
Encyclopedia of Cloud Computing, First Edition. Edited by San Murugesan and Irena Bojanova.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

50.1  Introduction

Developing standalone applications running on a single computer is very different from developing scalable
applications running on the cloud, such as data analytics applications that process terabytes of data, Web
applications that receive thousands of requests per second, or distributed computing applications where com-
ponents run simultaneously across many computers. Cloud computing service providers help facilitate the
development of these complex applications through their cloud programming frameworks. A cloud program-
ming framework is a software platform to develop applications in the cloud that takes care of nonfunctional
concerns, such as scalability, elasticity, fault tolerance, and load balancing. Using cloud programming frame-
works, application developers can focus on the functional aspects of their applications and benefit from the
power of cloud computing.

In this chapter, we will show how to use some of the existing cloud programming frameworks in three
application domains: data analytics, Web applications, and distributed computing. More specifically, we will
explain how to use MapReduce (Dean and Ghemawat, 2008) for data analytics, Google App Engine (Google,
2014) for Web applications, and SALSA (Varela and Agha, 2001) for distributed computing. The rest of the
chapter is structured as follows. In section 50.2, we describe nonfunctional concerns supported at different
levels of cloud services and go through existing cloud programming frameworks. In section 50.3, we explain
MapReduce, Google App Engine, and Simple Actor Language System and Architecture (SALSA). In
section 50.4, we illustrate how to use these three programming frameworks by showing example applications.
Finally, we conclude the chapter in section 50.5.

Developing Elastic Software for the Cloud

Shigeru Imai, Pratik Patel, and Carlos A. Varela

Rensselaer Polytechnic Institute, USA

50

c50.indd 609 2/2/2016 12:52:51 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

610  Encyclopedia of Cloud Computing

50.2  Programming for the Cloud

50.2.1  Nonfunctional Concerns

Figure 50.1 illustrates how cloud programming frameworks hide nonfunctional concerns from application
developers by providing programming languages or application programming interfaces (APIs) to manage
the application’s execution on different cloud service models, such as IaaS and PaaS.

Nonfunctional concerns are not directly related to the main functionality of a system but guarantee important
properties such as security or reliability. In the context of cloud computing services, important nonfunctional
concerns include the following:

●● Scalability: the ability to scale up and out computing resources to process more workload or to process it
faster as demanded by cloud users.

●● Elasticity: the ability of an application to adapt in order to scale up and down as service demand grows or
shrinks.

●● Fault tolerance: the ability to keep the system working properly even in the event of a computing resource
failure.

●● Load balancing: the ability to balance the workload between heterogeneous networked computing
resources.

If not using cloud computing, application developers would have to acquire physical infrastructure
(machines, networks, etc.) to support their needs. Using IaaS, developers can create virtual machines
(VMs) without up‐front costs for hardware; however, they have to install and configure the VM management

Data analytics

Google App
Engine

MapReduce SALSA

Physical infrastructure

IaaS

PaaS

Web application
Distributed
computing

: Application developer

Cloud
applications

Cloud
programming
frameworks

Cloud
services

API

Cloud programming frameworks (Middleware)

Figure 50.1  Cloud programming frameworks take advantage of layered services by exposing an Application
Programming Interface (API) to developers

c50.indd 610 2/2/2016 12:52:51 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  611

software, networking, operating system, and any additional libraries that their application needs. Finally,
different PaaS providers offer from transparent scalability and elasticity to transparent fault tolerance and
load balancing services. Typically, these nonfunctional concerns are offered, constraining developers to
specific programming models and patterns, such as MapReduce, Web applications, and distributed actor
computations.

50.2.2  Overview of Cloud Programming Frameworks

Data analytics. MapReduce is a popular data‐processing framework created by Google following a data‐par-
allel programming model based on the map and reduce higher‐order abstractions from functional program-
ming. Hadoop (see http://www.apache.org/, accessed January 5, 2016) is a popular open‐source
implementation of MapReduce and has a large user and contributor base. There are a number of projects
derived from Hadoop. One such project is Pig (http://www.apache.org/), which was first developed by Yahoo!
Pig offers a high‐level language called Pig Latin to express data analytics programs. Programs authored in
Pig Latin are translated into Java‐based Hadoop code and thus Pig users benefit from Hadoop’s scalability
and fault‐tolerance properties as well as Pig Latin’s simplicity. Another Hadoop related project is Hive (http://
www.apache.org/), initially developed by Facebook. Hive is a data warehouse platform built on top of
Hadoop. Mahout (http://www.apache.org/) is a set of scalable machine learning libraries that also works over
Hadoop. Spark (http://www.apache.org/) is a cluster‐computing framework that focuses on efficient use of
data objects to speed up iterative algorithms such as machine learning or graph computation. Whereas Hadoop
reads (writes) data from (to) storage repeatedly, Spark caches created data objects in memory so that it can
perform up to 100 times faster than Hadoop for a particular class of applications. Shark (Xin et al., 2013) is
a Structured Query Language (SQL) query engine that has compatibility with Hive and runs on Spark. These
frameworks do not support elastic behavior of applications, but have good scalability, load balancing, and
fault tolerance.

Web applications. As Web applications have unpredictable and varying demands, they constitute a very
good match for cloud computing. There are several PaaS providers that offer a framework for developing and
hosting Web applications, such as Google App Engine, Microsoft Azure (Microsoft, 2014), and Heroku
(2014). Google App Engine supports Python, Java, PHP, and Go. The runtime environment for Google App
Engine is restrictive (e.g., no socket use and no file system access), but you get good scalability with a few
lines of code. In contrast, Microsoft Azure offers a more flexible runtime environment; however, it requires
you to write more code. Microsoft Azure supports .NET, Java, PHP, Node.js, and Python. Heroku originally
supported only Ruby, but now supports Java, Node.js, Scala, Clojure, Python, and PHP. In terms of coding
flexibility, Heroku is also as restrictive as Google App Engine; however, it has libraries to support data man-
agement, mobile users, analytics, and others.

Distributed computing. Distributed computing systems typically have components that communicate
with each other via message passing to solve large or complex problems cooperatively. Erlang (Armstrong
et al., 1993) and SALSA are concurrent and distributed programming languages based on the actor model
(Agha, 1986), in which each actor runs concurrently and exchanges messages asynchronously while not
sharing any state with any other actor. Actor systems can therefore be reconfigured dynamically, while
transparently preserving message passing semantics, which is very helpful for scalability, elasticity, and
load balancing. Erlang is a functional language that supports fault tolerance and hot swapping. SALSA’s
compiler generates Java code allowing programmers to use the entire Java library collection. It also sup-
ports transparent actor migration across the Internet based on a universal naming system. Several research
efforts have been made to support nonfunctional concerns for SALSA programs. The Internet Operating
System (IOS) (El Maghraoui et al., 2006) is a distributed middleware framework that provides support for
dynamic reconfiguration of large‐scale distributed applications through opportunistic load balancing.

c50.indd 611 2/2/2016 12:52:51 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

612  Encyclopedia of Cloud Computing

In addition to the distributed load‐balancing capability, the Cloud Operating System (COS) (Imai et al.,
2013) further supports elasticity, enabling adaptive virtual machine allocation and de‐allocation on hybrid
cloud environments, where private clouds connects to public clouds.

Table 50.1 summarizes the cloud programming frameworks mentioned above.

50.3  Cloud Programming Frameworks

In this section, we present existing cloud programming frameworks for data analytics, web applications, and
distributed computing, namely, MapReduce, Google App Engine, and the SALSA programming language.

50.3.1  Data Parallelism with MapReduce

MapReduce created by Google is a data‐parallel programming model based on the map and reduce higher
order abstractions from functional programming. Its implementation is also called MapReduce; this is
designed to schedule automatically the parallel processing of large data sets distributed across many comput-
ers. MapReduce was designed to have good scalability to achieve high throughput, and fault tolerance to deal
with unavoidable hardware failures. These nonfunctional concerns are transparent to application developers;
MapReduce provides a simple application programming interface requiring to define only the map and
reduce functions that have the format shown in Listing 50.1.

Table 50.1  Summary of cloud programming frameworks

Category Name Nonfunctional
concerns

Description

Data analytics MapReduce,
Hadoop

Scalability, fault
tolerance, load
balancing

MapReduce exposes simple abstractions: map
and reduce. Hadoop is an open‐source
implementation of MapReduce.

Pig, Hive Pig and Hive are high‐level languages for
Hadoop.

Mahout, Spark,
Shark

Mahout is a machine‐learning library running
on top of Hadoop. Spark is a data analytics
framework especially for iterative and graph
applications. Shark is a Hive‐compatible
SQL engine running on top of Spark.

Web applications Google App
Engine

Scalability, elasticity,
fault tolerance, load
balancing

A PaaS from Google. The runtime environment
is restrictive, but provides a good scalability.
Python, Java, PHP, and Go are supported.

Microsoft
Azure

A PaaS from Microsoft with automatic scaling,
automatic patching, and security services.

Heroku A PaaS from Heroku with libraries for data
management, mobile users, analytics, and
others.

Distributed
computing

SALSA, Erlang Scalability, fault
tolerance (for Erlang)

General‐purpose programming languages
based on the actor model.

IOS, COS Scalability, elasticity
(COS), load
balancing

Middleware framework for managing
distributed SALSA programs.

c50.indd 612 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  613

The computation in MapReduce basically consists of two phases: the “map” phase producing intermediate
results, followed by the “reduce” phase processing the intermediate results. Both phases take a (key, value)
pair as input and output a list. Keys and values can be arbitrary numbers, strings, or user‐defined types. First,
the map function gets called by MapReduce and transforms a (k1, v1) pair into an intermediate list of
(k2, v2). For instance, in text‐mining applications, v1 may be a partial text of an input file. Next, these
intermediate lists are aggregated into pairs where each pair has all v2 values associated with the same k2 key.
Finally, the reduce function is invoked with a (k2, list(v2)) pair and it outputs a list of v3 values.

Suppose you have a big input file consisting of DNA sequences, which are combinations of {C, G, T, A}
characters, one way to write map and reduce functions to count each character occurrence in the input file can
be given as shown in Listing 50.2.

The map function emits count 1 as an occurrence of a DNA character. The reduce function takes a list of
counts and emits the sum of these counts for a particular DNA character. By calling these simple two func-
tions repeatedly, MapReduce outputs occurrences of each DNA character. An example execution for the
DNA sequence counting example is shown in Figure 50.2.

50.3.2  Service‐Oriented Programming with Google App Engine

Google App Engine (App Engine hereafter) is a programming framework to develop scalable Web applications
running on Google’s infrastructure. Developed Web applications are hosted by Google and accessible via the
user’s own domain name. Google automatically allocates more computing resources when service demand
grows and also balances the workload among the computing resources. App Engine is regarded as a PaaS

map(k1, v1) → list (k2, v2)

reduce(k2, list(v2)) → list (v3)

Listing 50.1  MapReduce abstract application programming interface

map(string key, string value)

//key: the position of value in the input file

//value: partial DNA sequence in the input file

foreach character c in value do

emit(c, 1);

end

reduce(string key, string value)

//key: DNA character (C, G, T, or A)

//value: a list of counts

sum = 0;

foreach count in value do

sum = sum + count;

end

emit(sum);

Listing 50.2  MapReduce pseudo code for DNA sequence analysis

c50.indd 613 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

614  Encyclopedia of Cloud Computing

implementation and charges costs based on the use of storage, CPU, and bandwidth. App Engine currently
supports development in Python, Java, PHP, and Go. App Engine’s core features and its programming frame-
work are described in the following sections. We use only Python for brevity.

50.3.2.1  Core Features

The core features of App Engine (as of July 2014) are as follows:

●● Sandbox. To prevent harmful operations to the underlying operating system, applications run in an iso-
lated secure environment called sandbox. In the sandbox, an application is allowed to only access other
computers on the Internet using Uniform Resource Locator (URL) Fetch and Mail services, and applica-
tion code is able to only run in a response to a Web request. The application is not allowed to write to the
file system directly, but instead uses Datastore or Memcache services.

●● Storing data. App Engine Datastore is a data storing service based on Google’s BigTable (Chang
et al., 2008), which is a distributed storage system that scales up to petabytes of data.

●● Account management. Applications can be easily integrated with Google Accounts for user authentication.
With Google Accounts, an application can detect if the current user has signed in. If not, it can redirect the
user to a sign‐in page.

●● App Engine services. App Engine provides a variety of services via APIs to applications including fetching Web
resources, sending e‐mails, using cache and memory instead of secondary storage, and manipulating images.

Input
file

Map Map Map

Aggregates intermediate values by keys

CGTC
GCAG
CGGA
TCCA

[(C, 1), (G, 1),
(T, 1), (C, 1)]

[(T, 1), (C, 1),
(C, 1), (A, 1)]

[(C, 1), (G, 1),
(G, 1), (A, 1)]

[(G, 1), (C, 1),
(A, 1), (G, 1)]

Reduce Reduce Reduce Reduce

Split 1
(1, CGTC)

Split 2
(5, GCAG)

Split 3
(9, CGGA)

Split 4
(13, TCCA)

Legend
[]: list
(): (key, value) pair

(C, [1,1,1,1,1,1]) (G, [1,1,1,1,1]) (A, [1,1,1]) (T, [1,1])

(C, [6]) (G, [5]) (A, [3]) (T, [2])

Output
file

C, 6
G, 5
A, 3
T, 2

Map

Figure 50.2  Execution sequence of MapReduce

c50.indd 614 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  615

50.3.2.2  Programming Framework for Python

We describe the App Engine’s programming framework for Python as visualized in Figure 50.3. When the
Web server receives a Hyper‐Text Transfer Protocol (HTTP) request from the browser, the Web server passes
the request to a framework (a library that helps Web application development) via Web Server Gateway
Interface (WSGI). The framework then invokes a handler in a user script (in this example, main.py) and the
invoked handler processes the request and creates an HTTP response dynamically.

The Python runtime in App Engine uses WSGI as an interface to connect the Web server to the Web appli-
cations. WSGI is simple, but reduces programming effort and enables more efficient application develop-
ment. Here, we give an example of a request handler using the webapp2 framework that interacts with
WSGI as shown in Listing 50.3.

The application object – an instance of WSGIApplication class of webapp2 framework –
handles the requests. When creating the application object, a request handler called MainPage is
associated with the root URL path (/). The webapp2 framework invokes the get function in the MainPage
class when it receives an HTTP GET request to the URL /. In the get function, it creates an HTTP response
with a Content‐Type header and a body containing a “Hello, World!” message.

B
r
o
w
s
e
r

W
e
b

s
e
r
v
e
r

Python runtime

Framework

APIs
(DataStore, MemCache, User, Mail, ...)

HTTP
request

HTTP
response

Request
data

Response
data

W
S
G
I

User application
app.yaml

handlers:
- url: /stylesheet
 static_dir: stylesheet
- url: /.*
 script: main.app

stylesheet

Google App Engine Runtime environment

main.py

app

Figure 50.3  Google App Engine programming framework for Python

import webapp2

class MainPage(webapp2.RequestHandler):

def get(self):

self.response.headers[‘Content-Type’] = ‘text/plain’

self.response.write(‘Hello, World!’)

application = webapp2.WSGIApplication(

[(‘/’, MainPage)],

debug=True)

Listing 50.3  Application Python script for the Helloworld example

c50.indd 615 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

616  Encyclopedia of Cloud Computing

50.3.3  Distributed Actor Systems with SALSA

Simple Actor Language System and Architecture is a concurrent programming language based on the actor
model (Agha, 1986). Each actor runs concurrently and exchanges messages asynchronously while encapsu-
lating its state. Since an actor does not share any memory with other actors, it can migrate to another comput-
ing host easily. As shown in Figure 50.4, under a hybrid IaaS cloud environment, actors can migrate between
the private and public clouds seamlessly with runtime software installed on virtual machines (VMs) on both
ends. In this scenario, application developers need either to use COS middleware or support appropriate
nonfunctional concerns by themselves as IaaS clouds only provide scalability by means of VM addition /
removal. Nevertheless, hybrid clouds can be attractive for those who can access their private computing
resources at no additional cost and who need high computing power only occasionally.

In the following subsections, we introduce the actor‐oriented programming model followed by a distributed
application written in SALSA.

50.3.3.1  Actor‐Oriented Programming

Actors provide a flexible model of concurrency for open distributed systems. Each actor encapsulates a state
and a thread of control that manipulates this state. In response to a message, an actor may perform one of the
following actions (see Figure 50.5):

●● alter its current state, possibly changing its future behavior;
●● send messages to known actors asynchronously;
●● create new actors with a specified behavior;
●● migrate to another computing host.

Analogous to a class in Java, SALSA programmers can write a behavior which includes encapsulated state
and message handlers for actor instances:

●● New actors are created in SALSA by instantiating particular behaviors with the new keyword. Creating
an actor returns its reference. For instance:
ExampleActor exActor = new ExampleActor();

●● The message sending operation (<‐) is used to send messages to actors; messages contain a name that
refers to the message handler for the message and a possibly empty list of arguments. For instance:
exActor<-m(1, 2);

●● Actors, once created, process incoming messages, one at a time.

VM1

Actors
…

…

Scale out

…

Extra VMs
Scale in

Scale up

Scale down

Private IaaS cloud Public IaaS cloud

VM1
VMN+1

VMM

VM2

VMN

Figure 50.4  Workload scalability over a hybrid cloud using actor migration. Source: Imai et al. (2013)

c50.indd 616 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  617

50.3.3.2  Programming Distributed Applications

A simple distributed SALSA application that migrates an actor with name as specified by an universal
actor name (UAN) from a location specified by a universal actor location (UAL) is shown in Listing 50.4.
A UAN is an identifier that represents an actor during its lifetime in a location‐dependent manner. An
actor’s UAN is mapped by a naming service into a UAL, which provides access to an actor in a specific
location.

Listing 50.4 defines a behavior of the Migrate actor. First, the program starts from the act message
handler and a Migrate actor named migrateActor is created with a UAN “uan://wcl.
cs.rpi.edu:3030/myName” at a UAL “rmsp://host1.cs.rpi.edu:4040/myLoca-
tor”. Next, the actor receives a print message and prints out a string “Migrate actor is
here!” in the standard output of host1. Right after printing the string, the actor migrates to a new
location specified by a UAL “rmsp://host2.cs.rpi.edu:4040/myLocator”. Finally, after
the migration, the actor prints out the same string at host2. Note that SALSA’s transparent migration
support enables execution of the same print message in two different hosts.

Node 1

Node 2

(4)

int a, b;
…

void m() {
a = 1; b = a + 1;
}
……
Message handlers

State
Thread of

control

(1)
...

Mailbox

Actor

(2) Message

(3)

Message

Internal
variables

Message
handlers

State
Thread of

control

MailboxMessage

Actor

Internal
variables

Message
handlers

State
Thread of

control

MailboxMessage

Actor

Internal variables

Figure 50.5  Actors programming model

c50.indd 617 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

618  Encyclopedia of Cloud Computing

50.4  Sample Applications

In this section, we present sample applications for the three programming frameworks. First, we describe a
data analytics application that computes the average temperatures of historical weather data using Hadoop.
Next, we show a simple Web‐based bulletin board application using Google App Engine. Thirdly, we describe
a distributed face recognition application using SALSA.

50.4.1  Data Analytics

The application presented in this subsection processes a large amount of data by Hadoop to compute average
temperatures for every month using temperature data collected from all over the world.

50.4.1.1  Global Surface Summary of Day Data (GSOD)

Global surface summary of day (GSOD) data is a collection of daily weather data produced by the National
Climatic Data Center. The weather data has been collected from 1929 to the present by stations all over the
world. The elements contained in the daily data include mean temperature, mean sea level pressure, mean
visibility, and mean wind speed.

The datasets are provided in ASCII characters. Each row contains weather data for a station on a particular
day (see, for example, Listing 50.5). Fields are explained in Table 50.2.

Since we compute average temperatures for every month, the fields we are interested in are YEAR, MODA
and TEMP.

behavior Migrate {

void print() {

standardoutput<-println(“Migrate actor is here!”);

}

void act(string[] args) {

UAN uan = new UAN(“uan://wcl.cs.rpi.edu:3030/myName”);

UAL ual = new UAL(

“rmsp://host1.cs.rpi.edu:4040/myLocator”);

Migrate migrateActor = new Migrate() at (uan, ual);

migrateActor<-print()@

migrateActor<-migrate(

“rmsp://host2.cs.rpi.edu:4040/myLocator”)@

migrateActor<-print();

}

}

Listing 50.4  SALSA migration code example

c50.indd 618 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  619

50.4.1.2  MapReduce Functions for Averaging Numbers

Suppose we are given an input file that consists of (tag, number) pairs, where tag is an arbitrary string of a
month, year, station, and so on, we can compute an average number for each tag by the map and reduce
functions shown in Listing 50.6.

The map function emits an intermediate (tag, (number, 1)) pair for every input and then the reduce func-

tion computes the average number
1

1N i
N numberi for each tag from an aggregated pair (tag, [(number

1
, 1), …,

(number
N
 , 1)]).

50.4.1.3  GSOD Data Analytics Application

Based on the functions’ pseudo code presented in the previous section, we show a Hadoop application that
computes average temperatures for every month using GSOD temperature data. The map function is defined
as a GsodMapper class implementation that extends the Mapper class as shown in Listing 50.7.

STN--- YEARMODA TEMP DEWP SLP STP …

030050 19291001 45.3 4 40.0 4 1001.6 4 9999.9 0 …

Listing 50.5  Example of GSOD data

Table 50.2  Field definitions of GSOD data

Field Position Type Description

STN   1–6 Integer Station number for the location
YEAR   9–12 Integer The year
MODA 13–16 Integer The month and day
TEMP 19–24 Real Mean temperature for the day

in degrees
… … … …

map(String key, String value)

//key: tag, value: number

pair = (value, 1);

emit(key, pair);

reduce(String key, String value)

//key: tag, value: a list of (number, count)pairs

sum = 0; count = 0;

foreach pair (n, c) in value do

sum = sum + n;

count = count + c;

end

average = sum / count;

emit(average);

Listing 50.6  MapReduce pseudo code for average number calculation

c50.indd 619 2/2/2016 12:52:52 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

620  Encyclopedia of Cloud Computing

The Mapper class is a generic class that takes four type variables – the input key type, the input value type,
the output key type, and the output value type. In this example, the input key type is Object, the input key
value is Text, the output key type is Text, and the output value type is DoubleIntPair. DoubleIntPair
is used to store a pair of double and int values.

The map function repeatedly receives one line of GSOD weather input data in the value variable. If
the value starts with an “STN”, that means that it is a line for weather field names, therefore we skip it.
Otherwise, split the value into a data array in which each element is separated by spaces. Since we
want to compute the average temperature for each month, we are interested in the YEARMODA and TEMP
fields, which are the third and fourth fields of the weather data. From these two fields, we can extract a
year and month by data[2].substring(0,6) in the YYYYMM format and temperature by data[3].
By calling context.write() function, the map function outputs a key value pair in the format
(key=YYYYMM, value=(temperature, 1)).

The GsodReducer class that implements the reduce function is defined in Listing 50.8. The specified
input types are Text and DoubleIntPair and output types are Text and DoubleWritable. The
reduce function iterates the values, which is a list of a temperature and count, and sums up the tem-
peratures and counts to compute the average temperature.

50.4.2  Bulletin Board Web Application

In this subsection we present a simple bulletin board Web application developed on the Google App Engine
framework (see Figure 50.6 for user interface). This application lets users post a message with their user-
names to a public bulletin board. The posted messages are stored in the server and shared among the users
accessing the application.

public class GsodMapper extends

Mapper<Object, Text, Text, DoubleIntPair> {

private Text word = new Text();

private DoubleIntPair pair = new DoubleIntPair();

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

if (value.toString().startsWith(“STN”)) {

return;

}

String[] data = value.split(“+”);

String yearmon = data[2].substring(0, 6);

word.set(yearmon);

pair.set(Double.parseDouble(data[3]), 1);

context.write(word, pair)

}

}

Listing 50.7  GsodMapper class definition

c50.indd 620 2/2/2016 12:52:53 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

public class GsodReducer extends

Reducer<Text, DoubleIntPair, Text, DoubleWritable> {

private DoubleWritable average = new DoubleWritable();

public void reduce(Text key,

Iterable<DoubleIntPair> values,

Context context)

throws IOException, InterruptedException {

double sum = 0;

int count = 0;

for (DoubleIntPair value: values)

sum += value.getDouble();

count += value.getInt();

}

average.set(sum / count);

context.write(key, average)

}

}

Listing 50.8  GsodReducer class definition

Figure 50.6  User interface of the bulletin board application

c50.indd 621 2/2/2016 12:52:53 PM

622  Encyclopedia of Cloud Computing

50.4.2.1  HTML Template

Unlike the helloworld example, which just returns an HTTP response containing a “Hello, World!” string
to the browser, we can create a more elaborate and dynamically generated response using HTML templates
such as Jinja2 (Ronacher, 2011). Jinja2 is a template engine for Python supported by Google App Engine. For
the bulletin board application, we can use a Jinja2 template as shown in Listing 50.9.

In the second div section, this HTML file first creates a form to post a username and a message to the
Web server. Once these forms are filled by the user and the submit button is pressed, an HTTP POST
request is sent to the URL specified by /postmsg. Then, the message‐showing part is expressed using the
Jinja2 template. In the Jinja2 template, “{{ variable }}” refers to the value of a variable. Similarly,
“{% control logic %}” refers to control logic such as for, while, or if. In this example, the stored
messages are referred to as msgs and the username, creation date, and content of each message are dis-
played by iterating msgs. Using HTML templates, we can express dynamic and static HTML contents side
by side easily.

<html>

<head>

<link type=”text/css” rel=”stylesheet”

href=”/css/main.css” />

</head>

<body>

<div class=”headline”>

<h1>Bulletin Board</h1>

</div>

<div class=”content”>

<h4>Leave a message!</h4>

<form action=”/postmsg” method=”post” class=”form-inline”>

<label>user: </label>

<input type=”text” name=”user” placeholder=”anonymous”>

<label>message: </label>

<input type=”text” name=”content”>

<button type=”submit”>submit</button>

</form>

{% for msg in msgs %}

{{ msg.user }} wrote at <i>{{ msg.date }}</i>:

<blockquote>{{ msg.content|escape }}</blockquote>

{% endfor %}

</div>

</body>

</html>

Listing 50.9  Jinja2 HTML template for bulletin board application

c50.indd 622 2/2/2016 12:52:53 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  623

50.4.2.2  Application Script

An example script for the bulletin board application is shown in Listing 50.10.
Once the script starts, a global variable JINJA_ENVIRONMENT is instantiated and configured to look for

Jinja2 HTML templates from the current directory (specified by “__file__”). This program consists of three
classes: Messages class for data model, PostMessage class for handling submitted messages, and
MainPage class for handling requests for the main page. Meanwhile, an application object is created by
WSGIApplication so that HTTP requests for “/” and “/postmsg” are handled by the MainPage and
PostMessage class respectively.

import os, jinja2, webapp2

from google.appengine.ext import ndb

JINJA_ENVIRONMENT = jinja2.Environment(

loader=jinja2.FileSystemLoader(os.path.dirname(__file__)),

extensions=[‘jinja2.ext.autoescape’])

class Messages(ndb.Model):

user = ndb.StringProperty()

content = ndb.StringProperty()

date = ndb.DateTimeProperty(auto_now_add=True)

class PostMessage(webapp2.RequestHandler):

def post(self):

msgs = Messages()

user = self.request.get(‘user’)

if user == “”:

msgs.user = “anonymous”

else:

msgs.user = user

msgs.content = self.request.get(‘content’)

msgs.put()

self.redirect(‘/’)

class MainPage(webapp2.RequestHandler):

def get(self):

msgs = ndb.gql(“SELECT * FROM Messages

ORDER BY date DESC LIMIT 10”)

template_values = {‘msgs’: msgs}

template = JINJA_ENVIRONMENT.get_template(‘index.html’)

self.response.write(template.render(template_values))

application = webapp2.WSGIApplication(

[(‘/’, MainPage), (‘/postmsg’, PostMessage)], debug=True)

Listing 50.10  Application Python script for bulletin board example

c50.indd 623 2/2/2016 12:52:53 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

624  Encyclopedia of Cloud Computing

The Message class defines a data model that consists of three fields: user for the username, content
for the message content, and date for the current time when the model instance is added to the datastore
(specified by “auto_now_add=True”). The PostMessage class defines the behavior when the applica-
tion receives an HTTP POST message. It extracts the user and content fields from the request and puts
them into a Messages data model instance. The MainPage class defines the behavior when the application
receives an HTTP GET message to the main Web page. Using a SQL‐like query called GQL, it retrieves
stored messages from the Messages datastore up to ten in descending order of date (latest date comes first),
and then passes the retrieved msgs messages to the template index.html. Finally, it creates a complete
HTTP response from the template and returns the response to the browser.

50.4.3  Distributed Face Recognition

Face recognition is an application that can be vastly improved by leveraging cloud computing resources.
Rather than using a single device, in this case a mobile phone, we can offload parts of the image processing
to the cloud (Abolfazli et al., 2014). By using cloud computing, we can save the battery in the mobile device,
and also we can consider larger data sets. Using the SALSA programming language and the FaceRecognizer
API from OpenCV (http://opencv.org/, accessed January 5, 2016), we can design a mobile phone application
to recognize a face in a given image using a database of faces (see Figure 50.7).

The face recognition application consists of two stages: the training stage, and the prediction stage. The
training stage trains a database of faces using the FaceRecognizer method defined in OpenCV. The pre-
diction stage predicts a given face using the desired method with a certain confidence. When the database of
faces is small, there is no need to offload computation because the phone can process the faces locally just as
fast as it would take to offload to the cloud. As the database grows we run into the limitations mentioned
above and offloading to the cloud can be beneficial.

The distributed face recognition model consists of a “farmer actor” that creates N1 “worker actors” in the
cloud. While the farmer and worker actors reside in the cloud, a client on the mobile phone requests the farmer
actor to recognize an unknown face. The farmer actor assigns each worker actor a range of faces (N2/N1 each)

#1

...

#2

...

Mobile phone

Face client

Worker
 actors

Cloud face
 database

Cloud

Request
for training

and prediction

#N1 #N2

#2

#1

Predict closest
match

Each worker
has been

trained with
N2/N1
faces

...

Farmer
actor

...

Unknown face

Figure 50.7  Distributed face recognition using SALSA actors

c50.indd 624 2/2/2016 12:52:53 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  625

to train from the cloud face database containing N2 faces. The worker actors then predict the closest match to
the unknown face based on their assigned database. The farmer actor collects the closest match from each
worker actor and calculates the best candidate for the unknown face. Pseudo programs for the client, worker
and farmer SALSA programs are shown in Listings 50.11, 50.12, and 50.13 respectively.

In Listing 50.13, note that a join block in the predictAll message handler is used to synchronize all
the worker actors executing predict. After all the workers finish processing predict, the join block returns
an object array ImageMetaData[], which contains prediction confidence from the workers. Finally,
getBestMatch takes the array and finds the best matching image with the highest confidence.

50.5  Conclusions

Cloud computing has the potential to bring the benefits of large‐scale data analytics and high‐performance
computing to everyone’s fingertips enabling unprecedented societal applications. We have described three
programming frameworks for cloud computing: Hadoop’s MapReduce, Google App Engine, and SALSA. To
illustrate the use of these frameworks, we have shown a weather data analytics application on Hadoop, a

behavior FaceClient {

void act(String[] args) {

FaceFarmer farmer = (FaceFarmer)

FaceFarmer.getReferenceByName(

“uan://nameserver/facefarmer”);

Image unknownImage = new Image(args[0]);

farmer<-predictAll(unknownImage)@

displayImage(token);

}

}

Listing 50.11  SALSA pseudo code for face recognition client actor

behavior FaceWorker {

FaceRcognizer faceRecognizer;

void train(Image[] assignedDatabase) {

faceRecognizer.train(assignedDatabase);

}

ImageMetaData preditct (Image testImage) {

// return the closest match

return faceRecognizer.predict(testImage);

}

}

Listing 50.12  SALSA pseudo code for face recognition worker actor

c50.indd 625 2/2/2016 12:52:54 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

626  Encyclopedia of Cloud Computing

simple bulletin board Web application on Google App Engine, and a distributed face recognition application
on SALSA offloading computation from a mobile device to the cloud. As we have seen, the target applica-
tions for these frameworks are very different from each other, and the support level of nonfunctional concerns
is also different between IaaS and PaaS. These frameworks are ideal for the illustrated target application
domains, but not necessarily for other application scenarios. Therefore, to get the best from these cloud ser-
vices, application developers still need to carefully consider the characteristics of their applications and find
best matching cloud services in terms of QoS, cost, programmability, vendor lock‐in possibility, and others.

Acknowledgment

This work is partially supported by an Amazon AWS in Education Research Grant and a Google Cloud
Credits Award.

References

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., and Buyya, R. (2014) Cloud‐based augmentation for mobile devices:
Motivation, taxonomies, and open challenges. IEEE Communications Surveys and Tutorials 16(1), 337–368.

Agha, G. (1986) Actors: a Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MAs.

behavior FaceFarmer implements ActorService {

//CloudFaceDatabase contains N2 faces.

void act(String[] args) {

faceWorker[] workers = new faceWorker[N1];

for (i = 0; i < N1; i++) {

workers[i] = new faceWorker(new UAN(…));

workers[i]<-migrate(new UAL(…));

workers[i]<-train(

N2/N1 faces from CloudFaceDatabase);

}

}

Image predictAll(Image testImage)

join {

for (i = 0; i < N1; i++)

workers[i]<-predict(testImage);

}@getBestMatch(token)@currentContinuation;

}

Image getBestMatch(ImageMetaData[] closestMatches) {

// find best match with the highest confidence.

}

}

Listing 50.13  SALSA pseudo code for face recognition farmer actor

c50.indd 626 2/2/2016 12:52:54 PM

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

shige
Sticky Note
Marked set by shige

Developing Elastic Software for the Cloud  627

Armstrong, J., Virding, R., Wikström, C., and Williams, M. (1993) Concurrent Programming in ERLANG, Prentice Hall,
Englewood Cliffs, NJ.

Chang, F., Dean, J., Ghemawat, S., et al. (2008) Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS) 26(2), 4.

Dean, J. and Ghemawat, S. (2008) MapReduce: Simplified data processing on large clusters. Communications of the
ACM 51(1), 107–113.

El Maghraoui, K., Desell, T. J., Szymanski, B. K., and Varela, C. A. (2006) The internet operating system: Middleware for
adaptive distributed computing. International Journal of High Performance Computing Applications 20(4), 467–480.

Google (2014) Google App Engine, https://cloud.google.com/appengine/docs (accessed January 5, 2016).
Imai, S., Chestna, T., and Varela, C. A. (2013) Accurate Resource Prediction for Hybrid IaaS Clouds Using Workload‐Tailored

Elastic Compute Units. Proceedings of the 2013 IEEE Sixth International Conference on Utility and Cloud Computing
(UCC). IEEE.

Heroku. (2014) Heroku, http://www.heroku.com/ (accessed January 5, 2016).
Microsoft (2014) Windows Azure, http://www.windowsazure.com/ (accessed January 5, 2016).
Ronacher, A. (2011) Jinja, http://jinja.pocoo.org/ (accessed January 5, 2016).
Varela, C. A. & Agha, G. (2001) Programming dynamically reconfigurable open systems with SALSA. SIGPLAN Notices

36(12), 20–34.
Varela, C. A. (2013) Programming Distributed Computing Systems, MIT, Cambridge, MA.
Xin, R. S., Rosen, J., Zaharia, M., et al. (2013) Shark: SQL and Rich Analytics at Scale. Proceedings of the 2013

International Conference on Management of Data. ACM, pp. 13–24.

c50.indd 627 2/2/2016 12:52:54 PM

