Adaptive Computation over Dynamic and
Heterogeneous Networks

Kaoutar El Maghraodj Joseph E. FlahertyBoleslaw K. Szymanskj James D.
Terescd, and Carlos Varela

! Rensselaer Polytechnic Institute, Troy, NY 12180, USA,
szymansk@s. r pi . edu,
http://ww. cs. rpi.edu/
2 Williams College, Williamstown, MA 01267, USA

Abstract. Over the last two decades, efficient message passing ébsradve
been developed for parallel scientific computation. Corety, programming
languages have been created supporting dynamically rgcoafile distributed
systems over the heterogeneous Internet. In this papemtnaiuce SALSA-
MPI, an actor programming language approach to scientificpeaing that ex-
tends current MPI implementation through a checkpointind migration API,
a SALSA-MPI device, and a runtime system that manages batbdie check-
points and process or application migration. The goal isnabée dynamic net-
work reconfiguration and load balancing without sacrificamgplication perfor-
mance or requiring extensive code modifications. As driveahnology for this
effort of unifying parallel and distributed computing, wéap to use adaptive
solvers of partial differential equations. Fields as déeeas fluid dynamics, ma-
terial science, biomechanics, and ecology make use ofipbadbptive computa-
tion, but target architectures have traditionally beerestpmputers and tightly-
coupled clusters. SALSA-MPI is intended to allow these cotapons to make
efficient use of more distributed and dynamic computing ueses.

1 Introduction

Large-scale scientific and engineering applications wnglthe solution of partial dif-

ferential equations are among the most demanding compngproblems, arising in
fields including fluid dynamics, material science, biometbs, and ecology. Adaptiv-
ity, where meshes and methods are automatically adjustachieve specified levels of
solution accuracy, and parallelism are essential toolglt@snodern multi-dimensional
transient problems. The usual approach to these probletodlistribute a discretiza-
tion (mesh) of the domain across cooperating process@s,tthcompute a solution,
appraising its accuracy using error estimates at each Ity solution is accepted,
the computation proceeds to the next step. Otherwise, Hueddization is refined adap-
tively, and work is redistributed, if necessary, to corfectany load imbalance intro-
duced by the adaptive step. The adaptive strategies autathatefine, coarsen, and/or
relocate meshes and may also change the method with a gdatadrfiog a solution to

a prescribed level of accuracy as quickly as possible [1pptgity makes automatic
(compiler-directed) parallelization difficult, so dynanpiartitioning and load balancing

procedures become necessary since the locations wheresnasist be refined or sim-
pler methods replaced by more complex ones are not kraquviori and are determined
as part of the solution process.

The importance of the applications and, perhaps, the coata#ss to supercom-
puters have led to poliferation of solution strategies dreoarchitectures including PC
clusters and, most recently, grids [2, 3]. Target architexst range from small clusters
to the largest supercomputers with interprocessor comeation ranging from shared
memory to wide-area networks.

As discussed in citeours in this volume, SALSA open sourd¢ergarogramming
language and 10 middleware provide distributibansparencyto scientific program-
mers and suppodfficientefficient message passing. The main contribution of this pa-
per is the SALSA-MPI middleware that supports dynamic piarting and load bal-
ancing for parallel adaptive partial differential equat&plvers and computation fault-
tolerance via data and process migration and replicatidvev§ully developed, SALSA-
MPI will provide a fully integrated software framework lifmig the applications layer
(programmer interface) with the middleware layer, so tlmivity and transparency
can be simultaneously and efficiently achieved.

2 Parallel Adaptive Scientific Computation

The adaptive software base developed at Rensselaer'si§ci€omputation Research
Center executes in serial and parallel computational enwients [4, 5]. An adaptive
approach with explicit domain decomposition has been useckessfully by many soft-
ware packages for classical finite element [6], finite voluiTie and discontinuous
Galerkin (DGM) [8, 9] methodDG [9] is a software package that implements a par-
allel adaptive DGM using thAlgorithm Oriented Mesh Databag8OMD) [10] mesh
structures and services. AOMD supports a variety of mestesgmtations, including
hybrid meshes. It is written in C++ using the Standard Tetelibrary [11] for com-
putations and the Message Passing Interface (MPI) [12]domounication. DG is used
to solve a wide range of problems including Rayleigh-Tafltmw instabilities [9]. Dis-
tributed AOMD meshes [5] use tHRensselaer Partition ModéRPM) [13] to aid in
data distribution and migration.

3 Programming Abstractions and Technology for Dynamic Grids

The Java [14] platform — which includes the definition of agrmenming language, a
virtual machine, and a set of libraries providing high-lezpplication programming
interfaces (API) — is a step forward in portable distribusadtware engineering. In
particular, Java’s support for concurrent and distribygezjramming includes multi-
threading and remote method invocation APIs. While Java&mmerceived drawback
is its lack of performance, due to its bytecode interpretativerhead, recent advances
in JIT (Just In Time) compilation and adaptive compilatioak®a Java a very attractive
platform for scientific applications [15].

Unfortunately, Java’s object model inhibits dynamic sgsteeconfigurability for
three reasons: passive objects, shared memory, and neersalinaming [16]. First, an

object can have multiple concurrent active threads wittsitody, drastically limiting
its ability to migrate. Second, objects can share memogyireng expensive cache
coherence protocols upon migration. Last, objects do ne¢ haniversal” identifiers
that enable references to persist upon object migration.

SALSA [17] is an actor-oriented programming language witihHevel constructs
for remote messaging, universal naming, migration, anddination. SALSA pro-
grams are compiled into Java code, allowing a heterogemeiumrk of physical ma-
chines to be viewed as a homogeneous network of Java virtaethimes. The WWC
(World-Wide Computer) run-time architecture consists afning servers and virtual
machines running as Java applications on different Intexodes. The virtual machines,
calledtheaters provide an environment for execution of universal act@iagilocal re-
sources. High-level programming language abstractioableractors to create remote
communication links with peer actors running on other WWEatiers. Furthermore,
actors can easily migrate with their full state to other WW@aters as they become
available, supporting dynamic load balancing and scatabllhe naming servers keep
track of universal actor locators, so that communicationai&s transparent to actor
location and migration.

4 SALSA-MPI

4.1 SALSA-MPI Architecture

‘ MPT Application Layer ‘

‘ MPIAPT ‘ ‘ PCM AFI ‘
SALSADevice e
MPI Communication Layer | R i illo]
i ‘ IO Prefiling ‘ i ‘ Migration ‘ Checkpointing ‘ :
IMative MFI ! ‘ € ‘
implementations : i
| ‘ TV ‘ ;

| = |

| Wetwork Layer |

Fig. 1. SALSA-MPI Architecture.

The SALSA/IO architecture [18] consists of an actor-or@hprogramming lan-
guage (SALSA), a distributed runtime environment (WWC)J] aimiddleware infras-
tructure for autonomous load balancing (10: Internet OfiegaSystem). This infras-
tructure is highly dynamic through its support of 1) res@uprofiling, 2) migration
of actors to optimal execution environments, and 3) dynaaditition and removal of
nodes in the computation. SALSA-MPI provides an extensiahé MPI standard that
allows MPI processes to run on dynamic grid environmentss iBhachieved through
the use of the 10 middleware that supports dynamic recordtgur and load balanc-
ing. Figure 2 shows the proposed SALSA-MPI architecturee BILSA device runs
on top of vendor supplied MPI implementations. It uses imi@chine vendor supplied
MPI implementations and inter-machine TCP communicafidve. SALSA device pro-
vides also an interface to SALSA/IO proxy actors, which acpeofiling actors in the
10 network. Every SALSA-MPI proxy-actor has a profiling acémd a decision agent.
The profiling actor keeps monitoring the running MPI proesssommunication, the
participating nodes’ memory, CPU, and network resourcbis monitoring is fed peri-
odically to the decision agent. As more resources join ordéle computation, the de-
cision agent tries to reconfigure the running MPI applicaby migrating one or more
MPI processes in order to improve performance. This archite supports intra-cluster
process migration and inter-cluster application migratlbis expensive to spread MPI
processes across clusters since they are usually verjytightpled and they commu-
nicate a lot between themselves. Therefore, it is impottaobllocate all the running
MPI process in a given application within one cluster. lntkister Application migra-
tion on the other hand, could improve significantly the perfance if the current cluster
experiences failures or increased load.

Joins [
network
IO Proxy Actor
Stop
Process

|

Checlepoint
State

Source FCMD

Destination
Node

Migration

Request
Start anew
instance

Destination PCWD

L&D

Restore
State

Fig. 2. The different interactions between the components of theSB¥AMPI framework.

To support migration, we propose an application-level kpemting API called
PCM (Process Checkpointing and Migration) and a runtimeesysalled PCMD (Pro-

cess Checkpointing and Migration Daemon). Few PCM callslt@be inserted in MPI
programs to specify the data that need to be checkpointedtcarestore the process
to its previous state in case of migration. This library ims&ransparent because the
user does not have to worry about when or how checkpointidgestoration is done.
The underlying PCMD infrastructure takes care of all theckpeinting and migration
details.

4.2 The PCM API

The PCM API consists of a set of function calls that allow MRigrams to be dynam-
ically reconfigurable. The PCM can be used with any iterakllel application. The
PCM library consists of set of routines with the followingfttionalities:

— Periodic checkpoints of MPI processes or MPI applicaticiada

— Storage of the checkpointed data in a PCMD daemon (eithaljyoar remotely).
— Restoration of a previously checkpointed data.

— Suspension, restart, or migration of an MPI process or andpBlication.

— Periodic probing of the status of an MPI application or an MRicess

Vadhiyar et al. have devised a similar approach through B8RS library [19]. Our
approach is different in that our architecture proposel poicess and application mi-
gration. In addition we use the SALSA-10 middleware to teggeconfigurability and
load balancing when necessary.

4.3 PCM Daemons

PCMD daemons need to be launched in every node that mightheiMPI parallel
computation. The PCMD has a port number on which it listeng¢oming requests.
It interacts with the running MPI processes, with the IO grextor, and with remote
PCMD daemons. When the IO decision agent chooses a procasasgfation, it sends
a migration request to the PCMD, which creates a shadow é&8téctor) for the mi-
grating process, redirects all messages sent to the mmigrptocess (MP). The MP
initiates checkpoints at the PCMD daemon. The S-Actor eegthe state of the MP
and migrates to the new destination. On the remote PCMD, {Aet& starts a new
instance of the MP, stores the states of the MP, notifies thiesamode to stop message
redirections and terminates. Once the MP is restarted nitacts the local PCMD to
restore its state. Figure 2 illustrates the interactioina®en the PCM Daemons and the
other components of the SALSA-MPI framework.

4.4 Preliminary Results

The experimental testbed consisted of two clusters at R&essPolytechnic Institute:
cluster A (the CS cluster) consisiting of 20 256MB memory S1INmachines and clus-
ter B (the Netfinity cluster) consisting of 40 128MB memory08thz singel processor
IBM Netifnity machines. The used MPI application computdseat distribution ma-
trix. This application models iterative parallel applicats that require a large amount

of communication between the boundaries of the MPI prose3$e original MPI code
was instrumented by inserting the PCM API calls to allow &ation reconfiguration
and checkpointing by the SALSA-MPI framework. The goal & finst experiment was
to determine the overhead incurred by the PCM API. As showFigare 3, the orig-

inal and instrumented heat application were run on clustevitA different numbers

of nodes. The overhead introduced by the PCM library is nealsie when the numm-
ber of nodes is small but it increases as the number of nodesase. This is due to
the centralization of the PCM Daemon in the current protetiypplementation. In the

Fig. 3. The overhead that results from instrumenting the heatilligton program with the PCM
API calls on cluster A.

second experiment, the heat distribution program was firston cluster A. We then
increased substantially the load of all the nodes in thisteluby running several com-
putationally intensive programs. We repeated the sameriexpet, but we migrated the
running mpi application to cluster B once the load in clugténcreased. As shown in
Figure 4, we notice that the performance of the running mplieation improved once
it migrated to a less loaded cluster. The performance ingg@nly when the number
of nodes is less than 10 nodes. Again this is due to the limitatof the current pro-
totype implementation. These preliminary results show teeonfigurability and load
balancing of parallel mpi applications will improve the flemance of the application.
The overhead incurred by the PCM library is offset by the mpgtibn’s overall im-
proved performance. The results also show that having anttedieed architecture is
necessary to achieve scalability.

5 Discussion and Future Work

We have investigated programming methodologies that ptemseparation of the con-
cerns in the implementation of large scientific computation a large network of com-
puters. High-level programming abstractions provide arshinterface to scientists so
that they can concentrate on their domain of expertise.r@nging tools map these
high-level abstractions into executable units that supgfficient communication, dy-

namic partitioning and load balancing. Run-time middlesvanfrastructure supports

Execution Time s)

Fig. 4. MPI runs of the Heat Distribution program with and without/?C

adaptability of executing systems to an evolving undegyiretwork. The presented
programming paradigm, languages, and tools are a first stégeiunification of par-
allel and distributed computing by enabling systems to attadifferent and evolving
execution environments.

Our initial target applications for SALSA-MPI are paralfaptive scientific com-
putations. We cannot expect scientists to rewrite or evereragnificant modifications
to extensive libraries of C and C++ software that currenslg MPI. The SALSA-MPI
architecture allows application programs to run usingvea@/C++ code, continuing
to use MPI for interprocess communication. Applicatiores hrovide the minimal re-
quired checkpointing functionality can immediately taldvantage of SALSA-MPI
functionality for dynamic resource allocation, procesgmaiion, and fault tolerance.
Large-scale computations often already provide checkipgifunctionality, so in many
cases, this will be a minimal burden. Scientists may champeavide more fine-grained
checkpointing to allow their applications to improve théaéncy of the dynamic mi-
gration capabilities, particularly if the computer sysgseing used are dynamic.

The current prototype implementation is still a work in preggs, we are working
towards making the SALSA-MPI framework a fully distributegstem where the MPI
processes or applications reconfiguration are triggeretthé&yO middleware. The 10
middleware should be able to dynamically trigger fine-gmiprocess migration when
the computation to communication ratio is high and coarséagr whole application
migration when this ratio is low. This will allow the SALSA-R framework to acco-
modate a whole range of scientific and engineering pargilgieations.

References

1. Clark, K., Flaherty, J.E., Shephard, M.S. Appl. NumertiMaspecial ed. on Adaptive Meth-
ods for Partial Differential Equatiorisd (1994)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of tid: &nabling scalable virtual
organizations. Lecture Notes in Computer Scie2t®0(2001) 1-??

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The piygy of the grid: An open grid
services architecture for distributed systems integng®02)

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

. Remacle, J.F., Karamete, B., Shephard, M.: Algorithrardgéd mesh database. To appear,

Proc. 9th Meshing Roundtable, New Orleans (2000)

. Remacle, J.F,, Klaas, O., Flahery, J.E., Shephard, MP&@rallel algorithm oriented mesh

database. Eng. Comput3 (2002) 274284

. Bottasso, C.L., Flaherty, J.Bzturan, C., Shephard, M.S., Szymanski, B.K., Teresca, J.D

Ziantz, L.H.: The quality of partitions produced by an itdre load balancer. In Szyman-
ski, B.K., Sinharoy, B., eds.: Proc. Third Workshop on Laawges, Compilers, and Runtime
Systems, Troy (1996) 265-277

. Flaherty, J.E., Loy, R.M., Shephard, M.S., SzymanskK.BTeresco, J.D., Ziantz, L.H.:

Adaptive local refinement with octree load-balancing foe tharallel solution of three-
dimensional conservation laws. J. Parallel Distrib. Cotrght1(1997) 139-152

. Flaherty, J.E., Loy, R.M., Shephard, M.S., Teresco,: J3oftware for the parallel adaptive

solution of conservation laws by discontinuous Galerkirihmods. In Cockburn, B., Karni-
adakis, G., Shu, S.W., eds.: Discontinous Galerkin Methidu=ory, Computation and Ap-
plications. Volume 11 of Lecture Notes in Compuational 8ceeand Engineering., Berlin,
Springer (2000) 113-124

. Remacle, J.F., Flaherty, J., Shephard, M.: An adaptigeodtinuous Galerkin technique

with an orthogonal basis applied to compressible flow prokle SIAM Review45 (2003)
53-72

Remacle, J.F., Shephard, M.S.: An algorithm orienteshnaiatabase. Int. J. Numer. Meth.
Engng.58 (2003) 349-374

Musser, D.R., Saini, A., Stepanov, A.: STL Tutorial areféence Guide: C++ Programming
With the Standard Template Library. Addison-Wesley (1996)

Gropp, W., Lusk, E., Skjellum, A.: Using MPI. M. |. T. Peel994)

Teresco, J.D., Beall, M.W., Flaherty, J.E., Shephar.MA hierarchical partition model
for adaptive finite element computation. Comput. MethodglAblech. Engrg184 (2000)
269-285

Gosling, J., Joy, B., Steele, G.: The Java Language f&aitin. Addison Wesley (1996)
Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Bemetking java against ¢ and for-
tran for scientific applications. In: Proceedings of ACMad&rande/ISCOPE Conference.
(2001) 97-105

Varela, C., Agha, G.: What after java? from objects tomctin: Proceedings of the Seventh
International WWW Conference. Volume 30., Computer Neks@nd ISDN Systems: The
International Journal of Computer Telecommunicationsidetivorking (1998) 573-577
Varela, C., Agha, G.: Programming dynamically reconfiple open systems with SALSA.
ACM SIGPLAN Notices. OOPSLA'2001 Intriguing Technology attk ProceedingS86
(2001) 20-34 http://www.cs.rpi.edu/ cvarela/oopsla2paf.

Desell, T., EIMaghraoui, K., Varela, C.: Load balanaiigqutonomous actors over dynamic
networks. In: To appear in Proceedings of the Hawaii Intiéonal Conference On System
Sciences (HICSS-37). (2004)

Vadhiyar, S.S., Dongarra, J.J.: Srs - a framework foeld@ing malleable and migratable
parallel applications for distributed systems (2002)

