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Abstract— This paper describes a modular decentralized mid-
dleware framework for dynamic application reconfiguration in
large scale heterogeneous environments. Component malleability
is presented as a dynamic reconfiguration strategy. Dynamic
component granularity enables improved load balancing by com-
ponent migration, and most importantly, it enables applications
to scale up to arbitrarily large numbers of processing nodesin
a relatively transparent way. Preliminary experimental results
show that without significant overhead, malleable components
can improve applications performance and distributed resource
utilization.

I. I NTRODUCTION

As high performance computing (HPC) environments scale
to hundreds of parallel-processors and even millions of work-
stations, the demands on an application developer are be-
coming increasingly challenging and unmanageable. Most
current HPC environments assume dedicated resources and a
reservation based model for scheduling. Unfortunately in such
a model, users can either overschedule resources, resulting in
wasted resources and time, or underschedule resources which
can lead to lost work. However, these issues can be overcome
with a model that assumes dynamic and shared resources. In
order for applications to be able to appropriately utilize the
available resources in a dynamic shared HPC environment,
new models for high performance computing are required,
along with middleware and application level support. This
work is in part motivated by the Rensselaer Grid, an institute-
wide HPC environment, with dynamic and shared resources.

To appropriately utilize a dynamic and shared computing
environment, application components must have the ability
to be reconfigured at run-time. In a complex large-scale
HPC environment, it is neither desirable nor plausible for
an application developer to have to design and implement
profiling strategies to examine the dynamic network and
what other (possibly unknown) applications are competing for
resources, and to design reconfiguration strategies based on
this information.

Previous approaches for dynamic reconfiguration have in-
volved migrating components (such as actors, agents or pro-
cesses) to utilize unused cycles [1], [2] or using checkpointing
to restart applications with a different set of resources toutilize
newly available resources or to remove badly performing
resources [3], [4]. Checkpointing and application restartcan
prove highly expensive, especially when resources change
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Fig. 1. Average Iteration time for an application running onone to five
processors with different component configurations. N is the number of
components and P is the number of processors. N=P (SM) uses malleable
components, while N=P shows the optimal configuration (withno dynamic
reconfiguration and middleware overhead). N=60 and N=5 showthe best
configuration possible using migration with a fixed number ofcomponents.

availability frequently, as in the case of web computing [5],
[6] or shared clusters with multiple users.

Component migration allows applications to be reconfig-
ured with finer granularity (application restart can be seen
as application migration). If required, components can be
checkpointed easier and more concurrently than an entire
application. Additionally, concurrent reconfiguration isless
intrusive. However, component migration is limited by the
application component granularity.

To illustrate this limitation, we use an iterative application
(a distributed maximum likelihood computation used for as-
tronomical model validation, for more details see Section V-
A). This application is run on a dynamic cluster consisting
of five processors. In order to use all the processors, at least
one component per processor is required. When a processor
becomes unavailable, the component on that processor can mi-
grate to a different processor. With five components, regardless
of how migration is done, there will be imbalance of work on
the processors, so each iteration needs to wait for the pair
of components running slower because they share a processor
(in this example, 5 components running on 4 processors was



45% slower than 4 components running on 4 processors, with
otherwise identical parameters). One alternative to fix this load
imbalance is to increase the number of components to enable
a more even distribution of components no matter how many
processors are available (in this example, 60 components were
used). Unfortunately, the increased amount of components
causes the application to run slower, approximately 7.6% for
this example. Additionally, this approach is not scalable,as
the number of components required for this scheme is the
least common multiple of different combinations of processor
availability. In many cases, the availability of resourcesis
unknown at the applications startup so an effective number
of components cannot be determined. Figure 1 shows these
two approaches compared to an ideal distribution of work, one
component per processor. In this example, if a fixed number
of components is used, averaged over all configurations, five
components is 13.2% slower , and sixty components results is
7.6% slower.

To solve the problem of appropriately using resources in
the face of a dynamic execution environment where the avail-
able resources may not be known,malleablecomponents are
introduced. Instead of having a static number of components,
malleable components cansplit, creating more components,
andmerge, reducing the number of components, redistributing
data based on these operations. With malleable components,
the application’s granularity (or number of components) can
be changed dynamically. Applications definehowcomponents
split and merge, while the middleware determineswhenbased
on resource availability information. As the dynamic environ-
ment of an application changes, in response, the granularity
and data distribution of that application can be changed to most
efficiently utilize its environment. For this example, using split
and merge operations reconfigures the application to be ableto
operate within 0.2% of the speed of the optimal configuration,
regardless of processor availability.

This work argues that malleable components will provide
applications with the ability to more effectively scale andef-
ficiently use resources in HPC environments, especially in the
case of dynamic and/or shared resources. The responsibility
of the application developer to implement split and merge
can be minimized through an API in conjunction with generic
split and merge algorithms. Split and merge are shown to be
scalable and efficient operations. Middleware is capable of
autonomously splitting, merging and migrating components,
improving the performance of applications on dynamic HPC
environments with minimal overhead (less than 2% on the
applications tested).

This paper continues as follows. Section II discusses differ-
ent possibilities for the implementation of malleable compo-
nents in HPC environments, and the potential for autonomous
malleability. An approach for developing HPC middleware for
autonomous reconfiguration is presented in Section III. An
implementation of malleable components and a middleware for
autonomous reconfiguration is given in Section IV. Section V
presents representative applications and how they were used
to evaluate the split and merge operations and autonomous

malleability. The paper concludes with a brief descriptionof
related work in Section VI and a discussion of the results and
avenues for future work in Section VII.

II. COMPONENT MALLEABILITY

This section discusses the various considerations taken
in evaluating malleable components. Due to geographical,
administrative and scalability concerns, it is not possible
to assume shared memory or synchronous communication
in HPC environments. Thus, for the considerations of this
discussion, components are assumed to encapsulate data and
communicate asynchronously. Distributed memory and asyn-
chronous communication alleviate some of the concerns in
implementing split and merge. Distributed memory is an
easier model to preserve data consistency, as opposed to
replicated shared memory. Likewise, asynchronous communi-
cation eliminates the concerns of preserving invocation stacks
used in synchronous communication. This section discusses
different possibilities for component malleability, withrespect
to concurrency and complexity, and how malleability can be
used as a reconfiguration tool.

A. Component Malleability Strategies

Splitting or merging will involve one or more components
to participate in reconfiguring themselves, where the com-
munication topology of those components will be modified
for the addition or removal of new components, and the
data will be redistributed between these components. This
reconfiguration may need to be done atomically to preserve
application semantics and data consistency.

The simplest possibility for split and merge, mimicking
cell division in biological organisms, is to limit the semantics
of a split operation to having one component split into two
components, and two components merge into one component.
The major benefit of this approach is that it is the easiest
to implement. It is also a highly concurrent approach, as all
components could conceivably split at the same time, doubling
the granularity of the application. Merging is also concurrent
in that each component could pair up with another and merge
concurrently, reducing the granularity of the applicationby
half.

Another possibility is to allow a single component to split
into multiple components, and multiple components to merge
into a single component. While slightly more difficult to
implement than the previous approach, it encompasses the
previous approach and allows the same level of concurrency.
However, the use of this type of split and merge semantics
seems rather limited, in that it is best suited for expandinga
small number of components to a larger number to utilize more
resources, or releasing a large number of resources. For smaller
changes in resources it is possible for this and the previous
approach to succumb to the same problems as migration.
Mainly, these approaches are prone to data imbalances.

The most versatile approach would be to allow any number
of components,N , to split or merge into any other num-
ber of components,M . This would solve problems of data



imbalances for minor changes in resources, and still allow
for modification of granularity to handle major changes in
resource availability. However, due to the number of com-
ponents involved, this approach is not as concurrent as the
previous approaches (although, it does not necessarily require
parallelization). The most serious drawback is the fact that the
implementation of such an approach could be very difficult
due to its complexity. Additionally, this kind of split and
merge operations could prove to be very expensive, similar
to application start and restart.

For this work, we define the split operation as taking any
number of componentsN and generatingN + 1 components.
Merge takesN components and results inN −1 components.
This provides a middle ground where the split and merge
operations are not as expensive or complex as theN to M

approach, and more appropriate for a dynamic grid environ-
ment, where large changes in resource availability would not
be overly common (which is more suited for a one toN and
N to one approach).

B. Malleability as a Reconfiguration Tool

Rather than considering malleability as an alternative to mi-
gration, it can be used as an additional tool in the repertoire of
an autonomous reconfiguration middleware. Malleability can
modify application granularity allowing for more appropriate
reconfiguration via migration. Splitting and merging can be
used on their own to allow for greater parallelization of the
application to more appropriately utilize resources in thecase
of computing nodes with multiple processors. Applications
with malleable components will be able to scale as far as
data limitations and resource availability allow. With a well
defined interface, a middleware can autonomously reconfigure
the granularity of the application through splitting and merging
of components to improve application performance.

III. M ODULAR M IDDLEWARE FOR AUTONOMOUS

RECONFIGURATION

The challenges of a HPC environment require a separation
of concerns, alleviating application developers from many
of the difficulties involved. An application developer should
not need to determine at runtime what other applications are
running in a shared environment, nor their resource usage. It is
more practical to have a middleware layer to gather profiling
information about applications and the HPC environment.

A generic middleware allows a wider adoption of dif-
ferent classes of applications as well as various execution
environments. The middleware can perform dynamic recon-
figuration based on profiled information of applications and
environments with significant benefit [7]. Figure 2 represents
the separation advocated in this paper. At the application
or language level, a developer specifieshow reconfiguration
should be done. Profiling, through an API or implemented at
the language level, provides the middleware with information
about application status and resource usage. Having profiling
and reconfiguration tools conform to a specific API allows the
middleware to receive profiling information and reconfigure

Fig. 2. Approach for autonomous middleware in HPC environments.
The middleware receives profiling information about the applications and
environment through profiling interfaces. Profiling information is distributed
in the middleware using various protocols. Decisions are taken based on local
and remote profiling information, both of the application and hardware, and
the application is reconfigured through a reconfiguration interface.

applications in an application and programming language
independent manner. Likewise, middleware can profile re-
source availability and interact with third party clients,such
as the Network Weather Service (NWS) [8] or the Globus
Meta Discovery Service (MDS) [9], allowing more informed
reconfiguration decisions based on both the environment and
executing applications.

To achieve scalability and to accommodate the dynamicity
of HPC environments, middleware should be decentralized and
allow for the dynamic addition and removal of resources. Ad-
ditionally, the middleware should not be restricted to a single
type of profiling, coordination or method of reconfiguration.
Different decision strategies will require different types of pro-
filed information. The communication topologies used by the
decentralized middleware also play a role in the performance
of the middleware, as certain topologies are more suited to
specific HPC environments [2] (e.g., environments that are
more homogeneous, like clusters, or more heterogeneous, like
the Internet). As such, a modular approach with different
pluggable decision, communication and profiling modules will
allow a HPC middleware to most appropriately meet the
requirements of its applications and environment.

IV. I MPLEMENTATION

To implement component malleability, previous work using
the SALSA programming language [10] and the Internet Op-
erating System (IOS) [2] is leveraged. SALSA is a distributed
programming language and IOS is a the decentralized mid-
dleware with plug-in decision, profiling and communication
modules. Sections IV-A.1 and IV-A.2 provide background
information about the SALSA programming language and IOS
middleware, respectively. Language extensions to SALSA for
malleability are discussed in Section IV-B.1 and their use in



Fig. 3. IOS Agents consist of three modules: a decision module, profiling
module and protocol module. The profiling module gathers information about
the components executing locally, as well as the underlyinghardware. The
protocol module gathers information from other agents. Thedecision module
takes local and remote information and uses it to decide how the application
should be reconfigured.

generic split and merge algorithms is presented in Section IV-
B.2. Finally, the strategy used for deciding when to split and
merge is described in Section IV-B.3.

A. Software Framework

1) The SALSA Programming Language:SALSA applica-
tions consist ofactors. The Actor [11] model of computation
is based around the concept of encapsulating state and process
into a single entity. Each actor has a unique name, which
can be used as a reference by other actors. Communication
between actors is purely asynchronous. The actor model
assumes guaranteed message delivery and fair scheduling of
computation. Actors only process information in reaction to
messages. While processing a message, an actor can carry
out any of three basic operations: alter its state, create new
actors, or send messages to peer actors. Actors are therefore
inherently independent, concurrent and autonomous which
enables efficiency in parallel execution [12] and facilitates
mobility [13].

SALSA programs may be executed in heterogeneous dis-
tributed environments. SALSA code is compiled into Java
source and then byte-code. This allows SALSA programs
to employ components of the Java class library. It also en-
ables SALSA developers to view a heterogeneous network
of physical machines as a homogeneous network of virtual
machines. For this work, each actor is seen as a reconfig-
urable component. SALSA actors can migrate transparently
without any modification of code, enabling easy autonomous
reconfiguration through migration.

2) The IOS Middleware:The Internet Operating System
(IOS) [7] is a modular middleware for autonomous recon-
figuration of distributed applications. IOS shifts the concerns
of HPC environment profiling and reconfiguration decisions
from the applications to the middleware, allowing application
components to be reconfigured autonomously at run-time in
a transparent manner. IOS is generic and can therefore be

used with different applications and programming paradigms.
An application developer is only required to implement an
interface through which IOS can dynamically reconfigure the
application and gather profiling information. IOS uses a peer-
to-peer network of agents with pluggable communication,
profiling and decision making modules, allowing it to scale
to large environments and providing a mechanism to evaluate
algorithms for reconfiguration. Figure 3 shows the architecture
of an IOS agent. An IOS agent is present on every node in the
HPC environment. Each agent is modular, consisting of three
plug-in modules:

• A Profiling Module that gathers information about the
components’ communication topology and resource uti-
lization, the physical network topology, and the resources
available locally.

• A Protocol Module to allow for inter-agent communica-
tion, allowing the IOS agents to arrange themselves with
different virtual network topologies, such as hierarchical
or purely peer-to-peer topologies.

• A Decision Module which determines when to perform
reconfiguration, and how reconfiguration can be done.
The decision module interacts with applications through
asynchronous message passing. For this work, the deci-
sion module autonomously sendsmigrate, split andmerge
messages to the application based on its decision making
strategy.

The modules interact with each other and the applications
through well-defined interfaces, making it possible to easily
develop new modules, and to combine them in different
ways to test different types of application reconfiguration.
Section IV-B.3 describes the decision modules used to evaluate
component malleability.

B. Extensions for Malleability

1) Language Extensions:Split and merge operations re-
quire data redistribution and modification of the application’s
communication topology. These features are not required by
component migration. Migration and profiling have been sup-
ported at the SALSA language-level and are transparent to the
programmer. However, split and merge features require collab-
oration from programmers: e.g., a SALSA developer needs to
extend theMalleableActor class shown in Table I and
implement the required abstract methods. Optional abstract
methods allow for automated data redistribution and reference
redirection. Figure 4 shows the use of this API in the massively
distributed Twin Primes application written in SALSA.

2) Split and Merge Algorithms:The split and merge algo-
rithms performed by malleable actors proceed as follows. The
split or merge of an actor is initiated when the middleware
sends asplit(Reference[] dataSources)or merge(Reference[]
dataSources)message to an actor. ThedataSourcesare all
other actors that will collaborate in the split or merge.

First, the algorithm gets a lock on all data sources and
owners of references needing modification during the split or
merge. Locks are obtained if the actors are not participating in
another split or merge operation, and thecanSplitOrMerge()



TABLE I

MALLEABLE ACTORCLASS

Return Type Method Name Parameters

void registerAsDataSource (boolean requiresLock)
void removeFromDataSources ()
void registerSplitReference (String fieldName, String updateType, Reference owner, boolean requiresLock)
void removeSplitReference (String fieldName, Reference owner)
void registerMergeReference (String fieldName, String updateType, Reference owner, boolean requiresLock)
void removeMergeReference (String fieldName, Reference owner)
abstract boolean canSplitOrMerge ()
abstract Reference createNewActor ()
abstract double getDataSize ()
abstract Object getSplitData (Reference[] dataSources, ...)
abstract void receiveSplitData (Object[] data)
abstract Object[] getMergeData (Reference[] dataTargets, ...)
abstract void receiveMergeData (Object data)
abstract void updateReferenceOnSplit (String referenceName, String updateType, Reference newActor)
abstract void updateReferenceOnMerge (String referenceName, String updateType, Reference mergedActor)
abstract void handleMergeMessage (Message message)

behavior TPFarmer {
NumberRangeGenerator nrg;
void act(String[] args) {

int numberWorkers = Integer.parseInt(args[0]);
TPWorkers[] workers = new TPWorker[numberWorkers];
nrg = new NumberRangeGenerator(args[1], args[2]);
for (int i = 0; i < numberWorkers; i++)

workers[i] = new TPWorker(this);
}
void requestWork(TPWorker source) {

if (nrg.hasMoreSegments())
source<-findPrimes(nrg.getNextSegment());

}
void receivePrimes(TPWorker source, DataSegment primes) {

primes.saveToDisk();
}

}
behavior TPWorker extends MalleableActor {

TPFarmer farmer;
TPWorker(TPFarmer farmer) {

this.farmer = farmer;
farmer<-requestWork(this);

}
void findPrimes(DataSegment primes) {

primes.findPrimes();
farmer<-receivePrimes(primes) @ farmer<-requestWork(this);

}
boolean canSplitOrMerge(){ return true; }
Reference createNewActor(){ return new TPWorker(farmer); }
void handleMergeMessage(Message message){

if (message.getName().equals(”findPrimes”)) this.process(message);
}

}

Fig. 4. Example of the Twin Primes application using malleable components.
Workers repeatedly request intervals of integers, find the primes in those
intervals and return the results to the farmer. Changes for malleability are
in bold.

method returns true. Locking may be required to prevent data
inconsistencies, as it allows the split or merge operation to be
performed as an atomic action. After a participant becomes
locked, it will only process messages related to split or merge
operations. All other messages are enqueued to be processed
when the split or merge completes. Additionally, in the caseof
a merge, the actor that is to be removed by the merge operation
will process the messages remaining in this queue with the
handleMergeMessage(Message message)method, allowing the
application to redirect these messages to appropriate actors,
after which the merged actor will be garbage collected.

When all participants are locked, in the case of a split,
the actor that initiated the split will call thecreateNewAc-
tor() method to create a new actor. Following this, all the

data sources and the source actor will receive agetSplit-
Data(Reference[] dataSources, ...)message, where thedata-
Sourcesargument are all the other data sources for the split
(including the source actor). This method should return the
data which is then received by the newly created actor with
the receiveSplitData(Object data)message. In the case of a
merge, the actor that initiated the merge will divide its data
with the getMergeData(Reference[] dataTargets, ...)and send
the slices of the data to the correspondingdataTargets, who
receive this with thereceiveMergeData(Object data)method.
Both the getSplitDataand getMergeDatamethods have op-
tional arguments by which the middleware can pass additional
information, such as resource availability at the locations of
target actors, which can allow for more asymmetrical splitting
and merging for heterogeneous systems. This data is optional,
and dependant on the decision module being used.

When thereceiveSplitDataor receiveMergeDatamessage
completes being processed, the references specified by the
registerSplitReferenceor registerMergeReferencemethods can
be updated. The source actor will sendupdateReferenceOn-
Split(String fieldName, String updateType)or updateRefer-
enceOnMerge(String fieldName, String updateType)messages
to all owners of references to be modified, with the name of the
reference to be modified (fieldName), and a specifier of how
to update that reference (updateType). After all the references
have been updated, the source actor and all participants can
release their locks, and continue the computation.

3) Malleability Decision Module:In a dynamic environ-
ment, when resources become available or unavailable, mod-
ifying the application granularity will enable a more accurate
mapping of the application components to the available re-
sources. This new mapping can be achieved through migration
of components. For different types of applications, different
granularities can result in faster execution due to processand
thread scheduling. For this work, a decision module is used
that changes application granularity when resource availability
changes (e.g., a new processor becomes available, or an old



processor gets removed), attempting to keep a granularity that
optimizes usage of processing availability on each processor.

V. RESULTS

This section describes the tests used to evaluate split and
merge. First, in Section V-A, two representative applications
for HPC are presented. Following this, Section V-B evaluates
split and merge using these applications with respect to
scalability, performance and overhead.

A. Sample Applications

Two sample SALSA applications have been modified to
utilize the API described in Section IV-B. Both applications
have an iterative nature. During each iteration, they perform
some computation and then exchange data. The solution is
returned when the problem converges or a certain number
of iterations have elapsed. The first application is an as-
tronomical application [14] based on data derived from the
SLOAN digital sky survey [15]. It uses linear regression
techniques to fit models to the observed shape of the galaxy.
This application can be categorized as a loosely coupled
farmer/worker application. The second application is a fluid-
dynamics application that models heat transfer in a solid. It
is a tightly coupled iterative application. Iterative applications
are particularly difficult to reconfigure, due to the fact that the
application only proceeds as fast as its slowest component.As
such, the results in Section V-B show the benefits for more
difficult cases of reconfiguration. For massively parallel and
non-iterative applications, even greater performance benefits
are possible, with less overhead.

We define two types of data for the purpose of this work:
location-dependent datathat is dependent on the behavior
of its containing component andlocation-independent data
that can be distributed irrespective of component behavior.
For example, the astronomy code performs the summation of
an integral over all the stars in it’s data set, so the data can
be distributed over any number of workers in any way. This
significantly simplifies data redistribution. On the other hand,
each worker in the heat application has location dependant data
because a worker modifies its data based on the data received
from its adjacent neighbors. In this case, if another workeris
added, the data needs to be distributed such that each worker
has a slice of the data with the correct neighbors.

1) Astronomy: The astronomy code follows the typical
farmer/worker style of computation. For each iteration, the
farmer generates a model and requests the accuracy of this
model from the workers, which calculate the accuracy based
on a set of star positions. The farmer then combines these
results, modifies the model and repeats. Each iteration involves
multiple integrals on large sets of stars (in the thousands or
millions), resulting in a low communication to computation
ratio, allowing for massive distribution.

Because the astronomy application has location-independent
data, the split process can be nearly entirely automated by
the given API. For split and merge operations, participating
data sources do not need to be locked. In the case of a split,

all participating workers provide a set of stars to the newly
created worker. For a merge, the merged actor splits its data
up and sends each slice to a participating worker. As the
data is location-independent, redistributed data slices can be of
arbitrary size, and sent to any other worker in the computation.

2) Heat: The heat application’s components communicate
as a doubly linked list of workers. Workers wait for incoming
messages from both their neighbors, use this data to perform
the computation and modify their own data, then send the
results to back to the neighbors. The communication to com-
putation ratio is significantly higher than the astronomy code
which makes the application more difficult to distribute, and
the data is location-dependant making the behavior of split
and merge more complicated.

To redistribute data in the heat application, the data must be
redistributed in a fashion that does not violate the semantics of
the application. Each worker has a set of columns containing
temperatures for a slice of the object the calculation is being
done on. For each iteration, a worker will receive the rightmost
column from its left neighbor, and the leftmost column from
its right neighbor. It then uses these values to recalculatethe
temperature in its own columns and send its leftmost column
to its left neighbor, and its rightmost column to its right
neighbor. Redistributing data involves shifting columns left
and right between participants, to make room for a new actor
or to accept data from the merged actor. For this application,
while data can only be shifted to the left or right neighbors
of a worker, a group of adjacent workers can coordinate to
communally redistribute work.

B. Evaluating Malleability

To evaluate autonomous malleability, the overhead of using
autonomous middleware and theMalleableActor imple-
mentation are shown with the heat and astronomy applications
in Section V-B.1. In Section V-B.2, the performance of the
split and merge operations are tested by comparing them
to similar reconfiguration using migration. The scalability of
split and merge operations is also tested by showing the
performance compared to migration for various numbers of
participants. Lastly, in Section V-B.3, the applications were
run on a dynamic environment, using component migration
with and without component malleability, to demonstrate the
benefit of autonomously malleable components.

1) Profiling Overhead: To evaluate the overhead of au-
tonomous malleability, the heat and astronomy applications
were run with and without middleware and profiling services.
The applications were run on the same environments with the
same configurations, however autonomous reconfiguration by
the middleware was disabled. Figure 5 shows the overhead of
the middleware andMalleableActors with the heat appli-
cation. The average overhead over all tests for the application
was 1% (i.e., the application was only 1

2) Malleability Performance:To determine the usability
and efficiency of the split and merge operations, they were
compared to migration. In Figure 6, the x-axis is the initial
number of processors for the application. For the test, an



Fig. 5. Overhead of using autonomous middleware and the malleable actor
interface with the heat application. The application was tested with the same
configurations with different amounts of parallelization,with and without the
middleware and malleable actor interface.
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Fig. 6. Migration compared to split and merge reconfiguration times for
various numbers of participants using the astronomy application.

additional processor was added and removed (requiring a
split and merge, or migrations). To ensure equal data was
being transferred, enough initial actors were created for the
tests using migration. For example, with 5 initial processors,
30 actors were used, so that data transferred to and from
the 6th processor was the same for both split, merge and
migration. In this case, 6 actors are migrated to and from
the new processor, while with split and merge, 6 initial actors
participate in the split and 7 participate in the merge. For all
tests, the amount of data transferred was the same. This test
also shows the scalability of split and merge, as the number
of participants increases. The times to migrate away from
the initial processors (migration out) and back to the initial
configuration (migration in), as well as the time for the split
and merge operations. Total reconfiguration time for migration
and split and merge are also shown. Reconfiguration time was
averaged over 100 reconfigurations.

Figure 6 shows that while the split and merge operations
are more complex than migration, in the worst case being
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Fig. 7. Autonomous reconfiguration using malleability and migration com-
pared to autonomous reconfiguration only using migration. Every 6 iterations,
the environment changed, from 8 to 12 to 16 to 15 to 10 to 8 processors. The
last 8 processors removed were the initial 8 processors. While split and merge
are more expensive reconfiguration operations, the malleable components
outperformed solely migratable components by 5%. A non-reconfigurable
application would not scale beyond 8 processors, nor be ableto move to
the new processors when the initial ones were removed.

twice as slow as similar migration, it is more scalable for
similar reconfiguration scenarios. With reconfiguration from
more than 10 initial processors, split and merge performed
faster than similar migration.

3) Malleability on a Dynamic Environment:The benefit
of malleability is demonstrated by executing the astronomy
application on a dynamic environment using autonomous
reconfiguration. In one case, only migration is used, but in
the other split and merge, in addition to migration, was used.
Figure 7 shows the iteration times for the application as
the environment changes dynamically. After 5 iterations, the
environment changes. Typically, the application reconfigures
itself in one or two iterations, and then the environment stays
stable for another 5 iterations. For both tests, the dynamic
environment changed from 8 to 12 to 16 to 15 to 10 and
then back to 8 processors. The 8 processors removed were
the initial 8 processors. Autonomous reconfiguration using
malleability was able to find the most efficient granularity and
data distribution, resulting in improved performance whenthe
application was running on 12, 15 and 10 processors. Perfor-
mance was the same for 8 and 16 processors as migration was
able to evenly distribute the workers in both environments.
However, for the 12 processor configuration the malleable
components were 6% faster, and for the 15 and 10 processor
configurations, malleable components were 15% and 13%
faster respectively. Overall, the astronomy application using
autonomous malleability and migration was 5% faster than
only using autonomous migration. Given the fact that for half
of the experiment the environments were easy for autonomous
migration to distribute workers, this increase in performance
is considerable. For more dynamic environments with a less
easily distributed initial granularity, malleability canprovide
even greater performance improvements.



VI. RELATED WORK

There is a wide range of literature for dynamic reconfigu-
ration on HPC environments. As far as the authors know, this
work is novel in that it is the first presentation of a generic
framework for autonomous reconfiguration using dynamic
component granularity. Selected work for dynamic reconfigu-
ration in HPC environments includes the GrADS project [3],
[4], a middleware which allows stop and restart of applications
in grid environments using the Globus Toolkit [16] based
on dynamic performance evaluation. Phoenix [17] is a pro-
gramming model which allows for a dynamic environment by
creating extra initial processes and using a virtual name space
and process migration to load balance and scale applications.
The selected work is far from comprehensive. For a more in
depth discussion of middleware and reconfiguration for HPC
environments, the reader is referred to [18].

VII. D ISCUSSION ANDFUTURE WORK

In this paper, malleable components are proposed as a re-
configuration strategy for autonomous (middleware-driven) ap-
plication adaptation to dynamic and shared HPC environments.
Language level extensions were provided for the SALSA
programming language, to allow application developers to
easily describe the parts of split and merge operations which
could not be done transparently. These extensions are used
by generic algorithms to split and merge the components. An
approach for distributing data asymmetrically in a split and
merge was given to improve efficiency and performance.

The IOS middleware was modified to use component mal-
leability in addition to component migration for autonomous
application reconfiguration. On sample applications, overhead
of using this middleware was shown to be under 1.5%. Split-
ting and merging components was shown to be a scalable oper-
ation. In the worst case, splitting and merging components was
twice as slow as equivalent migration, however in some cases
it was shown to be faster. Autonomous reconfiguration using
only migration was compared to autonomous reconfiguration
using migration and malleability. On a dynamic environment,
malleability was shown to provide a 5% improvement in
performance, with potential for larger performance gains.The
sample applications used in this evaluation were both itera-
tive, and as such are particularly challenging applications for
autonomous reconfiguration. These were chosen as opposed
to massively parallel applications which could easily gain
improved performance, as motivation for usefulness of this
type of reconfiguration.

This work is a motivation for the use of component
malleability, and it only briefly describes possibilities for
autonomous malleability. There are also many different ways
migration could be used in conjunction with malleability.
Future work involves providing increased middleware support
for autonomous malleability and language level support for
other programming paradigms. MPI has already been extended
to allow autonomous migration using IOS [2] and extensions
to allow malleability in MPI applications are in progress.
Determining the appropriate granularity for an application

based on dynamically profiled information is still an open
question. Using IOS to develop different decision modules
will help gain insights into how to appropriately use migration,
malleability and other types of application reconfiguration.
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