CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2008)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1362

Malleable iterative MPI
applications

K. El Maghraoui'* T, Travis J. Desell?, Boleslaw K. Szymanski®
and Carlos A. Varela?

VIBM T.J. Watson Research Center, Yorktown Heights, New York,

NY 10598, U.S.A.

2Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street,
Troy, NY 12180-3590, U.S.A.

SUMMARY

Malleability enables a parallel application’s execution system to split or merge processes modifying gran-
ularity. While process migration is widely used to adapt applications to dynamic execution environments,
it is limited by the granularity of the application’s processes. Malleability empowers process migration
by allowing the application’s processes to expand or shrink following the availability of resources. We
have implemented malleability as an extension to the process checkpointing and migration (PCM) library,
a user-level library for iterative message passing interface (MPI) applications. PCM is integrated with
the Internet Operating System, a framework for middleware-driven dynamic application reconfigura-
tion. Our approach requires minimal code modifications and enables transparent middleware-triggered
reconfiguration. Experimental results using a two-dimensional data parallel program that has a regular
communication structure demonstrate the usefulness of malleability. Copyright © 2008 John Wiley &
Sons, Ltd.

Received 10 December 2007; Revised 9 April 2008; Accepted 7 May 2008

KEY WORDS: dynamic reconfiguration; malleability; MPI

1. INTRODUCTION

Application reconfiguration mechanisms are becoming increasingly popular as they enable dis-
tributed applications to cope with dynamic execution environments such as non-dedicated clusters
and grids. In such environments, traditional application or middleware models that assume dedi-
cated resources or fixed resource allocation strategies fail to provide the desired high performance.

*Correspondence to: K. El Maghraoui, IBM T.J. Watson Research Center, Yorktown Heights, New York, NY 10598, U.S.A.
TE-mail: kelmaghr @us.ibm.com

Contract/grant sponsor: NSF IIS; contract/grant number: 0612213
Contract/grant sponsor: NSF CAREER CNS; contract/grant number: 0448407

Copyright 2008 John Wiley & Sons, Ltd.

K. El MAGHRAOUI ET AL. %

Reconfigurable applications enjoy higher application performance because they improve system
utilization by allowing more flexible and efficient scheduling policies [1]. Hence, there is a need
for new models targeted at both the application-level and the middleware-level that collaborate to
adapt applications to the fluctuating nature of shared resources.

Feitelson and Rudolph [2] classify parallel applications into four categories from a scheduling
perspective: rigid, moldable, evolving, and malleable. Rigid applications require a fixed allocation
of processors. Once the number of processors is determined, the application cannot run on a smaller
or larger number of processors. Moldable applications can run on various numbers of processors.
However, the allocation of processors remains fixed during the runtime of the application. In contrast,
both evolving and malleable applications can change the number of processors during execution.
In the case of evolving applications, the change is triggered by the application itself. While in
malleable applications, it is triggered by an external resource management system. In this paper,
we further extend the definition of malleability by allowing the parallel application not only to
change the number of processors in which it runs but also to change the granularity of its processes.
We demonstrated in previous work [3] that adapting the process-level granularity allows for more
scalable and flexible application reconfiguration.

Existing approaches to application malleability have focused on processor virtualization (e.g [4])
by allowing the number of processes in a parallel application to be much larger than the number
of available processors. This strategy allows flexible and efficient load balancing through process
migration. Processor virtualization can be beneficial as more and more resources join the system.
However, when resources slow down or become unavailable, certain nodes can end up with a
large number of processes. The node-level performance is then impacted by the large number
of processes it hosts because the small granularity of each process causes unnecessary context-
switching overhead and increases inter-process communication. On the other hand, having a large
process granularity does not always yield the best performance because of the memory-hierarchy.
In such cases, it is more efficient to have processes with data that can fit in the lower level of
memory caches’ hierarchy. To illustrate how the granularity of processes impacts performance, we
have run an iterative application with different numbers of processes on the same dedicated node.
The larger the number of processes, the smaller the data granularity of each process. Figure 1 shows
an experiment where the parallelism of a data-intensive iterative application was varied on a dual-
processor node. In this example, having one process per processor did not give the best performance,
but increasing the parallelism beyond a certain point also introduces a performance penalty.

Load balancing using only process migration is further limited by the application’s process
granularity over shared and dynamic environments [3]. In such environments, it is impossible to
predict accurately the availability of resources at application’s startup and hence determine the right
granularity of the application. Hence, an effective alternative is to allow applications’ processes to
expand and shrink opportunistically as the availability of the resources changes dynamically. Over-
estimating by starting with a very small granularity might degrade the performance in the case of a
shortage of resources. At the same time, under-estimating by starting with a large granularity might
limit the application from potentially utilizing more resources. A better approach is therefore to
enable dynamic process granularity changes through malleability.

Message passing interface (MPI) is widely used to build parallel and distributed applications
for cluster and grid systems. MPI applications can be moldable. However, MPI does not provide
explicit support for malleability and migration. In this paper we focus on the operational aspects

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

350 1

. 300 e
L] -
E W B —_—
5 250
E .
g 200
2 150
£ —
? .
] 100 -
£
=
50 4
0 T T T T T T
2 3 4 5 & & 10 12 20 30 40 60
58.14|36.76 (29.07 [23.26[19.38 |14.54 |11.63| 969 | 581 | 3.88 | 2581 | 1.4

Number of Processes/ Process Data Size (KB)

Figure 1. Throughput as the process data granularity decreases on a dedicated node.

of making iterative MPI applications malleable. Iterative applications are a broad and important
class of parallel applications that include several scientific applications such as partial differential
equation solvers, particle simulations, and circuit simulations. Iterative applications have the prop-
erty of running as slow as the slowest process. Therefore, they are highly prone to performance
degradations in dynamic and heterogeneous environments and will benefit tremendously from dy-
namic reconfiguration. Malleability for MPI has been implemented in the context of the Internet
Operating System (IOS) [5,6] to shift the concerns of reconfiguration from the applications to the
middleware. IOS is designed with generic interfaces that allow for various languages and program-
ming architectures to utilize the same autonomous reconfiguration strategies. In previous work [7],
we showed how malleability can be implemented in SALSA, a language that implements the Actor
programming model, using the same middleware infrastructure.

The remainder of the paper is organized as follows. Section 2 presents the adopted approach
of malleability in MPI applications. Section 3 introduces the process checkpointing and migration
(PCM) library extensions for malleability. Section 4 discusses the runtime system for malleability.
Split and merge policies are presented in Section 5. Section 6 evaluates performance. A discussion
of related work is given in Section 7. Section 8 wraps the paper with concluding remarks and
discussion of future work.

2. DESIGN DECISIONS FOR MALLEABLE APPLICATIONS

There are operational and meta-level issues that need to be addressed when deciding how to reconfig-
ure applications through malleability and/or migration. Operational issues involve determining how
to split and merge the application’s processes in ways that preserve the semantics and correctness
of the application. The operational issues are heavily dependent on the application’s programming
model. On the other hand, meta-level issues involve deciding when should a process be split or
merged, how many processes to split or merge, and what is the proper mapping of the processes to
the physical resources. These issues render programming for malleability and migration a complex

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

task. To facilitate application’s reconfiguration from a developer’s perspective, middleware tech-
nologies need to address meta-level reconfiguration issues. Similarly, libraries need to be developed
to address the various operational issues at the application-level. This separation of concerns allows
the meta-level reconfiguration policies built into middleware to be widely adopted by various ap-
plications.

Several design parameters come to play when deciding how to split and merge an application’s
parallel processes. Usually there is more than one process involved in the split or merge operations.
The simplest scenario is performing binary split and merge, which allows a process to be split
into two processes or two processes to merge into one. Binary malleable operations are more
intuitive since they mimic the biological phenomena of cell division. They are also highly concurrent
since they could be implemented with minimal involvement of the rest of the application. Another
approach is to allow a process to be split into N processes or N processes to merge into 1.
This approach, in the case of communication-intensive applications, could increase significantly
the communication overhead and could limit the scalability of the application. It could also easily
cause data imbalances. This approach would be useful when there are large fluctuations in resources.
The most versatile approach is to allow for collective split and merge operations. In this case, the
semantics of the split or merge operations allow any number of M processes to be split or merged
into any other number of N processes. Figures 2 and 3 illustrate example behaviors of split and
merge operations. In the case of the M to N approach, data are redistributed evenly among the
resulting processes when splitting or merging. What type of operation is more useful depends on
the nature of applications, the degree of heterogeneity of the resources, and how frequently the load
fluctuates.

While process migration changes mapping of an application’s processes to physical resources,
split and merge operations go beyond that by changing the communication topology of the appli-
cation, the data distribution, and the data locality. Splitting and merging cause the communication
topology of the processes to be modified because of the addition of new or removal of old pro-
cesses, and the data redistribution among them. This reconfiguration needs to be done atomically
to preserve application semantics and data consistency.

We provide high-level operations for malleability based on the MPI paradigm for SPMD data
parallel programs with regular communication patterns. The proposed approach is high level because
in that the programmer is not required to specify when to perform split and merge operations

[|
P[J Pt‘ P
0
— : B[]
= +—E== 7 e,
5 | —== >, %
P, E— = = P P s
— =" B
: 1
1 = 4 [| :I:
P:]_ p“"-‘ P:‘I—| 2 E]::
P, |
Figure 2. Example M to N split operations.
Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)

DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

by L [_Ie, P "

— P,

L2 5
] n-2 P Pl]-'.
P"’ I: CI P[L-} ! —

Figure 3. Example M to N merge operations.

and some of the intrinsic details that are involved in re-arranging the communication structures
explicitly: these are provided by the PCM library. The programmer needs, however, to specify the
data structures that will be involved in the malleability operations. Since there are different ways of
subdividing data among processes, programmers also need to guide the split and merge operations
for data-redistribution.

3. MODIFYING MPI APPLICATIONS FOR MALLEABILITY

In previous work [5], we have designed and implemented an application-level checkpointing ap-
plication programming interface (API) called PCM and a runtime system called PCM daemon
(PCMD). Few PCM calls need to be inserted in MPI programs to specify the data that need to be
checkpointed, to restore the process to its previous state in the case of migration, to update the
data distribution structure and the MPI communicator handles, and to probe the runtime system for
reconfiguration requests. This library is semi-transparent because the user does not have to worry
about when or how checkpointing and restoration are done. The underlying PCMD infrastructure
takes care of all the checkpointing and migration details. This study extends the PCM library with
malleability features.

PCM is implemented entirely in the user-space for portability of the checkpointing, migration,
and malleability schemes across different platforms. PCM has been implemented on top of MPICH2
[8], a free available implementation of the MPI-2 standard.

3.1. The PCM API

PCM has been extended with several routines for splitting and merging MPI processes. We have
implemented split and merge operation for data parallel programs with a 2D data structure and a
linear communication structure. Figure 4 shows the parallel decomposition of the 2D data structure
and the communication topology of the parallel processes. Our implementation allows for common
data distributions such as block, cyclic, and block—cyclic distributions.

PCM provides fours classes of services: environmental inquiry services, checkpointing services,
global initialization and finalization services, and collective reconfiguration services. Table I shows

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

N

@

Q

aQ Legend

7] . .

E Data Cells

W

O N N - Boundary Cells

) ——

g —— (Ghosi Cell Exchange
Eﬁ ‘_I_. 4-pt upd ate stencil

G r
=
©
=

w

o

o

e I+

Q -- - N
Q

b “
O
o
©
&

PU P'] PE PI‘I-'I

Figure 4. Parallel domain decomposition of a regular 2D problem.

Table I. The PCM APL

Service type Function name
Initialization MPI_PCM._Init
Finalization PCM_Exit, PCM _Finalize
Environmental inquiry PCM _Process_Status
PCM_Comm_rank
PCM_Status
PCM_Merge_datacnts
Reconfiguration PCM_Reconfigure

PCM_Split, PCM_Merge

PCM_Split_Collective

PCM_Merge_Collective
Checkpointing PCM_Load, PCM_Store

the classification of the PCM API calls. MPI_.PCM._Init is a wrapper for MPI_Init. The user calls
this function at the beginning of the program. MPI_PCM _Init is a collective operation that takes care
of initializing several internal data structures. It also reads a configuration file that has information
about the port number and location of the PCMD, a runtime system that provides checkpointing
and global synchronization between all running processes.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

Migration and malleability operations require the ability to save and restore the current state
of the process(es) to be reconfigured. PCM_Store and PCM_Load provide storage and restoration
services of the local data. Checkpointing is handled by the PCMD runtime system that ensures that
data are stored in locations with reasonable proximity to their destination.

Upon startup, an MPI process can have three different states: (1) PCM_STARTED, a process
that has been initially started in the system (for example, using mpiexec), (2) PCM_MIGRATED,
a process that has been spawned because of a migration, and (3) PCM_SPLITTED, a process that
has been spawned because of a split operation. A process that has been created as a result of
a reconfiguration (migration or split) proceeds to restoring its state by calling PCM_Load. This
function takes as parameters information about the keys, pointers, and data types of the data
structures to be restored. An example includes the size of the data, the data buffer, and the current
iteration number. Process ranks may also be subject to changes in the case of malleability operations.
PCM_Comm_rank reports to the calling process its current rank. Conditional statements are used
in the MPI program to check for its startup status.

The running application probes the PCMD system to check whether a process or a group of
processes need to be reconfigured. Middleware notifications set global flags in the PCMD system.
To prevent every process from probing the runtime system, the root process (usually process with
rank 0) probes the runtime system and broadcasts any reconfiguration notifications to the other
processes. This provides a callback mechanism that makes probing non-intrusive for the application.
PCM_Status returns the state of the reconfiguration to the calling process. It returns different
values to different processes. In the case of a migration, PCM_MIGRATE value is returned to
the process that needs to be migrated, whereas PCM_RECONFIGURE is returned to the other
processes. PCM_Reconfigure is a collective function that needs to be called by both the migrating and
non-migrating processes. Similarly PCM_SPLIT or PCM_MERGE is returned by the PCM_Status
function call in the case of a split or merge operation. All processes collectively call the PCM_Split
or PCM_Merge functions to perform a malleable reconfiguration.

We have implemented the 1 to N and M to N split and merge operations. PCM_Split and PCM_
Merge provide the 1 to N behavior, whereas PCM_Split_Collective and PCM_Merge_Collective
provide the M to N behavior. The values of M and N are transparent to the programmer. They are
provided by the middleware that decides the granularity of the split operation.

Split and merge functions change the ranks of the processes, the total number of processes,
and the MPI communicators. All occurrences of MPI_COMM_WORLD, the global communicator
with all the running processes, should be replaced with PCM_COMM _WORLD. This latter is a
malleable communicator since it expands and shrinks as processes get added or removed. All
reconfiguration operations happen at synchronization barrier points. The current implementation
requires no communication messages to be outstanding while a reconfiguration function is called.
Hence, all calls to the reconfiguration PCM calls need to happen either at the beginning or end of
the loop.

When a process or group of processes engage in a split operation, they determine the new data
redistribution and checkpoint the data to be sent to the new processes. Every data chunk is associated
with a unique key that is constructed from the process’s rank and a data qualifier. Every PCMD
maintains a local database that stores checkpoints for the processes that are running in its local
processor. The data associated with the new processes to be created are migrated to their target
processors’ PCMD databases. When the new processes are created, they inquire about their new

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL.

ranks and load their data chunks from their local PCMD using their data chunk keys. Then, all
application’s processes synchronize to update their ranks and their communicators. The malleable
calls return handles to the new ranks and the updated communicator. Unlike a split operation, a
merge operation entails removing processes from the MPI communicator. Merging operations for
data redistribution are implemented using the MPI scatter and gather operations.

3.2. Instrumenting an MPI program with PCM

Figure 5 shows a sample skeleton of an MPI-based application with a very common structure in
iterative applications. The code starts by performing various initializations of some data structures.
Data are distributed by the root process to all other processes in a block distribution. The xDim
and yDim variables denote the dimensions of the data buffer. The program then enters the itera-
tive phase where processes perform computations locally and then exchange border information
with their neighbors. Figures 6 and 7 show the same application instrumented with PCM calls to

#include <mpi.h>

int main(int argc, char sxargv) {
//Declarations
MPI_Init(&argc, &argv);

MPI_Comm_rank (MPLCOMM.WORLD, &rank);
MPI_Comm_size (MPLCOMM.WORLD, &totalProcessors);

current_iteration = 0;

//Determine the number of columns for each processor.
xDim = (yDim—2) / totalProcessors;

//Initialize and Distribute data among processors

for (iterations=current_iteration; iterations <ITOTALITERATIONS;
iterations++){

// Data Computation.

//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()

}
// Data Collection

MPI_Barrier (MPLCOMM WORLD);

MPI_Finalize ();
return 0;

Figure 5. Skeleton of the original MPI code of an MPI application.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

MALLEABLE ITERATIVE MPI APPLICATIONS

#include "mpi.h"
#include "pcm_api.h"

MPI_Comm PCM.COMMWORLD;
int main(int argc, char sxargv) {
//Declarations

int current_iteration , process_status;
PCM_Status pcm_status;

//declarations for malleability
double #new_buffer;
int merge_rank, mergecnts;

PCM_MPI_Init(&arge , &argv);

PCM.COMMWORLD = MPLCOMM WORLD);

PCM _Init (PCM.COMMWORID) ;

MPI_Comm _rank (PCM.COMM WORLD, &rank);
MPI_Comm_size (PCM.COMMWORLD, &totalProcessors);
process_status = PCM_Process_Status ();

if (process_status = PCM.STARTED){
current_iteration = 0;

//Determine the number of columns for each processor.
xDim = (yDim—2) / totalProcessors;

//Initialize and Distribute data among processors

else{
PCM_Comm_rank (PCM.COMM.-WORLD, &rank);
PCM_Load (rank, "iterator",¤t_iteration);

PCM_Load(rank, "datawidth", &xDim);
prevData = (double x)calloc ((xDim+2)*yDim, sizeof(double));
PCM_Load (rank, "myArray" , prevData);

Figure 6. Skeleton of the malleable MPI code with PCM calls: initialization phase.

allow for migration and malleability. In the case of split and merge operations, the dimensions
of the data buffer for each process might change. The PCM split and merge take as parameters
references to the data buffer and dimensions and update them appropriately. In the case of a merge
operation, the size of the buffer needs to be known so that enough memory can be allocated.
The PCM Merge_datacnts function is used to retrieve the new buffer size. This call is only
meaningful for processes that are involved in a merge operation. Therefore, a conditional statement
is used to check whether the calling process is merging or not. The variable merge_rank will
have a valid process rank in the case the calling process is merging, otherwise it has the value —1.

The example shows how to instrument MPI iterative applications with PCM calls. The pro-
grammer is required only to know the right data structures that are needed for malleability. A
PCM-instrumented MPI application becomes malleable and ready to be reconfigured by the 10S
middleware.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL.

for (iterations=current_iteration; iterations <TOTALITERATIONS;

iterations++){

pcm_status = PCM_Status (PCM.COMMWORLD) ;

if (pcm_status = PCM.MIGRATE){
PCM_Store(rank ,"iterator" &iterations ,PCM.INT,1);
PCM_Store(rank ,"datawidth" ,&xDim,PCM.INT,1);
PCM_Store(rank ,"myArray" ,prevData ,PCM_DOUBLE, (xDim+2)*yDim) ;
PCM.COMMWORLD = PCM_Reconfigure (PCM.COMM.-WORLD, argv [0]);

}

else if(pcm_status = PCM RECONFIGURE) {
PCM_Reconfigure (&PCM.COMMWORLD, argv [0]) ;
MPI_Comm_rank (PCML.COMM-WORLD, &rank);

}
else if(pcm_status = PCM_SPLIT){
PCM_Split (prevData ,PCM. DOUBLE,
&iterations ,&xDim,&yDim,&rank ,
&totalProcessors ,&PCM.COMMWORLD, argv [0]) ;
telse if(pcm_status =— PCMMERGE){
PCM_Merge_datacnts (xDim, yDim,& mergecnts & merge_rank ,

PCM.COMM-WORLD) ;
if (rank = merge_rank)
/* Reallocate memory for the data bufferx/
new_buffer = (doublex)calloc (mergecnts, sizeof(double));

PCM_Merge (prevData , MPL.DOUBLE, &xDim,&yDim, new_buffer ,
mergecnts,&rank,&totalProcessors ,&PCM.COMM WORLD) ;
if (rank = merge_rank)
prevData = new_buffer;

// Data Computation .
//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()

}

// Data Collection

MPI_Barrier (PCM.COMMWORID);

PCM_Finalize (PCM.COMM WORLD) ;

MPI_Finalize ();
return 0;

Figure 7. Skeleton of the malleable MPI code with PCM calls: iteration phase.

4. THE RUNTIME ARCHITECTURE

10S [6] provides several reconfiguration mechanisms that allow (1) analyzing profiled application
communication patterns, (2) capturing the dynamics of the underlying physical resources, and (3)
utilizing the profiled information to reconfigure application entities by changing their mappings
to physical resources through migration or malleability. IOS adopts a decentralized strategy that
avoids the use of any global knowledge to allow scalable reconfiguration. An IOS system consists
of collection of autonomous agents with a peer-to-peer topology.

MPI/IOS is implemented as a set of middleware services that interact with running applications
through an MPI wrapper. The MPI/IOS runtime architecture consists of the following components:
(1) the PCM-enabled MPI applications, (2) the wrapped MPI that includes the PCM API, the

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

PCM library, and wrappers for all MPI native calls, (3) the MPI library, and (4) the IOS runtime
components.

4.1. The PCMD runtime system

Figure 8 shows an MPI/IOS computational node running MPI processes. A PCMD interacts with the
IOS middleware and MPI applications. A PCMD is started in every node that actively participates
in an application. A PCM dispatcher is used to start PCMDs in various nodes and is used to discover
the existing ones. The application initially registers all MPI processes with their local daemons.
The port number of a daemon is read from a configuration file that resides in the same host.
Every PCMD has a corresponding IOS agent. There can be more than one MPI process in each
node. The daemon consists of various services used to achieve process communication profiling,
checkpointing, migration, and malleability. The MPI wrapper calls record information pertaining
to how many messages have been sent and received and their source and target process ranks. The
profiled communication information is passed to the IOS profiling component. IOS agents keep
monitoring their underlying resources and exchanging information about their respective loads.
When a node’s used resources fall below a predefined threshold or a new idle node joins the
computation, a Work-Stealing Request Message (WRM) is propagated among the actively running
nodes. The IOS agent of a node responds to work-stealing requests if it becomes overloaded
and its decision component decides according to the resource-sensitive model that process(es)
need(s) to be migrated. Otherwise, it forwards the request to an IOS agent in its set of peers. The

Reconfigurable MPI Process Migrate/
. Sphit/
—— Proxy Client Merge
Request

PCM/ PMFI APIL

Profiling/Control)
Packats ‘ PCM Daemon |<* Migrate
Sphit/
—— Merge
v | Requast
Profilng MPI Channel [0S Channel =
Invocations Server Server
PlUﬁ.li.I].j_l AP] Reconfiguration
Message
108 Agent
Profiling Decision Protocol | |
Module [~ Module ["l Module
e ¥
Figure 8. The PCM/IOS runtime environment.
Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)

DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

decision component then notifies the reconfiguration service in the PCMD, which then sends a
migration, split, or merge request to the desired process(es). At this point, all active PCMDs in the
system are notified about the event of a reconfiguration. This causes all processes to cooperate in
the next iteration until migration is completed and application communicators have been properly
updated. Although this mechanism imposes some synchronization delay, it ensures that no messages
are being exchanged while process migration is taking place and avoids incorrect behaviors of the
MPI communicators.

4.2. The profiling architecture

MPI processes need to send periodically their communication patterns to their corresponding 10S
profiling agents. To achieve this, we have built a profiling library that is based on the MPI profiling
interface (PMPI). The MPI specification provides a general mechanism for intercepting calls to
MPI functions using name shifting. This allows the development of portable performance analyzers
and other tools without access to the MPI implementation source code. The only requirement
is that every MPI function be callable by an alternate name (PMPI_Xxxx instead of the usual
MPI_Xxxx.). The built profiling library intercepts all communication methods of MPI and sends
any communication event to the profiling agent.

All profiled MPI routines call their corresponding PMPI_Xxxx and, if necessary, PCM rou-
tines. Figure 9 shows the library structure of the MPI/IOS programs. The instrumented code is
linked with the profiling library PMPI, the PCM library, and a vendor MPI implementation’s
library. The generated executable passes all profiled information to the IOS run-time system
and also communicates with the local PCMD. The latter is responsible for storing local check-
points and passing reconfiguration decisions across a socket API from the IOS agent to the MPI
processes.

MPT user . PCM code Instrumented —| MPI library
program instrumentation program J

—{PMPI library|

F y

Compiler/Linker

L PCM library

A 4

E—
| Executable -

PCM Daemon | 4md

IOS Reconfiguration Middleware

§39390S dD.L

Figure 9. Library and executable structure of an MPI/IOS application.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

5. MALLEABILITY POLICIES

5.1. Transfer policy

The purpose of the transfer policy is to determine when to transfer load from one agent to another
and how much load needs to be transferred, whenever a WRM is sent from an agent 7 ; to an agent
n;. We identify the load of a given agent simply by the number of running application’s processes
hosted by this agent. We denote by Nb; the number of application’s processes running on agent
n; before a given reconfiguration step and by Na; the number of application’s processes running
on agent n; after a given reconfiguration step, since processes may have different granularities. We
measure the number of processes in units of the process with the smallest data sizes. For example,
if two processes are running and one of them has twice the size of the other, the total number
of processes will be reported as 3. This accounts for the heterogeneous sizes of processes and
simplifies our analysis. Let AP W; be the percentage of the available CPU-processing power of
agent n; and U PW; be the percentage of the used CPU-processing power of agent n;. Let PW;
and PW; be the current processing powers of agents n; and n, respectively. We use the Network
Weather Service [9] to measure the values of APW and U PW. The transfer policy tries to adjust
the load between two peer agents based on their relative machine performances as shown in the
equations below:

Niotat = Nb; + Nb; = Na; + Na; (1)
Na,- _ Na.,- (2)
APW;x PW; UPW;*xPW;
APW,' * PW,'
Na; = * Niotal (3)
APW; « PW; +UPW; x PW;
UPW;x* PW;
Naj=) . * Niotal 4
APW; x PW; +UPW; x PW;
Niransfer = Naj - ij (5)

Equation (5) allows us to calculate the number of processes that need to be transferred to remote
agent n; to achieve load balance between n; and n ;. All the processes in host 7 ; are ranked according
to a heuristic decision function [6] that calculates their expected gain from moving from agent n; to
agent n;. Only the processes that have a gain value greater than a threshold value 0 are allowed to
migrate to the remote agent. So the number of processes that will migrate can be less than Nyangfer-
The goal of the gain value is to select the candidate processes that benefit the most from migration
to the remote host.

5.2. Split and merge policies
5.2.1. The split policy

The transfer policy discussed above shows how the load in two agents needs to be broken up to
reach pair-wise load balance. However, this model will fail when there are not enough processes to

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

make such load adjustments. For example, assume that a local node n; has only one entity running.
Assume also that n,, a node that is three times faster than n;, requests some work from n;. Ideally,
we want node 7, to have three times more processes or load than node n;. However, the lack of
enough processes prevents such adjustment. To overcome this situation, the entity running in node
n; needs to be split into enough processes to send a proportional number remotely.

Let Niotal be the total number of processes running in both n; and n,. Let n be the desired total
number of processes, [be the desired number of processes at local node n;, and r be the desired
number of processes at node n,. AP W, and P W, denote the percentage of the available processing
power and the current processing power of node n,, respectively. U PW; and PW; denote the
percentage of the used processing power and current processing power of node ¢;. The goal is to
minimize n subject to constraints shown in the set of Equations (6)—(12) and to solve for #n, [, and
r in the set of positive natural numbers I/ Nt

n—101—r=0 (6)
APW, x PW,
rx «n—r=0 %)
APW, x PW, +UPW,; % PW,
UPW, % PW,
il wn—1=0 (8)
APW, x PW, +UPW,; x PW,
n 2 Niotal (9)
nelNT (10)
relINt (11
leINt (12)

A split operation happens when n> Ny, and the entity can be split into one or more processes.
In this case the number of processes in local node will be split refining the granularity of the
application’s processes running in the local node r;.

5.2.2. The merge policy

The merge operation is a local operation. It is triggered when a node has a large number of running
processes and the operating system’s context switching is large. To avoid a thrashing situation that
causes processes to be merged and then split again upon receiving a WRM, merging happens only
when the surrounding environment has been stable for a while. Every peer in the virtual network
tries to measure how stable it is and how stable its surrounding environment is.

Let S;=(APU; o, APW; 1,..., APW;) be a time series of the available CPU-processing power
of an agent n; during different consecutive k measurement intervals. Let avg; denote the average
available CPU-processing power of series S; (see Equation (13)). We measure the stability value
o; of agent n; by calculating the standard deviation of the series S; (see Equation (14))

1 k

avg; = x Yy APW;,; (13)
t=0
1 X)
o; = % * Z(APW,‘J — ClVgl-) (14)
t=0
Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)

DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

1 P
avg=—% Y 0 (15)
P -0
1 P
o= [—x) (5, —avg)? (16)
V4 i=0

A small value of ¢; indicates that there has not been much change in the CPU utilization over
previous periods of measurements. This value is used to predict how the utilization of the node is
expected to be in the near future. However, the stability measure of the local node is not enough
since any changes in the neighboring peers might trigger a reconfiguration. Therefore, the node also
senses how stable its surrounding environment is. The stability value is also carried in the WRMs
within the machine performance profiles. Therefore, every node records the stability values o of
its peers. The nodes periodically calculate ¢ (see Equation (16)), the standard deviation of the o ;’s
of its peers.

A merging operation is triggered only when ¢; and ¢ are small, g; <¢] and 6<e&,. In other words,
the local node attempts to perform a merge operation when possible if its surrounding environment
is expected to be stable and the context-switching rate of the host operating system is higher than
a given threshold value. The OS context-switching rates can be measured using tools such as the
Unix vmstat command.

6. PERFORMANCE RESULTS
6.1. Application case study

We have used a fluid dynamic problem that solves heat diffusion in a solid for testing purposes.
This applications is representative of a large class of highly synchronized iterative mesh-based
applications. It has been implemented using C and MPI and has been instrumented with PCM library
calls. We have used a simplified version of this problem to evaluate our reconfiguration strategies.
A 2D mesh of cells is used to represent the problem data space. The cells are uniformly distributed
among the parallel processors. At the beginning, a master process takes care of distributing the
data among processors. For each iteration, the value of each cell is calculated based on the values
of its neighbor cells. So each cell needs to maintain a current version of them. To achieve this,
processors exchange values of the neighboring cells, also referred to as ghost cells. To sum up,
every iteration consists of doing computation and exchanging ghost cells from the neighboring
Processors.

For the experimental test bed we used a heterogeneous cluster that consists of four dual-processor
SUN Blade 1000 machines with a processing speed of 750M cycles s~ and 2 GB of memory and 18
single-processor SUN Ultra 10 machines with a processing speed of 360M cycles s~! and 256 MB
of memory. The SUN Blade machines are connected with high-speed gigabit ethernet, whereas
the SUN Ultra machines are connected with 100 MB ethernet. For comparative purposes, we used
MPICH?2 [8], a free implementation of the MPI-2 standard. We run the heat simulation for 1000
iterations with 1000 x 1000 mesh and a total data size of 7.8 MB.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

140 T =0
45
120
40
100 135
)
4 a0
g w0 £
F %
5 5 =
R ®
[
e 26
L
40 118
- 10
20 - S pd
by . - = 5
0 : t t 0
2 6] 10 12 16 20 25

Mumber of Processors

[= MPICH2 == MPICH2/PCM -8~ Overhead % |

Figure 10. Overhead of the PCM library.
6.2. Overhead evaluation

To evaluate the overhead of the PCM profiling and status probing, we have run the heat diffusion
application with the base MPICH2 implementation and with the PCM instrumentation. We ran the
simulation with 40 processes on different numbers of processors. Figure 10 shows that the overhead
of the PCM library does not exceed 11% of the application’s running time. The measured over-
head includes profiling, status probing, and synchronization. The library supports tunable profiling,
whereby the degree of profiling can be decreased by the user to reduce its intrusiveness.

For a more in-depth evaluation of the cost of reconfiguration and the overhead of the PCM/IOS
reconfiguration, we conducted an experiment that compares a reconfigurable execution scenario
with a baseline MPICH2 execution scenario. In the conducted experiments, the application was
started on a local cluster. Artificial load was then introduced in one of the participating machines.
Another cluster was made available to the application. The baseline implementation using MPICH2
was not able to reconfigure the running application, while the PCM/IOS implementation managed
to reconfigure the application by migrating the affected processes to the second cluster. The experi-
ments in Figures 11 and 12 show that in the studied cases, reconfiguration overhead was negligible.
In all cases, it accounted for less than 1% of the total execution time. We also used an experimental
testbed that consisted of two clusters that belong to the same institution. So the network latencies
were not significant. The reconfiguration overhead is expected to increase with larger latencies
and larger data sizes. However, reconfiguration will still be beneficial in the case of large-scale
long-running applications. Figure 12 shows the breakdown of the reconfiguration cost. The over-
head measured consisted mainly of the costs of checkpointing, migration, and the synchronizations
involved in re-arranging the MPI communicators. Owing to the highly synchronous nature of this

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

MALLEABLE ITERATIVE MPI APPLICATIONS

= Non-reconfigurable Execution Time
] Reconfigurable Execution Time

1,400 T T T T
1,200 - == i
1,000 | =3 E
2 800 : E
5
E
=600 | = _
\\ o
Bty
400 R b
Bty
200 = N i
i .
o =
0.95 1.37 2.44 3.81

Data Size (Megabytes)

Figure 11. Total running time of reconfigurable and non-reconfigurable execution scenarios for different problem
data sizes for the heat diffusion application.

[Synchronization
E] Loading Checkpoints
Checkpointing

1.6 T T T T
14 1 \\\\\> b
.
12 SR u
S
o 1r \ﬁ\\\ e~ i
2 08 e S > -
— =~ -
5 0.6 - = = TR :]
. — — = S5
R S =
04 S I e -
= Sl =
02+ N /\ e s u
0 s
0.95 1.37 2.44 3.81

Data Size (Megabytes)

Figure 12. Breakdown of the reconfiguration overhead for the experiment of Figure 11.

application, communication profiling was not used because a simple decision function that takes
into account the profiling of the CPU usage was enough to yield good reconfiguration decisions.

6.3. Split/merge features
An experiment was set up to evaluate the split and merge capabilities of the PCM malleability

library. The heat diffusion application was started initially on eight processors with a configuration
of one process per processor. Then, eight additional processors at iteration 860 were made available.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

70
60
T,

s ™ gt AL
E 50 | Lot
g
5 40 - |
‘é_ A0 {rtersneetin s s et ¢
F= ™ b
2. |
E 204 i
=

10

O T T T 1

0 500 1000 1500 2000
Iteration Mumber
Figure 13. Expansion and shrinkage capabilities.
70 4
iy
60

Kl

= Lt l
ol kaii
2 | !
m
& I
% NS A |
g CHUBRG () I
= 5 —
O)
0 T T T T T
1] 1000 2000 3000 4000 5000 [=laats]

Iteration Number

Figure 14. Adaptation using malleability and migration.

The eight additional processes were split and migrated to harness the newly available processors.
Figure 13 shows the immediate performance improvement that the application experienced after this
expansion. The sudden drop in the application’s throughput at iteration 860 is due to the overhead
incurred by the split operation. The collective split operation was used in this experiment because of
the large number of resources that have become available. The small fluctuations in the throughput
are due to the shared nature of the cluster used for experiments.

6.4. Gradual adaptation with malleability and migration

The experiment shown in Figure 14 illustrates the usefulness of having the 1 to N split and
merge operations. When the execution environment experiences small load fluctuations, a gradual

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

% MALLEABLE ITERATIVE MPI APPLICATIONS

adaptation strategy is needed. The heat application was launched on a dual-processor machine with
two processes. Two binary split operations occurred at events 1 and 2. The throughput of the
application decreased a bit because of the decrease in the granularity of the processes on the hosting
machine. At event 3, another dual-processor node was made available to the application. Two pro-
cesses migrated to the new node. The application experienced an increase in throughput as a result
of this reconfiguration. A similar situation happened at events 5 and 6, which triggered two split op-
erations, and then two migrations to another dual-processor node at event 7. An increase in through-
put was noticed after the migration at event 7 due to a better distribution of work. A node left at
event 8 caused two processes to be migrated to one of the participating machines. A merge operation
happened at event 9 in the node with excess processes, which improved the application’s throughput.

7. RELATED WORK

Malleability for MPI applications has been ma inly addressed through processor virtualization,
dynamic load balancing strategies, and application stop and restart.

Adaptive MPI (AMPI) [4] is an implementation of MPI built on top of the Charm + + runtime
system, a parallel object-oriented library with object migration support. AMPI leverages Charm -+ +
dynamic load balancing and portability features. Malleability is achieved in AMPI by starting the
applications with a very fine process granularity and relying on dynamic load balancing to change
the mapping of processes to physical resources through object migration. The PCM/IOS library and
middleware support provide both migration and process granularity control for MPI applications.
Phoenix [10] is another programming model that allows virtualization for a dynamic environment
by creating extra initial processes and uses a virtual name space and process migration to balance
load and scale applications.

The EasyGrid middleware [11] embeds a hierarchical scheduling system into MPI applications
with the aim of efficiently orchestrating the execution of MPI applications in grid environments. In
this study a hybrid of static and dynamic scheduling policies are utilized to map MPI processes to
grid resources initially. The number of MPI processes in this scheme remains the same throughout
the execution of the application. PCM/IOS allows for more flexible scheduling policies because of
the added value of split and merge capabilities.

In [1], the authors propose virtual malleability for message passing parallel jobs. They apply a
processor allocation strategy called the Folding by JobType (FJT) that allows MPI jobs to adapt to
load changes. The folding technique reduces the partition size in half, duplicating the number of
processes per processor. In contrast to our work, the MPI jobs are only simulated to be malleable
by using moldability and the folding technique.

Process swapping [12] is an enhancement to MPI that uses over-allocation of resources and
improves performance of MPI applications by allowing them to execute on the best performing
nodes. The process granularity in this approach is fixed. Our approach is different in that we do not
need to over-allocate resources initially. The over-allocation strategy in process swapping may not
be practical in highly dynamic environments where an initial prediction of resources is not possible
because of the constantly changing availability of the resources. Dyn-MPI [13] is another system
that extends iterative MPI programs with adaptive execution features in non-dedicated environment
through data redistribution and the possibility of removing badly performing nodes. In contrast to

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

K. El MAGHRAOUI ET AL. %

our scheme, Dyn-MPI does not support the dynamic addition of new processes. In addition, Dyn-
MPI relies on a centralized approach to determine load imbalances while we utilize decentralized
load balancing policies [6] to trigger malleable adaptation.

Checkpointing and application stop and restart strategies have been investigated as malleability
tools in dynamic environments. Examples include CoCheck [14], starFish [15], and the SRS library
[16]. Stop and restart are expensive especially for applications operating on large data sets. The
SRS library provides tools to allow an MPI program to stop and restart where it left off with a
different process granularity. Our approach is different in the sense that we do not need to stop the
entire application to allow for change of granularity.

8. CONCLUSIONS AND FUTURE WORK

The paper describes the PCM library framework for enabling MPI applications to be malleable
through split, merge, and migrate operations. The implementation of malleability operations is
described and illustrated through an example of a communication-intensive iterative application.
Different techniques for split and merge are presented and discussed. Collective malleable operations
are more appropriate in dynamic environments with large load fluctuations, whereas individual
split and merge operations are more appropriate in environments with small load fluctuations. Our
performance evaluation has demonstrated the usefulness of malleable operations in improving the
performance of iterative applications in dynamic environments.

This paper has mainly focused on the operational aspect of implementing malleable functional-
ities for MPI applications. The performance evaluation experiments that we conducted were done
using small- to medium-sized clusters. Future work should address the scalability aspects of our
malleable reconfiguration. IOS reconfiguration decisions are all based on local or neighboring node
information and use decentralized protocols. Therefore, we expect our scheme to be scalable in
larger environments. Future work aims also at improving the performance of the PCM library, and
thoroughly evaluating the devised malleability policies that decide when it is appropriate to change
the granularity of the running application, what is the right granularity, and what kind of split or
merge behavior to select. Future work includes also devising malleability strategies for non-iterative
applications.

ACKNOWLEDGEMENTS

This work has been partially supported by NSF IIS No. 0612213 Grant and NSF CAREER CNS Award No.
0448407. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

1. Utrera G, Corbaldn J, Labarta J. Implementing malleability on MPI jobs. IEEE PACT. IEEE Computer Society: Silver
Spring, MD, 2004; 215-224.

2. Feitelson DG, Rudolph L. Towards convergence in job schedulers for parallel supercomputers. JSSPP (Lecture Notes in
Computer Science, vol. 1162), Feitelson DG, Rudolph L (eds.). Springer: Berlin, 1996; 1-26.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)
DOI: 10.1002/cpe

MALLEABLE ITERATIVE MPI APPLICATIONS

o]

10.

11.

12.

13.

15.

16.

. Desell T, Maghraoui KE, Varela C. Malleable components for scalable high performance computing. Proceedings of

HPDC’15 Workshop on HPC Grid Programming Environments and Components (HPC-GECO/CompFrame), Paris,
France, June. IEEE Computer Society: Silver Spring, MD, 2006; 37—-44.

. Huang C, Zheng G, Kalé L, Kumar S. Performance evaluation of adaptive MPL. PPoPP ’06: Proceedings of the Eleventh

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM Press: New York, NY, U.S.A.,
2006; 12-21.

. Maghraoui KE, Szymanski B, Varela C. An architecture for reconfigurable iterative MPI applications in dynamic

environments. Proceedings of the Sixth International Conference on Parallel Processing and Applied Mathematics
(PPAM’2005) (Lecture Notes in Computer Science, vol. 3911), Poznan, Poland, September, Wyrzykowski R, Dongarra
J, Meyer N, Wasniewski J (eds.). Springer: Berlin, 2005; 258-271.

. Maghraoui KE, Desell TJ, Szymanski BK, Varela CA. The Internet Operating System: Middleware for adaptive distributed

computing. International Journal of High Performance Computing Applications (IJHPCA), Special Issue on Scheduling
Techniques for Large-Scale Distributed Platforms 2006; 20(4):467-480.

. Desell T, Maghraoui KE, Varela C. Malleable applications for scalable high performance computing. Cluster Computing

2007; 10(3):323-337.

. Argone National Laboratory. MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2 [4 April 2008].
. Wolski R. Dynamically forecasting network performance using the network weather service. Cluster Computing 1998;

1(1):119-132.

Taura K, Kaneda K, Endo T. Phoenix: A parallel programming model for accommodating dynamically joining/leaving
resources. Proceedings of PPoPP. ACM: New York. 2003; 216-229.

Nascimento AP, Sena AC, Boeres C, Rebello VEF. Distributed and dynamic self-scheduling of parallel MPI grid
applications: Research articles. Concurrency and Computation: Practice and Experience 2007; 19(14):1955-1974.
Sievert O, Casanova H. A simple MPI process swapping architecture for iterative applications. International Journal of
High Performance Computing Applications 2004; 18(3):341-352.

Weatherly DB, Lowenthal DK, Nakazawa M, Lowenthal F. Dyn-MPI: Supporting MPI on non dedicated clusters. SC ’03:
Proceedings 2003 ACM/IEEE Conference on Supercomputing. IEEE Computer Society: Washington, DC, U.S.A., 2003; 5.

. Stellner G. Cocheck: Checkpointing and process migration for MPI. Proceedings of the 10th International Parallel

Processing Symposium. IEEE Computer Society: Silver Spring, MD. 1996; 526-531.

Agbaria A, Friedman R. Starfish: Fault-tolerant dynamic MPI programs on clusters of workstations. Proceedings of the
Eighth IEEE International Symposium on High Performance Distributed Computing. IEEE Computer Society: Silver
Spring, MD, 1999; 31.

Vadhiyar SS, Dongarra J. Srs: A framework for developing malleable and migratable parallel applications for distributed
systems. Parallel Processing Letters 2003; 13(2):291-312.

Copyright 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2008)

DOI: 10.1002/cpe

