Mobility and Security in Worldwide Computing

Robin D. Toll
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180-3590, U.S.A.

tollr@cs.rpi.edu

ABSTRACT

Modern distributed computing requires a secure framework
capable of free code mobility. In this paper, we present
a simple lambda-based actor language with extensions for
mobility and security, as well as the operational semantics
to reason about these topics in distributed systems. Finally,
we describe our preliminary implementation results.

1. INTRODUCTION

Internet based distributed computing systems benefit from
open dynamically reconfigurable designs as these designs al-
low the systems to be used in constantly changing hetero-
geneous environments. Consider a data mining application
running on an open distributed system using hundreds of
thousands of computing devices to discover useful patterns
in scientific data sets (e.g., protein folding, SETI, weather
forecasting, etc.). If a system can make use of new comput-
ing resources as they become available and is both secure
and resilient to failures in a subset of its computing nodes,
it has the potential to leverage the power of idle computing
resources around the world.

In this paper, we study program component mobility and
security as fundamental stepping stones towards robust dis-
tributed computing systems. Mobility and security intro-
duce new requirements on software, e.g., it is critical to de-
vise strategies for secure and controlled distributed resource
management. We specify an actor-based model and formal-
ism to reason about program component mobility and secure
resource access in worldwide computing systems.

Paper Outline

In Section 2, we further motivate and informally introduce
abstractions for programming worldwide computing appli-
cations. Section 3 specifies our model by providing an oper-
ational semantics for a simple actor language and extensions
for mobility and security. Lastly, section 4 talks about other
systems and future work.

Carlos Varela
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180-3590, U.S.A.

cvarela@cs.rpi.edu

2. PROGRAMMING ABSTRACTIONSFOR
WORLDWIDE COMPUTING
2.1 Actors

The Actor model of computation is based around the con-
cept of encapsulating state and process into a single entity.
Actors are therefore inherently independent, concurrent and
autonomous which enables efficiency in parallel execution
[KA95] and facilitates mobility [AJ99]. Each actor is a unit
of computation encapsulating data and behavior. The be-
havior defines how the actor reacts on receipt of a message.
Each actor has a unique name, which can be used as a ref-
erence by other actors.

Actors only process information in reaction to messages.
While processing a message, an actor can carry out any of
three basic operations: alter its state, create new actors, or
send messages to peer actors (see Figure 1).

Communication between actors is purely asynchronous and
guaranteed. That is, when a message is sent, the model
guarantees that the destination actor will receive the mes-
sage; however, it does not guarantee the order of message
arrival or, therefore, the order of processing. A side effect of
this is that since actors can change their own behavior based
on incoming messages, unless the actor’s name is known only
to the sender, its behavior could change significantly before
a message arrives and is processed.

The actor model and languages provide a very useful frame-
work for understanding and developing open distributed sys-
tems. For example, among other applications, actor systems
have been used for enterprise integration [TCMW93], real-
time programming [RAS96], fault-tolerance [AFPS93], and
distributed artificial intelligence [FB88].

2.2 Universal Actors

In considering mobile computation, it becomes useful to not
only model the interactions of actors with each other, but
also to model the interactions of actors with their environ-
ments. In the actor model, locations are not represented,
therefore, it does not matter if two actors are in the same
memory space, or on two computers on opposite ends of the
earth. However, when considering the problems associated
with worldwide computing, it becomes important to repre-
sent the actor’s environment. Otherwise it is not possible to
model the behavior of an actor, e.g., when its computation
environment is unreliable, or when different resources are
available in different locations.

Actor

Thread

Mailbox

Figure 1: Actors are reactive entities. In response to
a message, an actor can (1) change its internal state,
(2) create new actors, and/or (3) send messages to
peer actors

Universal actors extend actors with locations, mobility, and
the concept of universal names and universal locators. Names
represent actor references that do not change with actor mi-
gration. Locators represent references that enable commu-
nication with universal actors at a specific location.

An actor’s location abstracts over its position relative to
other actors. Each location represents an actor’s run-time
environment and serves as an encapsulation unit for local
resources. Ubiquituous resources have a generic represen-
tation —actors keep references which get updated upon mi-
gration to resources at new locations. Actors can also keep
references to non-ubiquituous resources —scarce or not gen-
erally available— by using resource attachment and detach-
ment operations. For example, a standard output stream is
ubiquituous and can always refer to the current actor’s ex-
ecution environment. Conversely, an actor needs to attach
to a robot resource in Mars, so that the reference remains
the same upon migration.

2.3 Secure Actors

Mobile code can pose a serious danger to any environment it
executes in and, conversely, any environment can prove dan-
gerous to actors executing inside. Therefore, it is important
to consider the security of host resources and actors. Secure
actors restrict communication and migration behaviors to
actors within specific access control lists.

The access control list for an actor or resource contains every
actor allowed to send messages to it. The access control
list for a location contains every actor allowed to migrate
into the location. These lists can only be altered by the
resource or actor in consideration, or by a resident actor in
case of passive locations. Using this method, no unprivileged
actor can gain access to a resource, since any unauthorized

communication or migration request is rejected.

3. PROGRAMMING LANGUAGES AND SE-
MANTICS

3.1 A Simple Actor Language and Its Opera-

tional Semantics
Agha, Mason, Smith, and Talcott introduce a simple actor
language as an extension to the call-by-value lambda calcu-
lus, with primitives for actor communication [AMST97].

The actor language, named here AL, formally defines three
primitives:

e new(b), which creates an actor which has behavior b
and returns the new actor’s name.

e send(vo,v1), which sends a message with contents vy
to actor vg.

e ready(b’), which signals the end of the current exe-
cution and makes the actor ready to receive a new
message using behavior b’.

3.2 Actor Configurations

They assume as given two sets At(Atoms) and X(Variables),
and then define the set of walues, V, expressions, E, and
messages, M, as:

V=AtUXUMX.EUpr(V,V)
E=V Uapp(E,E)UF,(E™)

M =<V <V>

where F,(E™) is all arity-n primitives.

Variables are used for actor names. At any given point,
an actor can either be ready to receive a message (denoted
ready(e), where e is a lambda abstraction); or currently ex-
ecuting some expression e. A message sent to actor vy with
contents v; is written as <vg < v;>.

An actor configuration is a global snapshot of a group of
actors. It includes the concept of an actor mapping, where
each actor name is mapped to a behavior; a message set
of messages in transit; a set of receptionists (internal actors
known to the outside world); and a set of external actors
(known actors not in the configuration).

An actor configuration with actor map, «, multi-set of mes-
sages, [, receptionists, p, and external actors, ¥, is written®

(o])%

where p,x € Pu[X], « € X & E, u € My[M], and let
A = Dom(a), then:

Let P,[X] be the set of finite subsets (Power Set) of X,
M.,,[M] be the set of (finite) multi-sets with elements in M,

Xo X, X, be the set of finite maps from Xo R X1, Dom(})
be the domain of f and FV(e) be the set of free variables in
e.

(0) pCAand ANx=0,

(1) ifa € A, then FV(a(a)) € AU, and if <vp <= 11> € p
then FV(v;) C AU x for i < 2.

3.3 Operational Semantics

We define a transition relation between actor configurations
as the least relation satisying the rules in Figure 22. To de-
scribe the internal transitions between configurations other
than message receipt, an expression is decomposed into a
reduction context filled with a redex. The notation R[e] rep-
resents a redex e in a reduction context R, as described by
Honsell et al.[HMST95] and used by Agha et all[AMST97].
For a formal definition of reduction contexts, expressions
with a unique hole; and for the definition of functional progress

within an actor (»AA), we refer the reader to [AMST97]. The
actor redexes are: newactor(e), send(vo, v1), and ready(v).

(s o h

€ Ppomeyufay € = (a{lela} |)} —
(ofleTa} |)
<new: a, a’>
(a{lR[new(e)]la} | w)§ —
(a{lR[a 1o, [elu} | 1) a’ fresh
<send : a, vo, V1>
(a{[R[send(vo,v1)]1a} | p)% —
(a{[R[nil]l.} | pW<w < vi>)h

<receive : vg, V1>
(a{lready(v)l.} | <a < w> W p)y —
(af Lapp(v, w)1a} | 1)4
<out : vp, v1>
(o | w<a e w>) e (a | 0
if a € x and p’ = pU (FV (%) N Dom())
<in: v, v1>

(a | p)§ = (o | p¥<a <=1)0 Evie Do)

K if a € p then FV(v) N Dom(a) C p /

Figure 2: Actor Language (AL) Semantics

3.4 Mobile Actor Language and Its Opera-
tional Semantics

3.4.1 Resources

When we introduce the concept of locations, we also intro-

duce the need to model resources in those locations. One

example is the standard output stream in a run-time envi-

ronment. While the concept remains the same, the actual

2We define a{lel,} as an extended mapping which maps
a into e, and all other actor names a’ into a(a’), and

a{lelq, [e']a} as a{{lel.}{l[e].}} for a # a'.

implementation may change when the actor migrates across
different locations.

Each resource is referred to by a universally understood re-
source name. This resource name is used to contact the im-
plementing resource actor without necessarily ever knowing
the specific name of the service providing that resource, or
the implementation of that resource. These resources may
be ubiquitous, such as a standard output stream. The name
’standard output’ may apply to output on a console, or a
text field on a graphical user interface, a log file, or even
a printer interface, but almost any executing program has
access to a primary output stream. If an actor migrates, the
primary output stream changes but the transition is trans-
parent to the actor. Referring to some standard resource
name allows the environment to handle requests properly.

3.4.2 Resource Maps

Resource-to-actor translations are stored in resource maps.
These functions are maps between global names and the
names of local actors who fill a resource’s roll. When an ac-
tor at a location sends a message, resource maps are seached
for the target’s name; first the actor’s resource map followed
by the location’s resource map. If the target is found, the
message is diverted to the resolved actor- otherwise conven-
tional message sending proceeds.

Remote access to resources is permitted because both actors
and locations have independent resource maps. Consider the
case when a actor migrates but needs to retain a reference to
a resource at the original location, such as a output device;
the actor’s map will direct messages to the original location,
where the resource’s name is resolved to the implementing
actor.

3.5 Mobile Actor Language

To reflect mobility in the universal actor model, we add
four primitives to AL, forming the Mobile Actor Language
(MAL). MAL thus formally defines seven primitives:

e new(b), which creates an actor which has behavior b
and returns the new actor’s name.

e send(vo,v1), which sends a message with contents vy
to actor vg.

e ready(b’), which signals the end of the current exe-
cution and makes the actor ready to receive a new
message using behavior b’.

e newloc(Y), which indicates the appearance or creation
of a new location, with an initial resource map denoted
by Y.

e migrate(l’), which moves an actor from its current lo-
cation to one denoted by I'.

e attach(v), which saves a resource denoted by v into the
actor’s resource map.

e detach(v), which removes a resource denoted by v from
the actor’s resource map.

e register(vo, v1,), which adds the mapping of a resource
name to an actor in a location.

e deregister(vo, v1,1), which removes the mapping of a
resource name to an actor in a location.

We assume as given two sets At(Atoms) and X(Variables),
and we then define the set of values, V, expressions, E, and
messages, M, as:

V=AUXUNX.EUpr(V,V)
E=VUapp(E,E)UF,(E")

M =<V <V>

where F,(E™) is all arity-n primitives.

The set X of variables represents both actors —which includes
all resources— and locations. We introduce a set L, of loca-
tions, with L C X. We also introduce a set R, of resource
identifiers, with R C X. We modify the definition of a so
that @ € X(ExLx(R—-X)).> We extend the definition of
an actor configuration to include a mapping, m, from loca-
tions to resource maps, with 7 € L->(R-5X). A universal
actor configuration is written

(a|p] ™)

We add another rule to the definition of actor configurations
to denote that actor names and locations are disjoint?:

(0) pCAand ANy =1,

(1) ifa € A, then FV(a(a)) € AUY, and if <vg <= v1> € p
then FV(v;) C AU x for ¢ < 2.

(2) Range(a) |2NA =10

3.6 Operational Semantics

We define a transition relation between universal actor con-
figurations as the least relation satisying the rules in Fig-
ures 3 and 4.

3.7 Secure Mobile Actor Language

We extend the mobile actor language to form the Secure
Mobile Actor Language (SMAL), which defines eleven prim-
itives:

e new(b), which creates an actor which has behavior b
and returns the new actor’s name.

e send(vo, v1), which sends a message with contents vq
to actor vg.

e ready(b’), which signals the end of the current exe-
cution and makes the actor ready to receive a new
message using behavior b’.

3a(a) = e x I x r implies that actor a has behavior e and
is currently executing at location [with resource map .
4], indicates the projection of a cross product onto its i’
coordinate.

h

/<fun L a> \

e D pom@uia) € = (a{le,l,r1.} | w| ™5 —
(o{Le' 1,1} | o | 72
<new : a, a’>
(a{[Rlnew(e)],l,r1a} | p | m)% —
(o{[R[a'), 1,710, [e, 1,000} | pu |)%
a’ fresh
<send : a, vo, V1>
(a{[R[send(vo, v1)], 1, 7)o} | p | m)% —
(a{[Rnil],l,r]} | pW<vy < v> | 7)
if r(vo)=1v2
(o [R[nil], 1,7],} | pW <vz <= 01> | m)f
if w(1)(vo)=wvs3
(o [R[nil], 1,7],} | pW <vo <= 01> | m)f
if vo ¢ Dom(r) & vo ¢ Dom(m)
<receive : v, V1>

<Oé{ [R[ready(v)}, l7 7] 170} | <vp <= v1>Hp | 7l'>; —

\ (af{[R[app(v,v1)], 1,714} | i | w5 /

Figure 3: M AL Semantics, Part I

e newloc(Y), which indicates the appearance or creation
of a new location, with an initial resource map denoted
by Y.

e migrate(l), which moves an actor from its current lo-
cation to one denoted by I.

e attach(v), which saves a resource denoted by v into the
actor’s resource map.

e detach(v), which removes a resource denoted by v from
the actor’s resource map.

e register(vo, v1, 1), which adds the mapping of a resource
name to an actor in a location.

e deregister(vo, v1,1), which removes the mapping of a
resource name to an actor in a location.

e allow(v) changes the actor’s access list to include actor
v.

e allowloc(v) changes the actor location’s access list to
include actor v.

e disallow(v) changes the actor’s access list to exclude
actor v.

e disallowloc(v) changes the actor location’s access list
to exclude actor w.

/<out t Vo, V1> \

(a| p¥<a<=uv> | m)f—(a|p| W}f(l
if a € x, and p’ = pU (FV(w) N Dom(a))
<in: v, v1>
(o | K |)% = (e | p ¥ <a <= vw> | 7T>;U(FV(UQ)7Dom(a))
if a € p then FV(vw) N Dom(a) C p
<migrate : I'>
(o [Rlmigrate(I)] Lr)a} | | 7% — (a{ [RIil), U, P} | oo | 708
I € Dom(())
<newloc: Y>
(o [Rlncwloc(Y)], 1,1} | | 72— (ol LRIL L 1o} | | 70U — ¥))
I fresh, Y € (X — X)
<attach:a'>
(a{[R[attach(a")],l,r1a} | p | ©)5 — (a{[R[nil],l,r U (a" — a”")Ia} | p | 7)%
if (¢’ — a") e ()
<detach : a’>
(a{[R[detach(a’)],l,r U (a" — a")1a} | p |)% — (a{[R[nil],l,r1a} | p | 7)5
<register : a’,a”,l'>
(a{[R[register(a’,a”, 1)), 1,r1a} | p | 7)) —
(a{ LRInil], 1, U (@ — a™1,} | | 7O — (a — a"))
<unregister : a’,a”,l'>

(a{[R[unregister(a’,a”, 1)), 1,71} | p | mU (' = (@' — a”)))4 —

K (oA [R[nl], 1,710} | p | m)% /

Figure 4: MAL Semantics, Part II

The allow and allowloc primitives can receive as an argu-
ment a null access list, represented by L. This indicates the
absence of restrictions on messaging and migration.

actor and location maps, a and 7 respectively. The actor
configuration is written

We assume as given two sets At(Atoms) and X(Variables),
and we then define the set of values, V, expressions, E, and
messages, M, as:

(a|p | m)f

where p, uand y are as in MAL, o € X—(Ex Lx(R—X)xACL),

and 7 € L—((R5X)x ACL). Changes in a and 7 reflect the
inclusion of access control lists for actors and locations.’

V=AtUX UMX.EUpr(V,V)
E=V Uapp(E,E)UF,(E™)
M =<V < V>x 3.8 Operational Semantics

We define a transition relation between secure universal ac-

tor configurations as the least relation satisying the rules in
Figures 5, 6 and 7.

where F,(E™) is all arity-n primitives.

The set of variables, X, including resource names, R, and

locations, L, remains the same. The structure of M allows
selection of valid senders via access control lists. We define
a set of access control lists as ACL € P, [Dom(a) U {L}].
We alter the actor configuration definition to change the

4. DISCUSSION AND FUTURE WORK

®a(a) = e x I X 7 x ¢ implies that actor a has behavior e
and is currently executing at location [with resource map
r and access control list c.

/<migrate >

(a{[R[migrate(I)],l,r,clo} | p | 7w [, r'1)5 —
(o TRmil), Vv, c1u} | | w8 ¢, r' 00)G
ifaccorcd =1
<newloc : Y>
(af tRlnewloc(Y)], 71} | o | 7% -
(a{[R[I),l,r,cda} | 1 | W {a}, Y1y)Y
I fresh
<attach:a’>

(a{[R[attach(a)],l,r,cla} | p | m)5 —

<detach : a’>
(a{ [Rldetach(@)] 1, U (' — a”), 1} | 1 | 7%
<a{ [R[TM’ZL l7 Ta C] a} | :L‘L | ﬂ’);
<register : a’,a”,l'>

(of [R[register(a’,a”, 1)],1,r1a} | p | mw [,r' 1y)5 —

if (@ —a")er

<unregister : a’,a”,l'>

(a{[R[nil],1,r1a} | p | ™)

\ if (@ —a")er

(a{[R[nil],l,r U (a" —a”),cla} | p | 7w [c,r" U(a — a”)Iv)k

(a{[R[nil],l,r U (a — a")].} | 1 | W [c,r'U(d — a")]y %

(a{[R[unregister(a’,a”,1')],l,71a} | p | 7l ;7" U(a" — a")1p)5 —

/

Figure 6: SMAL Semantics, Part II: Mobility

The actor model was first created by Hewitt and his group at
MIT [Hew77] in the late 1970s. The model has been further
developed by Agha [Agh86] and his group at UIUC. Agha,
Mason, Smith and Talcott [AMST97] have developed a sim-
ple actor language as an extension to the lambda calculus,
its operational semantics and they have studied a family of
equivalence relations on actor expressions. Talcott has de-
veloped an interaction semantics for actor systems [Tal96,
Tal98]. These forms of actor semantics have been the basis of
many studies on extensions to the actor model (e.g., for co-
ordination [FA93, VA99, AJV01, FV02], real-time [RAS96],
software architectures [AA98], fault-tolerance [SA94], adap-
tive and meta-level architectures [VTAO1], and artificial in-
telligence [AJ99]).

Several research groups have been trying to achieve dis-
tributed computing on a large scale. Berkeley’s NOW project
has been effectively distributing computation in a “building-
wide” scale [ACP95], and Berkeley’s Millennium project is
exploiting a hierarchical cluster structure to provide dis-
tributed computing on a “campus-wide” scale [BGC98]. The
Globus project seeks to enable the construction of larger
computational grids [FK98]. Caltech’s Infospheres project

has a vision of a worldwide pool of millions of objects (or
agents) much like the pool of documents on the World-Wide
Web today [CRST96]. WebOS seeks to provide operat-
ing system services, such as client authentication, naming,
and persistent storage, to wide area applications [VAD98].
UIUC’s 2K is an integrated operating system architecture
addressing the problems of resource management in hetero-
geneous networks, dynamic adaptability, and configuration
of component-based distributed applications [KCMN99].

Security for distributed systems has been looked at for a
number of other agent systems. Safe Mobile Ambients [LS00]
restrict mobile ambients [CG98] so that sensitive operations
such as entering, exiting, and opening an ambient are per-
formed with common agreement. While safe ambients pre-
serve the expressibility of mobile ambients, they prevent
programming mistakes by controlling undesirable grave in-
terferences. The Seal calculus [VC98], resembles ambients,
with two important exceptions. First, seals can only move
with the environment’s control, and the w-calculus is used as
a basis for computation, rather than mobility itself. Other
methods have been used for securing code on different levels.
Ideas such as proof-carrying code [Nec97] and stack inspec-

/

<allow:a'>
(a{[R[allow(a")],l,r,c]a} | p |)5 — (f[R[nil], 1,7, cU{a’}]a
<allow: 1>
(a{[R[allow(nil)], I, r,cla} | p | 7)5% — (a{[R[nil],l,r, L1} | p
<allowloc : a’>
(a{[R[allowloc(a’)], 1,7, cla} | p | mW [/, 7'10)5 —
(a{[R[nil],l,r,cla} | p | mw [U{a"},7'10)%
<allowloc : 1>
(a{[R[allowloc(nil)], I, 7, cla} | p | 7w [, r'T)% —
(a{[R[nil],l,r,cla} | p | 7w [L,7'10)%
<disallow : a’>
(a{[R[disallow(a")], l,r,cU{a' o} | p | 7)5 —
(a{[R[nil],l,r,cla} | 1 | ™)
<disallow : 1>
(a{[Rldisallow(nil)],l,r, clo} | p |)5 —
(o LRnil], 17,010} | 1 | 7%
<disallowloc : a’>
(af{[R[disallowloc(a’)], I, 7, cla} | p | 7w [U{a'},7']1)5 —
(a{[R[nil],l,r,cla} | p | 7w [, r'10)%
<disallowloc : L>

(a{[R[disallowloc(nil)],l,r,cla} | p | mw [/, r'1)5 —

K (a{[R[nil],l,r,cla} | p | 7w [0,7'1,)%

Flu | =%

| ™%

/

Figure 7: SMAL Semantics, Part III

tion [WF98] are methods of protecting hosts, also discussed
in [ST98].

While there are excellent algorithms for load balancing in
clusters and other more static environments, e.g., random
stealing and cluser-aware random stealing [vNKBO1], the
dynamic and heterogeneous nature of the nodes on the WWC
make such algorithms much less efficient, especially when
10’s peer-to-peer nature is taken into account. Currently,
10’s peer-to-peer network is a variant of Gnutella [Cli00];
however, in the future, implementing IO on top of an al-
ready existing peer-to-peer network such as JXTA[TAD 02
may prove to be a more interesting option.

5. ACKNOWLEDGEMENTS

We would like to thank the Worldwide Computing group
at RPI for input on these semantics. We would especially
like to thank Carolyn Talcott for her help in finalizing the
semantics.

6. REFERENCES

: Access Control

M. Astley and G. Agha. Modular construction
and composition of distributed software
architectures. In Proceedings of the
International Symposium on Software
Engineering for Parallel and Distributed
Systems (PDSE ’98), 1998.

Thomas E. Anderson, David E. Culler, and
David A. Patterson. A Case for Networks of
Workstations: NOW. IEEE Micro, February
1995.

G. Agha, S. Frglund, R. Panwar, and

D. Sturman. A linguistic framework for
dynamic composition of dependability
protocols. In Dependable Computing for
Critical Applications 111, pages 345-363.
International Federation of Information
Processing Societies (IFIP), Elsevier Science
Publisher, 1993.

G. Agha. Actors: A Model of Concurrent
Computation in Distributed Systems. MIT

Press, 1986.

G. Agha and N. Jamali. Concurrent
programming for distributed artificial
intelligence. In G. Weiss, editor, Multiagent
Systems: A Modern Approach to DAL,
chapter 12. MIT Press, 1999.

G. Agha, N. Jamali, and C. Varela. Agent
Naming and Coordination: Actor Based
Models and Infrastructures. In A. Ominici,
F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors, Coordination of Internet Agents,
chapter 9, pages 225-248. Springer-Verlag,
2001.

G. Agha, I. A. Mason, S. F. Smith, and C. L.
Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1-72,
1997.

Philip Buonadonna, Andrew Geweke, and
David E. Culler. An implementation and
analysis of the virtual interface architecture.
In Proceedings of Supercomputing 98,
Orlando, FL, November 1998.

L. Cardelli and A.D. Gordon. Mobile ambients.
In Foundations of System Specification and
Computational Structures, LNCS 1378, pages
140-155. Springer Verlag, 1998.

Clip2.com. The gnutella protocol specification
v0.4, 2000.

K. M. Chandy, A. Rifkin, P. A. G. Sivilotti,

J. Mandelson, M. Richardson, W. Tanaka, and
L. Weisman. A World-Wide Distributed
System Using Java and the Internet. In
Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed
Computing, New York, U.S.A., Aug 1996.

S. Frglund and G. Agha. A language
framework for multi-object coordination. In
Proceedings of ECOOP 1993. Springer Verlag,
1993. LNCS 707.

J. Ferber and J. Briot. Design of a concurrent
language for distributed artificial intelligence.
In Proceedings of the International Conference
on Fifth Generation Computer Systems,
volume 2, pages 755—762. Institute for New
Generation Computer Technology, 1988.

I. Foster and C. Kesselman. The Globus
Project: A Status Report. In J. Antonio,
editor, Proceedings of the Seventh
Heterogeneous Computing Workshop (HCW
’98), pages 4-18. IEEE Computer Society,
March 1998.

John Field and Carlos Varela. Toward a
programming model for building reliable
systems with distributed state. In Proceedings
of the First International Workshop on
Foundations of Coordination Languages and

Software Architectures (FOCLASA)., Brno,
Czech Republic, August 2002.

C. Hewitt. Viewing control structures as
patterns of passing messages. Journal of
Artificial Intelligence, 8-3:323-364, June 1977.

Furio Honsell, Ian A. Mason, Scott F. Smith,
and Carolyn L. Talcott. A variable typed logic
of effects. Information and Computation,
119(1):55-90, 1995.

W. Kim and G. Agha. Efficient Support of
Location Transparency in Concurrent
Object-Oriented Programming Languages. In
Proceedings of Supercomputing’95, 1995.

F. Kon, R. Campbell, M. Dennis Mickunas,
and K. Nahrstedt. 2K: A Distributed
Operating System for Dynamic Heterogeneous
Environments. Technical report, Department
of Computer Science, University of Illinois at
Urbana-Champaign, December 1999.

Francesca Levi and Davide Sangiorgi.
Controlling interference in ambients. In
Symposium on Principles of Programming
Languages, pages 352-364, 2000.

George C. Necula. Proof-carrying code. In
Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Langauges (POPL ’97), pages
106-119, Paris, January 1997.

S. Ren, G. A. Agha, and M. Saito. A modular
approach for programming distributed
real-time systems. Journal of Parallel and
Distributed Computing, 36:4—12, 1996.

D. C. Sturman and G. Agha. A protocol
description language for customizing failure
semantics. In Proceedings of the 13th
Symposium on Reliable Distributed Systems.
IEEE Computer Society Press, October 1994.

Tomas Sander and Christian F. Tschudin.
Protecting mobile agents against malicious
hosts. Lecture Notes in Computer Science,
1419:44-77, 1998.

Bernard Traversat, Mohamed Abdelaziz, Mike
Duigou, Jean-Christophe Hugly, Eric Pouyoul,
and Bill Yeager. Project jxta virtual network,
February 2002.

C. Talcott. Interaction semantics for
components of distributed systems. In First
IFIP workshop on Formal Methods for Open
Object-based Distributed Systems (FMOODS
’96), Paris, France, March 1996.

C. L. Talcott. Composable semantic models
for actor theories. Higher-Order and Symbolic
Computation, 11(3), 1998.

C. Tomlinson, P. Cannata, G. Meredith, and
D. Woelk. The extensible services switch in
Carnot. IEEFE Parallel and Distributed
Technology, 1(2):16-20, May 1993.

C. Varela and G. Agha. A Hierarchical Model
for Coordination of Concurrent Activities. In
P. Ciancarini and A. Wolf, editors, Third
International Conference on Coordination
Languages and Models (COORDINATION
’99), LNCS 1594, pages 166-182, Berlin, April
1999. Springer-Verlag.

http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

Amin Vahdat, Thomas Anderson, Michael
Dahlin, David Culler, Eshwar Belani, Paul
Eastham, and Chad Yoshikawa. WebOS:
Operating System Services For Wide Area
Applications. In Proceedings of the Seventh
IEEE Symposium on High Performance
Distributed Computing, July 1998.

Jan Vitek and Giuseppe Castagna. Seal: A
framework for secure mobile computations. In
ICCL Workshop: Internet Programming
Languages, pages 47-77, 1998.

Rob V. van Nieuwpoort, Thilo Kielmann, and
Henri E. Bal. Efficient load balancing for
wide-area divide-and-conquer applications.
ACM, 36:34-43, 2001.

Nalini Venkatasubramanian, Carolyn Talcott,
and Gul A. Agha. A formal model for
reasoning about adaptive qos-enabled
middleware. In Formal Methods Europe (FME
2001). Humboldt-Universitt, Berlin, Germany,
March 2001.

Dan S. Wallach and Edward W. Felten.
Understanding Java stack inspection. In 19th
IEEE Symposium on Security and Privacy,
pages 52-63, 1998.

/<fun T a> \

e ADom(a)U{a} e = (afle,l,r,cl.} | 1 | T =
(afle' L, cda} | 1 | 7o)
<new : a, a’>
(a{tRew(e b e} | | 7%
(a{[R[a'),l,7,cda, Le, lyr {a,a’ YT} | 1 | 7)5
a’ fresh
<send : a, Vo, V1>
(a{[R[send(vo,v1)],l,r,cla} | pu |)5 —
(a{[Rnil],1,r,clo} | pW<va < vi>a | m)4
if r(vo)=1v2
(a{[Rnil],1,r,cla} | pW<vs < vi>a | m)4
if w(1)(vo)=wvs3
(a{[Rnil],1,r,clo} | pW<w < vi>a | m)4
if vo ¢ Dom(()r) & vo ¢ Dom(())
<receive : v, V1>
(a{[Rlready(v)],l,r,cly} | <vo <= vi>aWp |)5 —
(a{[R[app(v,v1)], 1,7, cTu} | 1 |)%
ifa€corc=1
<out : vp, V1>
(a| p¥<a<swv>, | m)8 —(a|p | 7T>;/
if a € x, and p’ = pU (FV(w) N Dom(a))
<in: v, v1>
(a|p |)y~

(a | p¥<a < w>e |)50 wEviwg)—Dom(a)

if a € p then FV(w) N Dom(a) C p

\ /

Figure 5: SM AL Semantics, Part I: Actor Semantics

