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Abstract— This paper describes a modular decentralized mid- % 'Nes0
dleware framework for dynamic application reconfiguration in % Nop (sM)
large scale heterogeneous environments. Component malkekty 180.00 = w w
is presented as a dynamic reconfiguration strategy. Dynamic 160.00- AN 4

component granularity enables improved load balancing by em-
ponent migration, and most importantly, it enables applicaions
to scale up to arbitrarily large numbers of processing nodesn
a relatively transparent way. Preliminary experimental results
show that without significant overhead, malleable compones
can improve applications performance and distributed resarce
utilization.
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[. INTRODUCTION 20.00-

As high performance computing (HPC) environments scale 0.00
to hundreds of parallel-processors and even millions okwor
stations, the demands on an application developer are be-
coming increasingly challenging and unmanageable. Masg. 1. Average lteration time for an application running ame to five
current HPC environments assume dedicated resources arépgessors with different component configurations. N is trumber of

. . . components and P is the number of processors. N=P (SM) usksahia

reservation based model for scheduling. Unfortunatelyirhs components, while N=P shows the optimal configuration (withdynamic
a model, users can either overschedule resources, resintinreconfiguration and middleware overhead). N=60 and N=5 stimvbest
wasted resources and time, or underschedule resources whfefiguration possible using migration with a fixed numbecofponents.
can lead to lost work. However, these issues can be overcome
with a model that assumes dynamic and shared resources. In
order for applications to be able to appropriately utilibe t _—— _ .
available resources in a dynamic shared HPC environme \ﬁ?"ab'"ty frequently, as in the_ case of web computing, [5]
new models for high performance computing are required;, or shared clusters with multiple users.
along with middleware and application level support. This Component migration allows applications to be reconfig-
work is in part motivated by the Rensselaer Grid, an ingtitutured with finer granularity (application restart can be seen
wide HPC environment, with dynamic and shared resource8S application migration). If required, components can be

To appropriately utilize a dynamic and shared Computi,@eckpointed easier and more concurrently than an entire
environment, app"cation components must have the ab”@pllcatlon Addltlona”y, concurrent reconfiguration lsss
to be reconfigured at run-time. In a complex large-scaldtrusive. However, component migration is limited by the
HPC environment, it is neither desirable nor plausible fé¥Pplication component granularity.
an application developer to have to design and implementTo illustrate this limitation, we use an iterative applioat
profiling strategies to examine the dynamic network an@ distributed maximum likelihood computation used for as-
what other (possibly unknown) applications are competarg ftronomical model validation, for more details see Sectien V
resources, and to design reconfiguration strategies basedAd. This application is run on a dynamic cluster consisting
this information. of five processors. In order to use all the processors, at leas

Previous approaches for dynamic reconfiguration have iore component per processor is required. When a processor
volved migrating components (such as actors, agents or pb@comes unavailable, the component on that processor ean mi
cesses) to utilize unused cycles [1], [2] or using checkimin grate to a different processor. With five components, rdgasd
to restart applications with a different set of resourcagtiiice of how migration is done, there will be imbalance of work on
newly available resources or to remove badly performirthe processors, so each iteration needs to wait for the pair
resources [3], [4]. Checkpointing and application restam of components running slower because they share a processor
prove highly expensive, especially when resources chan@e this example, 5 components running on 4 processors was
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45% slower than 4 components running on 4 processors, wittalleability. The paper concludes with a brief descriptain
otherwise identical parameters). One alternative to fix litled related work in Section VI and a discussion of the results and
imbalance is to increase the number of components to enaéenues for future work in Section VII.
a more even distribution of components no matter how many
processors are available (in this example, 60 components we Il. COMPONENTMALLEABILITY
used). Unfortunately, the increased amount of componentsThis section discusses the various considerations taken
causes the application to run slower, approximately 7.66 fm evaluating malleable components. Due to geographical,
this example. Additionally, this approach is not scalaldle, administrative and scalability concerns, it is not possibl
the number of components required for this scheme is tt® assume shared memory or synchronous communication
least common multiple of different combinations of procgssin HPC environments. Thus, for the considerations of this
availability. In many cases, the availability of resourdss discussion, components are assumed to encapsulate data and
unknown at the applications startup so an effective numbasmmunicate asynchronously. Distributed memory and asyn-
of components cannot be determined. Figure 1 shows theteonous communication alleviate some of the concerns in
two approaches compared to an ideal distribution of work, oimplementing split and merge. Distributed memory is an
component per processor. In this example, if a fixed numbegisier model to preserve data consistency, as opposed to
of components is used, averaged over all configurations, freplicated shared memory. Likewise, asynchronous communi
components is 13.2% slower , and sixty components resultcation eliminates the concerns of preserving invocatiankst
7.6% slower. used in synchronous communication. This section discusses
To solve the problem of appropriately using resources different possibilities for component malleability, witespect
the face of a dynamic execution environment where the avaib concurrency and complexity, and how malleability can be
able resources may not be knownalleablecomponents are used as a reconfiguration tool.
introduced. Instead of having a static number of components - )
malleable components casplit, creating more components - Component Malleability Strategies
andmerge reducing the number of components, redistributing Splitting or merging will involve one or more components
data based on these operations. With malleable componetuasparticipate in reconfiguring themselves, where the com-
the application’s granularity (or number of components) canunication topology of those components will be modified
be changed dynamically. Applications defimewcomponents for the addition or removal of new components, and the
split and merge, while the middleware determimdenbased data will be redistributed between these components. This
on resource availability information. As the dynamic eowir reconfiguration may need to be done atomically to preserve
ment of an application changes, in response, the granuladpplication semantics and data consistency.
and data distribution of that application can be changeddstm The simplest possibility for split and merge, mimicking
efficiently utilize its environment. For this example, ugsplit cell division in biological organisms, is to limit the sentas
and merge operations reconfigures the application to bet@blef a split operation to having one component split into two
operate within 0.2% of the speed of the optimal configurationomponents, and two components merge into one component.
regardless of processor availability. The major benefit of this approach is that it is the easiest
This work argues that malleable components will provid® implement. It is also a highly concurrent approach, as all
applications with the ability to more effectively scale agfd components could conceivably split at the same time, dogbli
ficiently use resources in HPC environments, especialliién tthe granularity of the application. Merging is also coneuir
case of dynamic and/or shared resources. The responsibilit that each component could pair up with another and merge
of the application developer to implement split and mergencurrently, reducing the granularity of the application
can be minimized through an API in conjunction with generibalf.
split and merge algorithms. Split and merge are shown to beAnother possibility is to allow a single component to split
scalable and efficient operations. Middleware is capable ioto multiple components, and multiple components to merge
autonomously splitting, merging and migrating componentsito a single component. While slightly more difficult to
improving the performance of applications on dynamic HP{nplement than the previous approach, it encompasses the
environments with minimal overhead (less than 2% on thwevious approach and allows the same level of concurrency.
applications tested). However, the use of this type of split and merge semantics
This paper continues as follows. Section Il discussesrdiffeseems rather limited, in that it is best suited for expanding
ent possibilities for the implementation of malleable camp small number of components to a larger number to utilize more
nents in HPC environments, and the potential for autonomaesources, or releasing a large number of resources. Fdesma
malleability. An approach for developing HPC middleware fochanges in resources it is possible for this and the previous
autonomous reconfiguration is presented in Section lll. Aapproach to succumb to the same problems as migration.
implementation of malleable components and a middleware fdainly, these approaches are prone to data imbalances.
autonomous reconfiguration is given in Section IV. Section V The most versatile approach would be to allow any number
presents representative applications and how they wer@ usé components,N, to split or merge into any other num-
to evaluate the split and merge operations and autonomdnes of componentsj)/. This would solve problems of data



imbalances for minor changes in resources, and still allow
for modification of granularity to handle major changes in Application Application Application
resource availability. However, due to the number of com- Layer
ponents involved, this approach is not as concurrent as the g Leguege it
previous approaches (although, it does not necessarilyireeq v t
parallelization). The most serious drawback is the fact tiva | Applcation Proftng APY | | Reconfiguration API J
implementation of such an approach could be very difficult ! I
due to its complexity. Additionally, this kind of split and Middleware Bt ?Aec;sifn e Brotocal
merge operations could prove to be very expensive, similar Layer Modules i Modules
to application start and restart. .

For this work, we define the split operation as taking any —
number of componentd and generatingV + 1 components. [ e J
Merge takesNV components and results If — 1 components. Physical Third‘P arty Middl‘eware
This provides a middle ground where the split and merge E“Vf:y‘:‘:‘““‘ Monitoring Services Profiling Tools

operations are not as expensive or complex asNh&o M

approach, and more appropriate for a dynamic grid enVirOH_. 2. Approach for autonomous middleware in HPC enviromsie
ment, where large changes in resource availability would nfhe middieware receives profiling information about the limptions and

be overly common (which is more suited for a oneNoand environment through profiling interfaces. Profiling infaation is distributed

in the middleware using various protocols. Decisions akertedbased on local
N to one approach). and remote profiling information, both of the applicatiorddmardware, and
the application is reconfigured through a reconfiguratiderface.

B. Malleability as a Reconfiguration Tool

Rather than considering malleability as an alternative ito m
gration, it can be used as an additional tool in the reperimir L . L .
an autonomous reconfiguration middleware. Malleability Ce{:\pphcatlons in-an appl_lcatlpn a“‘?' programming Ianguage
modify application granularity allowing for more approgé independent manner. Likewise, middleware can profile re-

reconfiguration via migration. Splitting and merging can b@ourﬁe availabill<ity andhinteract_with third party C"Enmﬁhb
used on their own to allow for greater parallelization of th@S the Network Weather Service (NWS) [8] or the Globus

application to more appropriately utilize resources in ¢hse Meta Discovery Service (MDS) [9], allowing more informed

of computing nodes with multiple processors. Appncaﬂonréaconfiguration decisions based on both the environment and

with malleable components will be able to scale as far &éecu“”g_ appl|cat|oqg. -
data limitations and resource availability allow. With ale 10 achieve scalability and to accommodate the dynamicity

defined interface, a middleware can autonomously recorfig@ HPC environments, middieware should be decentralizeld an

the granularity of the application through splitting andrgieg a!lpw for the dyrjamic addition and removal of resources. Ad-
of components to improve application performance. ditionally, the middleware should not be restricted to ayken
type of profiling, coordination or method of reconfiguration

I1l. M ODULAR MIDDLEWARE FORAUTONOMOUS Different decision strategies will require different typef pro-
RECONFIGURATION filed information. The communication topologies used by the
decentralized middleware also play a role in the perforraanc

of concerns, alleviating application developers from marf)f the middleware, as certain topologies are more suited to
of the difficulties involved. An application developer sty SPecific HPC environments [2] (e.g., environments that are
not need to determine at runtime what other applications 4fTe€ homogeneous, like clusters, or more heterogeneaas, |i
running in a shared environment, nor their resource usage. IN€ INternet). As such, a modular approach with different
more practical to have a middleware layer to gather profilifu99able decision, communication and profiling modulels wi
information about applications and the HPC environment, @low @ HPC middleware to most appropriately meet the
A generic middleware allows a wider adoption of diffequirements of its applications and environment.
ferent classes of applications as well as various execution
environments. The middleware can perform dynamic recon-
figuration based on profiled information of applications and To implement component malleability, previous work using
environments with significant benefit [7]. Figure 2 reprdésenthe SALSA programming language [10] and the Internet Op-
the separation advocated in this paper. At the applicatienating System (IOS) [2] is leveraged. SALSA is a distrildute
or language level, a developer speciftesw reconfiguration programming language and IOS is a the decentralized mid-
should be done. Profiling, through an API or implemented dteware with plug-in decision, profiling and communication
the language level, provides the middleware with inforavati modules. Sections IV-A.1 and IV-A.2 provide background
about application status and resource usage. Having pigfilinformation about the SALSA programming language and 10S
and reconfiguration tools conform to a specific API allows thmiddleware, respectively. Language extensions to SALSA fo
middleware to receive profiling information and reconfiguremalleability are discussed in Section IV-B.1 and their use i

The challenges of a HPC environment require a separat

IV. IMPLEMENTATION



used with different applications and programming paradigm
An application developer is only required to implement an
interface through which I0S can dynamically reconfigure the
application and gather profiling information. 10S uses arpee
to-peer network of agents with pluggable communication,
profiling and decision making modules, allowing it to scale
to large environments and providing a mechanism to evaluate
algorithms for reconfiguration. Figure 3 shows the arclbibec
of an 10S agent. An IOS agent is present on every node in the
HPC environment. Each agent is modular, consisting of three
plug-in modules:
« A Profiling Module that gathers information about the
components’ communication topology and resource uti-
lization, the physical network topology, and the resources

Application Layer

Virtual Network Layer (I0S Agent)
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Fig. 3. 10S Agents consist of three modules: a decision nedudofiling
module and protocol module. The profiling module gathersrimfition about

the components executing locally, as well as the underlyiagiware. The
protocol module gathers information from other agents. dégsion module
takes local and remote information and uses it to decide hewapplication

available locally.
A Protocol Module to allow for inter-agent communica-
tion, allowing the IOS agents to arrange themselves with

should be reconfigured. different virtual network topologies, such as hierarchica

or purely peer-to-peer topologies.

A Decision Module which determines when to perform
reconfiguration, and how reconfiguration can be done.
The decision module interacts with applications through
asynchronous message passing. For this work, the deci-
sion module autonomously senuigyrate splitandmerge
messages to the application based on its decision making

generic split and merge algorithms is presented in Section |
B.2. Finally, the strategy used for deciding when to splid an
merge is described in Section IV-B.3.

A. Software Framework

1) The SALSA Programming Languag8ALSA applica- strategy.

tions consist ofactors The Actor [11] model of computation  The modules interact with each other and the applications
is based around the concept of encapsulating state andssroggrough well-defined interfaces, making it possible to lgasi
into a single entity. Each actor has a unique name, Whi@évelop new modules, and to combine them in different
can be used as a reference by other actors. Communicatipfys to test different types of application reconfiguration

between actors is purely asynchronous. The actor modglction |V-B.3 describes the decision modules used to atalu
assumes guaranteed message delivery and fair scheduling®fponent malleability.

computation. Actors only process information in reaction t

messages. While processing a message, an actor can cBrrfFxtensions for Malleability

out any of three basic operations: alter its state, create ne 1) Language ExtensionsSplit and merge operations re-

actors, or send messages to peer actors. Actors are treerefpiire data redistribution and modification of the applicas

inherently independent, concurrent and autonomous whicbmmunication topology. These features are not required by

enables efficiency in parallel execution [12] and facitat component migration. Migration and profiling have been sup-

mobility [13]. ported at the SALSA language-level and are transparengto th
SALSA programs may be executed in heterogeneous dogrammer. However, split and merge features requiraisoll

tributed environments. SALSA code is compiled into Javaration from programmers: e.g., a SALSA developer needs to

source and then byte-code. This allows SALSA progranestend theMal | eabl eAct or class shown in Table | and

to employ components of the Java class library. It also eimplement the required abstract methods. Optional akistrac

ables SALSA developers to view a heterogeneous netwarlethods allow for automated data redistribution and refeze

of physical machines as a homogeneous network of virtugldirection. Figure 4 shows the use of this APl in the masgive

machines. For this work, each actor is seen as a recontijstributed Twin Primes application written in SALSA.

urable component. SALSA actors can migrate transparently?) Split and Merge AlgorithmsThe split and merge algo-

without any modification of code, enabling easy autonomoushms performed by malleable actors proceed as follows. Th

reconfiguration through migration. split or merge of an actor is initiated when the middleware
2) The 10S Middleware:The Internet Operating Systemsends asplit(Reference[] dataSourcesy merge(Reference]]

(I0S) [7] is a modular middleware for autonomous recordataSources)nessage to an actor. ThdataSourcesare all

figuration of distributed applications. IOS shifts the cers other actors that will collaborate in the split or merge.

of HPC environment profiling and reconfiguration decisions First, the algorithm gets a lock on all data sources and

from the applications to the middleware, allowing appli@at owners of references needing modification during the split o

components to be reconfigured autonomously at run-time rimerge. Locks are obtained if the actors are not particigatin

a transparent manner. IOS is generic and can therefore amother split or merge operation, and tenSplitOrMerge()



TABLE |
MALLEABLE ACTORCLASS

[ Return Type  Method Name Parameters |
void registerAsDataSource (boolean requiresLock)
void removeFromDataSources 0
void registerSplitReference (String fieldName, String atpdype, Reference owner, boolean requiresLock)
void removeSplitReference (String fieldName, Referencaenyv
void registerMergeReference (String fieldName, Stringat@type, Reference owner, boolean requiresLock)
void removeMergeReference (String fieldName, Referenaeeow
abstract boolean canSplitOrMerge 0
abstract Reference createNewActor 0
abstract double getDataSize 0
abstract Object getSplitData (Reference[] dataSourcgs, .
abstract void receiveSplitData (Object[] data)
abstract Object[] getMergeData (Reference[] dataTargejs
abstract void receiveMergeData (Object data)
abstract void updateReferenceOnSplit  (String refereaos®\ String updateType, Reference newActor)
abstract void  updateReferenceOnMerge (String referesuoe) String updateType, Reference mergedActor)
abstract void  handleMergeMessage (Message message)
ehavi or ar mer u u Wi iV it-
behavi or TPF { data sources and the source actor will receivgeaSplit
NurrberRangeGgenerator nrg;
void act(String[] args) { Data(Reference[] dataSources, .njessage, where thaata-
int nunberWrkers = Integer.parselnt(args[0]); .
TPWr kers[] workers = new TPVWr ker [ nunber Wr kers] ; Sourcesargument are all the other data sources for the split
nrg = new Nunber RangeGenerator(args[1], args[2]); . . .
for (It 1 =001 o amber Ver ker o. i +9) (including the source actor). This method should return the
. ’ data which is then received by the newly created actor with
3oid request Wor k( TPWor ker source) { . . . y y
if (nrg. hashbreSegnent s()) the receiveSplitData(Object datanessage. In the case of a
source<-findPrimes(nrg. get Next Segnent()); L . .. .
Jaid recei vebri mes( TPverker source, Dat aSegrent primss) | merge, the actor that initiated the merge will divide itsadat
primes. saveToD sk(); ’ with the getMergeData(Reference[] dataTargets, and send
' the slices of the data to the corresponddagaTargets who
DOy er ker extends MalleableActor { receive this with theeceiveMergeData(Object datapethod.
e armar = herer) Both the getSplitDataand getMergeDatamethods have op-
j farmer<requestiork(this); tional arguments by which the middleware can pass additiona
Yo Py s Dot asegnent. pri nes) { information, such as resource availability at the location
y farmer<recelvePrimes(prines) @farmer <-requestuerk(this): target actors, which can allow for more asymmetrical spitt
boolean canSplitQrierge(){ retum true; } and merging for heterogeneous systems. This data is optiona

Reference createNewActor() return new TPWorker(farmer); }
void handleMergeM ge(M: ge mi d
if (message.getName().equals("findPrimes”)) this.pross(message);

and dependant on the decision module being used.

} ’ When thereceiveSplitDataor receiveMergeDatanessage
. o - ) completes being processed, the references specified by the
Fig. 4. Example of the Twin Primes application using malleatomponents. . . .
Workers repeatedly request intervals of integers, find thimgs in those registerSplitReferencer reg|sterMe_rgeReferencreethods can
intervals and return the results to the farmer. Changes falteability are be updated. The source actor will senddateReferenceOn-
in bold. Split(String fieldName, String updateType) updateRefer-
enceOnMerge(String fieldName, String updateTypeysages
to all owners of references to be modified, with the name of the

method returns true. Locking may be required to prevent ddfference to be modifiedi¢ldNamg, and a specifier of how
inconsistencies, as it allows the split or merge operatiobet to update that referencefdateTypg After all the refgr_ences
performed as an atomic action. After a participant becomB&ve been updated, the source actor and all participants can
locked, it will only process messages related to split orgaer"€l€ase their locks, and continue the computation.

operations. All other messages are enqueued to be processgyj Malleability Decision Module:In a dynamic environ-

when the split or merge completes. Additionally, in the cafse ment, when resources become available or unavailable, mod-

a merge, the actor that is to be removed by the merge operafif§ihg the application granularity will enable a more acater

will process the messages remaining in this queue with th@apping of the application components to the available re-

handleMergeMessage(Message messagahod, allowing the sources. This new mapping can be achieved through migration

application to redirect these messages to appropriatesactef components. For different types of applications, d#fer

after which the merged actor will be garbage collected.  granularities can result in faster execution due to proeess
When all participants are locked, in the case of a splifairead scheduling. For this work, a decision module is used

the actor that initiated the split will call thereateNewAc- that changes application granularity when resource aiiila

tor() method to create a new actor. Following this, all thehanges (e.g., a new processor becomes available, or an old



processor gets removed), attempting to keep a granulaaty tall participating workers provide a set of stars to the newly
optimizes usage of processing availability on each prawess created worker. For a merge, the merged actor splits its data
up and sends each slice to a participating worker. As the
data is location-independent, redistributed data slie@sbe of

This section describes the tests used to evaluate split artitrary size, and sent to any other worker in the companati
merge. First, in Section V-A, two representative applimadsi 2) Heat: The heat application’s components communicate
for HPC are presented. Following this, Section V-B evalsiatas a doubly linked list of workers. Workers wait for incoming
split and merge using these applications with respect meessages from both their neighbors, use this data to perform
scalability, performance and overhead. the computation and modify their own data, then send the
results to back to the neighbors. The communication to com-
putation ratio is significantly higher than the astronomyeo

Two sample SALSA applications have been modified thich makes the application more difficult to distributedan
utilize the API described in Section IV-B. Both applicationthe data is location-dependant making the behavior of split
have an iterative nature. During each iteration, they perfo and merge more complicated.
some computation and then exchange data. The solution io redistribute data in the heat application, the data mest b
returned when the problem converges or a certain numbedistributed in a fashion that does not violate the serosuoti
of iterations have elapsed. The first application is an athe application. Each worker has a set of columns containing
tronomical application [14] based on data derived from themperatures for a slice of the object the calculation isdpei
SLOAN digital sky survey [15]. It uses linear regressiomlone on. For each iteration, a worker will receive the righgin
techniques to fit models to the observed shape of the galagglumn from its left neighbor, and the leftmost column from
This application can be categorized as a loosely couplid right neighbor. It then uses these values to recalctlate
farmer/worker application. The second application is adflui temperature in its own columns and send its leftmost column
dynamics application that models heat transfer in a sotid.tb its left neighbor, and its rightmost column to its right
is a tightly coupled iterative application. Iterative aipptions neighbor. Redistributing data involves shifting columest |
are particularly difficult to reconfigure, due to the facttttiee and right between participants, to make room for a new actor
application only proceeds as fast as its slowest compoAent.or to accept data from the merged actor. For this application
such, the results in Section V-B show the benefits for mowghile data can only be shifted to the left or right neighbors
difficult cases of reconfiguration. For massively paralletia of a worker, a group of adjacent workers can coordinate to
non-iterative applications, even greater performanceefiisn communally redistribute work.
are possible, with less overhead. ) N

We define two types of data for the purpose of this worl- Evaluating Malleability
location-dependent datéhat is dependent on the behavior To evaluate autonomous malleability, the overhead of using
of its containing component ankbcation-independent data autonomous middleware and thvil | eabl eAct or imple-
that can be distributed irrespective of component behaviarentation are shown with the heat and astronomy application
For example, the astronomy code performs the summationifSection V-B.1. In Section V-B.2, the performance of the
an integral over all the stars in it's data set, so the data cgplit and merge operations are tested by comparing them
be distributed over any number of workers in any way. Thi® similar reconfiguration using migration. The scalapilif
significantly simplifies data redistribution. On the othanHd, split and merge operations is also tested by showing the
each worker in the heat application has location dependdat dperformance compared to migration for various numbers of
because a worker modifies its data based on the data recepadicipants. Lastly, in Section V-B.3, the applicationsrey
from its adjacent neighbors. In this case, if another worker run on a dynamic environment, using component migration
added, the data needs to be distributed such that each workigh and without component malleability, to demonstrate th
has a slice of the data with the correct neighbors. benefit of autonomously malleable components.

1) Astronomy: The astronomy code follows the typical 1) Profiling Overhead: To evaluate the overhead of au-
farmer/worker style of computation. For each iteratione thtonomous malleability, the heat and astronomy application
farmer generates a model and requests the accuracy of thée run with and without middleware and profiling services.
model from the workers, which calculate the accuracy bas&te applications were run on the same environments with the
on a set of star positions. The farmer then combines thesmme configurations, however autonomous reconfiguration by
results, modifies the model and repeats. Each iteratiohvieso the middleware was disabled. Figure 5 shows the overhead of
multiple integrals on large sets of stars (in the thousards the middleware and¥al | eabl eAct or s with the heat appli-
millions), resulting in a low communication to computatiorcation. The average overhead over all tests for the apjalicat
ratio, allowing for massive distribution. was 1% (i.e., the application was only 1

Because the astronomy application has location-indepgnde 2) Malleability Performance: To determine the usability
data, the split process can be nearly entirely automated dnyd efficiency of the split and merge operations, they were
the given API. For split and merge operations, particigaticompared to migration. In Figure 6, the x-axis is the initial
data sources do not need to be locked. In the case of a spliimber of processors for the application. For the test, an

V. RESULTS

A. Sample Applications
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Fig. 5. Overhead of using autonomous middleware and theeat#é actor

interface with the heat application. The application waset with the same Fig. 7. Autonomous reconfiguration using malleability aniration com-

configurations with different amounts of parallelizationith and without the pared to autonomous reconfiguration only using migratiorer 6 iterations,

middleware and malleable actor interface. the environment changed, from 8 to 12 to 16 to 15 to 10 to 8 psmrs. The
last 8 processors removed were the initial 8 processorsleVBpiit and merge
are more expensive reconfiguration operations, the médleabmponents

4500 outperformed solely migratable components by 5%. A nowméigurable

‘ l\lf\l/ilgrati‘sm %Wai —— application would not scale beyond 8 processors, nor be @bi@ove to
b= A
4000 | Migration Round Trip —s— 1 the new processors when the initial ones were removed.
Split —e—
3500 . Migrate

Round Trip

3000

twice as slow as similar migration, it is more scalable for
similar reconfiguration scenarios. With reconfiguratioanr
more than 10 initial processors, split and merge performed
faster than similar migration.
3) Malleability on a Dynamic EnvironmentThe benefit
of malleability is demonstrated by executing the astronomy
application on a dynamic environment using autonomous
0 ; ‘ ‘ : ‘ : : reconfiguration. In one case, only migration is used, but in
Number of Processors the other split and merge, in addition to migration, was used
Figure 7 shows the iteration times for the application as
the environment changes dynamically. After 5 iteratiohg, t
environment changes. Typically, the application recomégu
itself in one or two iterations, and then the environmenysta
stable for another 5 iterations. For both tests, the dynamic
additional processor was added and removed (requiringeavironment changed from 8 to 12 to 16 to 15 to 10 and
split and merge, or migrations). To ensure equal data wémen back to 8 processors. The 8 processors removed were
being transferred, enough initial actors were created tier tthe initial 8 processors. Autonomous reconfiguration using
tests using migration. For example, with 5 initial proce&sso malleability was able to find the most efficient granularibda
30 actors were used, so that data transferred to and frdata distribution, resulting in improved performance wihies
the 6th processor was the same for both split, merge aagplication was running on 12, 15 and 10 processors. Perfor-
migration. In this case, 6 actors are migrated to and fromance was the same for 8 and 16 processors as migration was
the new processor, while with split and merge, 6 initial estoable to evenly distribute the workers in both environments.
participate in the split and 7 participate in the merge. Hbr éHowever, for the 12 processor configuration the malleable
tests, the amount of data transferred was the same. This tgshponents were 6% faster, and for the 15 and 10 processor
also shows the scalability of split and merge, as the numlgnfigurations, malleable components were 15% and 13%
of participants increases. The times to migrate away frofaster respectively. Overall, the astronomy applicatising
the initial processors (migration out) and back to the ahiti autonomous malleability and migration was 5% faster than
configuration (migration in), as well as the time for the splionly using autonomous migration. Given the fact that fof hal
and merge operations. Total reconfiguration time for migrat of the experiment the environments were easy for autonomous
and split and merge are also shown. Reconfiguration time waggration to distribute workers, this increase in perfonca
averaged over 100 reconfigurations. is considerable. For more dynamic environments with a less
Figure 6 shows that while the split and merge operatioessily distributed initial granularity, malleability cgrovide
are more complex than migration, in the worst case beimrgen greater performance improvements.
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Fig. 6. Migration compared to split and merge reconfiguratitnes for
various numbers of participants using the astronomy agiiic.



V1. RELATED WORK based on dynamically profiled information is still an open

There is a wide range of literature for dynamic reconﬁnguestion. Using 10S to develop different decision modules
ration on HPC environments. As far as the authors know, t¥éll help gain insights into how to appropriately use migpat
work is novel in that it is the first presentation of a generi@alleability and other types of application reconfiguratio
framework for autonomous reconfiguration using dynamic
component granularity. Selected work for dynamic reconfigu
ration in HPC environments includes the GrADS project [3], We would like to acknowledge the National Science Foun-
[4], a middleware which allows stop and restart of applmasi dation (NSF CAREER Award No. CNS-0448407) and 1BM
in grid environments using the Globus Toolkit [16] basetSUR Awards 2003 and 2004) for partial support for this
on dynamic performance evaluation. Phoenix [17] is a préesearch.
gramming model which allows for a dynamic environment by
creating extra initial processes and using a virtual nanagep
and process migration to load balance and scale applicatioril] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of ld
The selected work is far from comprehensive. For a more in workstations,” inProceedings of the 8th International Conference of

) X . X _ Distributed Computing Systemdune 1988, pp. 104-111.
depth discussion of middleware and reconfiguration for HP@] k. E. Maghraoui, T. Desell, B. K. Szymanski, J. D. Teresand C. A.
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