
Adaptive Computation over Dynamic and
Heterogeneous Networks

Kaoutar El Maghraoui1, Joseph E. Flaherty1, Boleslaw K. Szymanski1, James D.
Teresco2, and Carlos Varela1

1 Rensselaer Polytechnic Institute, Troy, NY 12180, USA,
szymansk@cs.rpi.edu,

http://www.cs.rpi.edu/
2 Williams College, Williamstown, MA 01267, USA

Abstract. Over the last two decades, efficient message passing libraries have
been developed for parallel scientific computation. Concurrently, programming
languages have been created supporting dynamically reconfigurable distributed
systems over the heterogeneous Internet. In this paper, we introduce SALSA-
MPI, an actor programming language approach to scientific computing that ex-
tends current MPI implementation through a checkpointing and migration API,
a SALSA-MPI device, and a runtime system that manages both periodic check-
points and process or application migration. The goal is to enable dynamic net-
work reconfiguration and load balancing without sacrificingapplication perfor-
mance or requiring extensive code modifications. As drivingtechnology for this
effort of unifying parallel and distributed computing, we plan to use adaptive
solvers of partial differential equations. Fields as diverse as fluid dynamics, ma-
terial science, biomechanics, and ecology make use of parallel adaptive computa-
tion, but target architectures have traditionally been supercomputers and tightly-
coupled clusters. SALSA-MPI is intended to allow these computations to make
efficient use of more distributed and dynamic computing resources.

1 Introduction

Large-scale scientific and engineering applications involving the solution of partial dif-
ferential equations are among the most demanding computational problems, arising in
fields including fluid dynamics, material science, biomechanics, and ecology. Adaptiv-
ity, where meshes and methods are automatically adjusted toachieve specified levels of
solution accuracy, and parallelism are essential tools to solve modern multi-dimensional
transient problems. The usual approach to these problems isto distribute a discretiza-
tion (mesh) of the domain across cooperating processors, then to compute a solution,
appraising its accuracy using error estimates at each step.If the solution is accepted,
the computation proceeds to the next step. Otherwise, the discretization is refined adap-
tively, and work is redistributed, if necessary, to correctfor any load imbalance intro-
duced by the adaptive step. The adaptive strategies automatically refine, coarsen, and/or
relocate meshes and may also change the method with a goal of obtaining a solution to
a prescribed level of accuracy as quickly as possible [1]. Adaptivity makes automatic
(compiler-directed) parallelization difficult, so dynamic partitioning and load balancing



procedures become necessary since the locations where meshes must be refined or sim-
pler methods replaced by more complex ones are not knowna priori and are determined
as part of the solution process.

The importance of the applications and, perhaps, the cost ofaccess to supercom-
puters have led to poliferation of solution strategies on other architectures including PC
clusters and, most recently, grids [2, 3]. Target architectures range from small clusters
to the largest supercomputers with interprocessor communication ranging from shared
memory to wide-area networks.

As discussed in citeours in this volume, SALSA open source actor programming
language and IO middleware provide distributiontransparencyto scientific program-
mers and supportefficientefficient message passing. The main contribution of this pa-
per is the SALSA-MPI middleware that supports dynamic partitioning and load bal-
ancing for parallel adaptive partial differential equation solvers and computation fault-
tolerance via data and process migration and replication. When fully developed, SALSA-
MPI will provide a fully integrated software framework linking the applications layer
(programmer interface) with the middleware layer, so that adaptivity and transparency
can be simultaneously and efficiently achieved.

2 Parallel Adaptive Scientific Computation

The adaptive software base developed at Rensselaer’s Scientific Computation Research
Center executes in serial and parallel computational environments [4, 5]. An adaptive
approach with explicit domain decomposition has been used successfully by many soft-
ware packages for classical finite element [6], finite volume[7], and discontinuous
Galerkin (DGM) [8, 9] methods.DG [9] is a software package that implements a par-
allel adaptive DGM using theAlgorithm Oriented Mesh Database(AOMD) [10] mesh
structures and services. AOMD supports a variety of mesh representations, including
hybrid meshes. It is written in C++ using the Standard Template Library [11] for com-
putations and the Message Passing Interface (MPI) [12] for communication. DG is used
to solve a wide range of problems including Rayleigh-Taylorflow instabilities [9]. Dis-
tributed AOMD meshes [5] use theRensselaer Partition Model(RPM) [13] to aid in
data distribution and migration.

3 Programming Abstractions and Technology for Dynamic Grids

The Java [14] platform – which includes the definition of a programming language, a
virtual machine, and a set of libraries providing high-level application programming
interfaces (API) – is a step forward in portable distributedsoftware engineering. In
particular, Java’s support for concurrent and distributedprogramming includes multi-
threading and remote method invocation APIs. While Java’s main perceived drawback
is its lack of performance, due to its bytecode interpretation overhead, recent advances
in JIT (Just In Time) compilation and adaptive compilation make Java a very attractive
platform for scientific applications [15].

Unfortunately, Java’s object model inhibits dynamic system reconfigurability for
three reasons: passive objects, shared memory, and non-universal naming [16]. First, an



object can have multiple concurrent active threads within its body, drastically limiting
its ability to migrate. Second, objects can share memory, requiring expensive cache
coherence protocols upon migration. Last, objects do not have “universal” identifiers
that enable references to persist upon object migration.

SALSA [17] is an actor-oriented programming language with high-level constructs
for remote messaging, universal naming, migration, and coordination. SALSA pro-
grams are compiled into Java code, allowing a heterogeneousnetwork of physical ma-
chines to be viewed as a homogeneous network of Java virtual machines. The WWC
(World-Wide Computer) run-time architecture consists of naming servers and virtual
machines running as Java applications on different Internet nodes. The virtual machines,
calledtheaters, provide an environment for execution of universal actors using local re-
sources. High-level programming language abstractions enable actors to create remote
communication links with peer actors running on other WWC theaters. Furthermore,
actors can easily migrate with their full state to other WWC theaters as they become
available, supporting dynamic load balancing and scalability. The naming servers keep
track of universal actor locators, so that communication remains transparent to actor
location and migration.

4 SALSA-MPI

4.1 SALSA-MPI Architecture

Fig. 1. SALSA-MPI Architecture.



The SALSA/IO architecture [18] consists of an actor-oriented programming lan-
guage (SALSA), a distributed runtime environment (WWC), and a middleware infras-
tructure for autonomous load balancing (IO: Internet Operating System). This infras-
tructure is highly dynamic through its support of 1) resource profiling, 2) migration
of actors to optimal execution environments, and 3) dynamicaddition and removal of
nodes in the computation. SALSA-MPI provides an extension to the MPI standard that
allows MPI processes to run on dynamic grid environments. This is achieved through
the use of the IO middleware that supports dynamic reconfiguration and load balanc-
ing. Figure 2 shows the proposed SALSA-MPI architecture. The SALSA device runs
on top of vendor supplied MPI implementations. It uses intra-machine vendor supplied
MPI implementations and inter-machine TCP communication.The SALSA device pro-
vides also an interface to SALSA/IO proxy actors, which act as profiling actors in the
IO network. Every SALSA-MPI proxy-actor has a profiling actor and a decision agent.
The profiling actor keeps monitoring the running MPI processes communication, the
participating nodes’ memory, CPU, and network resources. This monitoring is fed peri-
odically to the decision agent. As more resources join or leave the computation, the de-
cision agent tries to reconfigure the running MPI application by migrating one or more
MPI processes in order to improve performance. This architecture supports intra-cluster
process migration and inter-cluster application migration. It is expensive to spread MPI
processes across clusters since they are usually very tightly coupled and they commu-
nicate a lot between themselves. Therefore, it is importantto collocate all the running
MPI process in a given application within one cluster. Inter-cluster Application migra-
tion on the other hand, could improve significantly the performance if the current cluster
experiences failures or increased load.

Fig. 2.The different interactions between the components of the SALSA-MPI framework.

To support migration, we propose an application-level checkpointing API called
PCM (Process Checkpointing and Migration) and a runtime system called PCMD (Pro-



cess Checkpointing and Migration Daemon). Few PCM calls need to be inserted in MPI
programs to specify the data that need to be checkpointed, and to restore the process
to its previous state in case of migration. This library is semi-transparent because the
user does not have to worry about when or how checkpointing and restoration is done.
The underlying PCMD infrastructure takes care of all the checkpointing and migration
details.

4.2 The PCM API

The PCM API consists of a set of function calls that allow MPI programs to be dynam-
ically reconfigurable. The PCM can be used with any iterativeMPI application. The
PCM library consists of set of routines with the following functionalities:

– Periodic checkpoints of MPI processes or MPI application data.
– Storage of the checkpointed data in a PCMD daemon (either locally or remotely).
– Restoration of a previously checkpointed data.
– Suspension, restart, or migration of an MPI process or an MPIapplication.
– Periodic probing of the status of an MPI application or an MPIprocess

Vadhiyar et al. have devised a similar approach through their SRS library [19]. Our
approach is different in that our architecture proposes both process and application mi-
gration. In addition we use the SALSA-IO middleware to trigger reconfigurability and
load balancing when necessary.

4.3 PCM Daemons

PCMD daemons need to be launched in every node that might jointhe MPI parallel
computation. The PCMD has a port number on which it listens toincoming requests.
It interacts with the running MPI processes, with the IO proxy actor, and with remote
PCMD daemons. When the IO decision agent chooses a process for migration, it sends
a migration request to the PCMD, which creates a shadow actor(S-Actor) for the mi-
grating process, redirects all messages sent to the migrating process (MP). The MP
initiates checkpoints at the PCMD daemon. The S-Actor serializes the state of the MP
and migrates to the new destination. On the remote PCMD, the S-Actor starts a new
instance of the MP, stores the states of the MP, notifies the source node to stop message
redirections and terminates. Once the MP is restarted, it contacts the local PCMD to
restore its state. Figure 2 illustrates the interactions between the PCM Daemons and the
other components of the SALSA-MPI framework.

4.4 Preliminary Results

The experimental testbed consisted of two clusters at Rensselaer Polytechnic Institute:
cluster A (the CS cluster) consisiting of 20 256MB memory SUN10 machines and clus-
ter B (the Netfinity cluster) consisting of 40 128MB memory 900Mhz singel processor
IBM Netifnity machines. The used MPI application computes aheat distribution ma-
trix. This application models iterative parallel applications that require a large amount



of communication between the boundaries of the MPI processes. The original MPI code
was instrumented by inserting the PCM API calls to allow application reconfiguration
and checkpointing by the SALSA-MPI framework. The goal of the first experiment was
to determine the overhead incurred by the PCM API. As shown inFigure 3, the orig-
inal and instrumented heat application were run on cluster Awith different numbers
of nodes. The overhead introduced by the PCM library is reasonable when the numm-
ber of nodes is small but it increases as the number of nodes increase. This is due to
the centralization of the PCM Daemon in the current prototype implementation. In the

Fig. 3. The overhead that results from instrumenting the heat distribution program with the PCM
API calls on cluster A.

second experiment, the heat distribution program was first run on cluster A. We then
increased substantially the load of all the nodes in this cluster by running several com-
putationally intensive programs. We repeated the same experiment, but we migrated the
running mpi application to cluster B once the load in clusterA increased. As shown in
Figure 4, we notice that the performance of the running mpi application improved once
it migrated to a less loaded cluster. The performance improves only when the number
of nodes is less than 10 nodes. Again this is due to the limitations of the current pro-
totype implementation. These preliminary results show that reconfigurability and load
balancing of parallel mpi applications will improve the performance of the application.
The overhead incurred by the PCM library is offset by the application’s overall im-
proved performance. The results also show that having a decentralized architecture is
necessary to achieve scalability.

5 Discussion and Future Work

We have investigated programming methodologies that promote a separation of the con-
cerns in the implementation of large scientific computations on a large network of com-
puters. High-level programming abstractions provide a natural interface to scientists so
that they can concentrate on their domain of expertise. Programming tools map these
high-level abstractions into executable units that support efficient communication, dy-
namic partitioning and load balancing. Run-time middleware infrastructure supports



Fig. 4. MPI runs of the Heat Distribution program with and without PCM.

adaptability of executing systems to an evolving underlying network. The presented
programming paradigm, languages, and tools are a first step in the unification of par-
allel and distributed computing by enabling systems to adapt to different and evolving
execution environments.

Our initial target applications for SALSA-MPI are paralleladaptive scientific com-
putations. We cannot expect scientists to rewrite or even make significant modifications
to extensive libraries of C and C++ software that currently use MPI. The SALSA-MPI
architecture allows application programs to run using native C/C++ code, continuing
to use MPI for interprocess communication. Applications that provide the minimal re-
quired checkpointing functionality can immediately take advantage of SALSA-MPI
functionality for dynamic resource allocation, process migration, and fault tolerance.
Large-scale computations often already provide checkpointing functionality, so in many
cases, this will be a minimal burden. Scientists may choose to provide more fine-grained
checkpointing to allow their applications to improve the efficiency of the dynamic mi-
gration capabilities, particularly if the computer systems being used are dynamic.

The current prototype implementation is still a work in progress, we are working
towards making the SALSA-MPI framework a fully distributedsystem where the MPI
processes or applications reconfiguration are triggered bythe IO middleware. The IO
middleware should be able to dynamically trigger fine-grainor process migration when
the computation to communication ratio is high and coarse-grain or whole application
migration when this ratio is low. This will allow the SALSA-MPI framework to acco-
modate a whole range of scientific and engineering parallel applications.

References

1. Clark, K., Flaherty, J.E., Shephard, M.S. Appl. Numer. Math., special ed. on Adaptive Meth-
ods for Partial Differential Equations14 (1994)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science2150(2001) 1–??

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open grid
services architecture for distributed systems integration (2002)



4. Remacle, J.F., Karamete, B., Shephard, M.: Algorithm oriented mesh database. To appear,
Proc. 9th Meshing Roundtable, New Orleans (2000)

5. Remacle, J.F., Klaas, O., Flahery, J.E., Shephard, M.S.:Parallel algorithm oriented mesh
database. Eng. Comput.18 (2002) 274–284

6. Bottasso, C.L., Flaherty, J.E.,Özturan, C., Shephard, M.S., Szymanski, B.K., Teresco, J.D.,
Ziantz, L.H.: The quality of partitions produced by an iterative load balancer. In Szyman-
ski, B.K., Sinharoy, B., eds.: Proc. Third Workshop on Languages, Compilers, and Runtime
Systems, Troy (1996) 265–277

7. Flaherty, J.E., Loy, R.M., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.:
Adaptive local refinement with octree load-balancing for the parallel solution of three-
dimensional conservation laws. J. Parallel Distrib. Comput. 47 (1997) 139–152

8. Flaherty, J.E., Loy, R.M., Shephard, M.S., Teresco, J.D.: Software for the parallel adaptive
solution of conservation laws by discontinuous Galerkin methods. In Cockburn, B., Karni-
adakis, G., Shu, S.W., eds.: Discontinous Galerkin MethodsTheory, Computation and Ap-
plications. Volume 11 of Lecture Notes in Compuational Science and Engineering., Berlin,
Springer (2000) 113–124

9. Remacle, J.F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique
with an orthogonal basis applied to compressible flow problems. SIAM Review45 (2003)
53–72

10. Remacle, J.F., Shephard, M.S.: An algorithm oriented mesh database. Int. J. Numer. Meth.
Engng.58 (2003) 349–374

11. Musser, D.R., Saini, A., Stepanov, A.: STL Tutorial and Reference Guide: C++ Programming
With the Standard Template Library. Addison-Wesley (1996)

12. Gropp, W., Lusk, E., Skjellum, A.: Using MPI. M. I. T. Press (1994)
13. Teresco, J.D., Beall, M.W., Flaherty, J.E., Shephard, M.S.: A hierarchical partition model

for adaptive finite element computation. Comput. Methods Appl. Mech. Engrg.184 (2000)
269–285

14. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison Wesley (1996)
15. Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking java against c and for-

tran for scientific applications. In: Proceedings of ACM Java Grande/ISCOPE Conference.
(2001) 97–105

16. Varela, C., Agha, G.: What after java? from objects to actors. In: Proceedings of the Seventh
International WWW Conference. Volume 30., Computer Networks and ISDN Systems: The
International Journal of Computer Telecommunications andNetworking (1998) 573–577

17. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with SALSA.
ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings36
(2001) 20–34 http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

18. Desell, T., ElMaghraoui, K., Varela, C.: Load balancingof autonomous actors over dynamic
networks. In: To appear in Proceedings of the Hawaii International Conference On System
Sciences (HICSS-37). (2004)

19. Vadhiyar, S.S., Dongarra, J.J.: Srs - a framework for developing malleable and migratable
parallel applications for distributed systems (2002)


