being translated
into a graphical visualization. It focuses upon object-oriented
computations, supporting visualization of method invocations;
while it’s visualizations are less intuitive and generic, they are
scalable and provide a large amount of information content,
and may even be layered naturally on top of each other to
show the user different types of information at once.

Benjamin Fry’s Organic Information Design[5] demonstrates
that while static visualization systems are well understood, due
to their long history, dynamic visualization systems made pos-
sible by computers are still in their infancy. He argues that
by taking cues from biological systems (such as metabolism,
growth, homeostasis, and reproduction), one can design a more
dynamic, scalable, and intuitive visualization. The downside
to organic information design is that it represents data in a
qualitative, rather than quantitative fashion. However, qual-
itative visualizations are preferable at large scales. He also
demonstrates examples of his visualizations on very large scale
systems, such as the human genome. By taking cues from other
large-scale, dynamic systems, we might better be able to visu-
alize large-scale distributed systems as well, which are defined
by their highly-dynamic nature.

Orla Greevy et al.[6] describe a three-dimensional approach
to software visualization, placing objects in the horizontal
plane, as we do, but using depth to convey dynamic runtime
information, such as object instantiation and message passing.

Work describing the effective layout of hierarchical graphs,
which directly relate to the visualization of distributed systems,
include Keskin and Vogelmann[7], who use the visual metaphor
of the cityscape to create a dense, but intuitive representation
of hierarchical graphs, and Kusnadi et al.[8], who make use of
neural networks to decide the the layout of the graph.

7 Conclusion

Distributed systems are prevalent today and are continually
becoming even more prevalent; due to their complexity, effec-
tive visualization is necessary. In the effort of examining these
visualizations so as to build more effective ones, we set forth
visualization metrics, which aid in more completely analyzing
a visualization.

OverView is a tool for visualizing distributed systems in
Java, with a modular design allowing for inserting new visu-
alizations into it. OverView visualizations are based on the
notions of entities, or computational units, and containers for
these entities. We have developed two distinct visualizations
modules for OverView, Hierarchical Concentric and Organic,
and have evaluated these modules in terms of the metrics which

7



we have specified. Hierarchical Concentric uses a rigid, ring-
based placement mechanism and excels at visualizing linear ap-
plication communication patterns, but does not scale well. Or-
ganic uses a free-form, rule-based placement mechanism which
is effective for visualizing many application topologies, and
scales well; however, it is incapable of visualizing systems com-
posed of nested entities. We derive from our experimentation
with these visualization systems that local, emergent entity
placement rules are beneficial in terms of intuitivity and scala-
bility, and by including a high degree of interactivity, many of
the visualization difficulties that can arise from the simplicity
of these rules can be mitigated by the user.

Dynamic visualizations and distributed systems are both
very recent developments which are in their infancy; there is
much interesting work yet to be done, and the development of
better visualizations for distributed systems is an ongoing one.
We are particularly interested in developing the scalability of
these visualizations, from hundreds of entities to thousands or
tens of thousands of entities; the progress made thus far is a
solid step in the direction of that ultimate goal.

References

[1] D. P. Anderson. Boinc: a system for public-resource comput-
ing and storage. In Proceedings of the Fifth IEEE/ACM In-
ternational Workshop on Grid Computing., pages 4–10. IEEE
Computer Society, 2004.

[2] B. Cohen. Incentives build robustness in BitTorrent. Technical
report, May 2003.

[3] T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A
framework for generic online visualization of distributed sys-
tems. In Proceedings of the European Joint Conferences on
Theory and Practice of Software (ETAPS 2004), eclipse Tech-
nology eXchange (eTX) Workshop, Barcelona, Spain, March
2004.

[4] Y. Frishman and A. Tal. Visualization of mobile object environ-
ments. In SoftVis ’05: Proceedings of the 2005 ACM sympo-
sium on Software visualization, pages 145–154, New York, NY,
USA, 2005. ACM Press.

[5] B. Fry. Organic information design. Master’s thesis, Mas-
sachusetts Institute of Technology, May 2000.

[6] O. Greevy, M. Lanza, and C. Wysseier. Visualizing live software
systems in 3d. In SoftVis ’06: Proceedings of the 2006 ACM
symposium on Software visualization, pages 47–56, New York,
NY, USA, 2006. ACM Press.

[7] C. Keskin and V. Vogelmann. Effective visualization of hier-
archical graphs with the cityscape metaphor. In NPIV ’97:
Proceedings of the 1997 workshop on New paradigms in infor-
mation visualization and manipulation, pages 52–57, New York,
NY, USA, 1997. ACM Press.

[8] Kusnadi, J. Carothers, and F. Chow. Hierarchical graph visu-
alization using neural networks, May 1997.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 ACM SIG-
COMM Conference, pages 149–160, 2001.

[10] W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb,
D. Gedye, and D. Anderson. A new major SETI project based
on Project SERENDIP data and 100,000 personal computers.
In C. Batalli Cosmovici, S. Bowyer, and D. Werthimer, editors,
IAU Colloq. 161: Astronomical and Biochemical Origins and
the Search for Life in the Universe, pages 729–+, Jan. 1997.

[11] C. Varela and G. Agha. Programming dynamically recon-
figurable open systems with SALSA. ACM SIGPLAN No-
tices. OOPSLA’2001 Intriguing Technology Track Proceedings,
36(12):20–34, Dec. 2001.

[12] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. Hen-
dren, and C. Verbrugge. Evolve: an open extensible software
visualization framework. In SoftVis ’03: Proceedings of the
2003 ACM symposium on Software visualization, pages 37–ff,
New York, NY, USA, 2003. ACM Press.

8


