
Distributed and Generic Maximum Likelihood Evaluation

Travis Desell† Nathan Cole‡ Malik Magdon-Ismail† Heidi Newberg‡
Boleslaw Szymanski† Carlos Varela†

†Department of Computer Science ‡Department of Physics, Applied Physics, and Astronomy
Rensselaer Polytechnic Institute, Troy, NY, U.S.A.

†{deselt, magdon, szymansk, cvarela}@cs.rpi.edu ‡{colen2, newbeh}@rpi.edu

Abstract

This paper presents GMLE 1, a generic and distributed
framework for maximum likelihood evaluation. GMLE is
currently being applied to astroinformatics for determining
the shape of star streams in the Milky Way galaxy, and to
particle physics in a search for theory-predicted but yet un-
observed sub-atomic particles. GMLE is designed to enable
parallel and distributed executions on platforms ranging
from supercomputers and high-performance homogeneous
computing clusters to more heterogeneous Grid and Inter-
net computing environments. GMLE’s modular implemen-
tation seperates concerns of developers into the distributed
evaluation frameworks, scientific models, and search meth-
ods, which interact through a simple API. This allows us to
compare the benefits and drawbacks of different scientific
models using different search methods on different comput-
ing environments. We describe and compare the perfor-
mance of two implementations of the GMLE framework:
an MPI version that more effectively uses homogeneous
environments such as IBM’s BlueGene, and a SALSA ver-
sion that more easily accommodates heterogeneous envi-
ronments such as the Rensselaer Grid. We have shown
GMLE to scale well in terms of computation as well as com-
munication over a wide range of environments. We expect
that scientific computing frameworks, such as GMLE, will
help bridge the gap between scientists needing to analyze
ever larger amounts of data and ever more complex dis-
tributed computing environments.

1This work has been partially supported by the following grants: NSF
AST No. 0607618, NSF IIS No. 0612213, NSF MRI No. 0420703 and
NSF CAREER CNS Award No. 0448407. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1 Introduction

For many scientific disciplines, the rate of data acqui-
sition far exceeds the increases in computational power
required to analyze and mine valuable information from
the data. A wide range of scientific disciplines use maxi-
mum likelihood evaluation (MLE) methods, and as Cramer
stated: ”From a theoretical point of view, the most im-
portant general method of estimation known so far is the
method of maximum likelihood”[8]. MLE attempts to find
global optimal parameters for a certain function to fit a
given data set. There are many different approaches to
performing this task, such as gradient descent [22], sim-
plex [16], and genetic search [10], all of which typically
require hundreds, thousands or more function evaluations
to converge to a result within a reasonable margin of error.
Since each function evaluation can require hours or more to
complete on a single high-end processor, performing MLE
can result in month-long single-CPU execution times—to
test a single function.

A distributed framework for MLE makes data analyses
more tractable by streamlining the scientific cycle, reduc-
ing the process of testing new models and functions from
days to hours. A generic framework makes this capability
accessible to scientific researchers who may not have the re-
sources to develop their own distributed computing frame-
work. The genericity of the framework also provides the
opportunity to evaluate multiple search methods and use the
ones which provide the best performance for a given appli-
cation. To this end, we have leveraged our previous work on
MLE applied to particle physics [25] to make it generic, al-
lowing for scientific functions and data sets, the distributed
evaluation framework, and different search methods to be
developed concurrently and independently.

To test the genericity of the framework, we have im-
plemented an astroinformatics application to discover star
streams structure from observations of the Milky Way in ad-
dition to a particle physics application to discover missing

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.41

337

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.41

337

Figure 1. A generic framework for distributed maximum
likelihood evaluation.

baryons. We have also extended the simplex search method
available in the previously reported framework with conju-
gate gradient descent and genetic search methods. We have
implemented two versions of GMLE, one using the MPI
message passing library and another one using the SALSA
programming language [24]. We examine the performance
of the SALSA and MPI implementations on a homogeneous
cluster in addition to the performance and speedup of using
the SALSA implementation on the Rensselaer Grid and the
MPI implementation on an IBM BlueGene supercomputer.

Structure of the Paper Section 2 describes the GMLE
framework and its components. The astroinformatics and
physics applications currently using the framework are pre-
sented in Section 3. How the different search methods ap-
ply to distributed environments is discussed in Section 4.
The APIs for developing scientific functions for use in the
SALSA and MPI implementations are discussed in Sec-
tion 5, and simple examples are given for each. Section 6
presents empirical results. Related work is discussed in Sec-
tion 7 and we conclude with future work and conclusions in
Section 8.

2 Generic Framework for Distributed MLE

The GMLE package presented in this paper consists of
three components (see Figure 1): 1) A user-defined func-
tion and a combiner, a partial result composition operation
which specify the problem to which MLE is applied, 2) A
distributed evaluation framework which initializes the func-
tion and combiner and performs distributed evaluations and
3) Search methods which perform the MLE.

Each of these components requires different expertise:
domain knowledge, distributed computing, and machine
learning respectively. However, these components interact
with simple interfaces (for more detail, see Section 5) which

allow them to be developed independently. Hence, each ex-
pert involved in the development can focus on their respec-
tive area. This solution provides multiple scientific users,
such as those in astroinformatics [19] or physics [25], an
easy to use package for distributing their MLE programs
without significant development effort and directly bene-
fiting from performance improvements in non-functional
framework modules. It also allows for research into dif-
ferent methods of distributed function evaluation and dis-
tributed MLE searches.

In the GMLE framework, users define a likelihood func-
tion on which the MLE will be performed. This is done by
creating an evaluator which initializes data and performs
the likelihood operation on this data based on a set of pa-
rameters. Because likelihood evaluation is distributed over
multiple evaluators, a result composition method also needs
to be specified that combines partial results into the final
likelihood value. In some cases, such as the astronomy
application described in Section 3.1, an expensive integral
needs to be calculated before the likelihood evaluation, so
there is also an option to create an integral function whose
calculation can be distributed by the evaluation framework
in the same way and then used to calculate the likelihood.

After the likelihood, integral, initialization and composi-
tion methods are specified, a user runs a search method with
initial function parameters and other search method param-
eters, if necessary. The distributed evaluation framework
initializes evaluators at each processor being used by the
system, and the search method can then repeatedly request
evaluations for different function parameter sets.

Two different distributed evaluation methods can be
used, an asynchronous master/worker (or farmer/worker)
method or a synchronous parallel slice method. The syn-
chronous parallel slice method gives the evaluator at each
processor an equal slice of the data, evaluates the likeli-
hood at each evaluator concurrently, then combines the re-
sult. This approach is best for iterative searching methods
such as gradient descent and simplex, and for homogeneous
tightly-connected computing resources.

The asynchronous master/worker method creates eval-
uators which operate over the total data set and perform
a complete likelihood evaluation. In this case, the com-
position is not required, and results from individual eval-
uators can be passed directly back to the search routines.
This allows multiple parameter sets to be evaluated con-
currently. This approach is better suited to search meth-
ods which allow for parallelism in likelihood evaluation or
are non-iterative, such as genetic search and other Monte
Carlo methods. Because parameter sets are evaluated con-
currently and asynchronously, faster processors can evalu-
ate the likelihood for multiple parameter sets without being
delayed by slower processors, making this approach better
suited to heterogeneous loosely-connected computing envi-

338338

ronments.

3 Scientific Applications

The two applications currently implemented using
GMLE are representative of those that analyze the large
quantities of data required for modern science. In both
cases, a single function evaluation can take hours on a single
processor, and days or weeks to perform a single maximum
likelihood fit.

3.1 Origin and Structure of the Milky
Way Galaxy

The astronomy application attempts to discover various
structures existing in the Milky Way galaxy and their spatial
distribution [19]. This requires a probabilistic algorithm for
locating geometric objects in spatial databases [20]. The
data being analyzed is from the Sloan Digital Sky Sur-
vey [1], which has recently released 10 terabytes of images
and spectra in online catalogs.

The observed density of stars is drawn from a mix-
ture distribution parameterized by the fraction of local sub-
structure stars in the data compared to a smooth global
background population, the parameters that specify the po-
sition and distribution of the sub-structure, and the parame-
ters of the smooth background. Specifically this is a prob-
ability density function (PDF) that calculates the chance of
obtaining the observed star distribution after repeated inde-
pendent sampling from the total set of stars:

L(!Q) =
N
∏

i=1

PDF (li, bi, gi| !Q) (1)

where i denotes the ith of N stars (l and b are galactic co-
ordinates and g is the magnitude), and !Q represents the pa-
rameters in the model. Such probabilistic framework gives
a natural sampling algorithm for separating sub-structure
from background [19].

By identifying and quantifying the stellar substructure
and the smooth portion of the Milky Way’s spheroid, it will
be possible to test models for the formation of our galaxy,
and by example the process of galaxy formation in gen-
eral. In particular, we would like to know how many merger
events contributed to the build up of the spheroid, what the
sizes of the merged galaxies were, and at what time in the
history of the Milky Way the merger events occurred. Mod-
els for tidal disruption of merger events that build up the
spheroid of the Milky Way can be matched with individual,
quantified spatial substructures to constrain the Galaxy’s
gravitational potential. Since the gravitational potential is
dominated by dark matter, this technique will also teach us

about the spatial distribution of dark matter in the Milky
Way.

3.2 Searching for Missing Baryons

The physics application uses Partial Wave Analysis
(PWA) [25] to observe particle states and measure their
quantum numbers known as ”spin” and ”parity”. One way
to measure this is by producing a beam of mesons (pions for
example) in an accelerator and striking a liquid hydrogen
target with that beam. Some fraction of these pions interact
with a proton at the target, and if the energy of the pion is
high enough, a spray of particles is produced. Some of the
particles will live long enough to create trails in a suitable
detector, but many will decay after an extremely short time
(10−23 seconds) and will not travel a measurable distance.
These short lived particles are the ”missing” baryons.

The existence and properties of missing baryons can be
inferred from correlations in the final state particles into
which they decay. The measured final or intermediate states
of these particles produce the data set and PWA calculates
the amount of each spin-parity state present in this data set.
Maximum likelihood is used to find the set of parameters
which define the most likely set of amplitudes for produc-
ing each of the observed intermediate states:

− ln(L) = −
n

∑

i

ln
(

∣

∣ψp
αψd

α(τi)
∣

∣

2
)

− nψp
αΨαα′ψp∗

α′ (2)

where the sum over i runs over all events in the data set,
and the sums over the repeated αs, the fit parameter index,
are implicit. The ψp

α are the complex fit parameters, related
to the amount of the intermediate state α produced. The
ψd

α(τi) is the quantum amplitude for the ith event with an-
gles τi assuming intermediate state α. The second term on
the right hand side is the normalization integral, where any
known inefficiencies of the detector are taken into account.
The total number of events in the data being fit is n; and
Ψαα′ is the result of the normalization integral, done nu-
merically before the fit is performed. Currently, there are
10-100 fit parameters and around 105 events, however these
numbers are increasing and will approach 106 or 107 with
the next generation of particle detectors.

4 Search Methods

Gradient Descent Gradient descent takes an initial pa-
rameter set and calculates the gradient at that point by cal-
culating the slope for each parameter using a specified step
size. The slopes of all parameters are used to calculate a
gradient, along which a line search is performed to find the
minima of the function on that line. This process repeats un-
til the gradient descent finds a local minimum. The GMLE

339339

package also supports conjugate gradient descent, which is
an improvement on gradient descent. Instead of calculating
the gradient, it calculates the conjugate gradient which is a
modification of the gradient that frequently results in faster
convergence to the local minimum.

Simplex The simplex method used by the GMLE
package is the Nelder and Mead or downhill simplex
method [16]. N + 1 initial points of the function are cal-
culated by N + 1 parameter sets, which define the ini-
tial simplex. The downhill simplex method then takes the
highest point of the simplex, and evaluates a new point re-
flected through the simplex. The algorithm then either does
a line search by continuing to expand the reflected point
farther away from the simplex (if this continues to find a
lower point), or closer to the simplex (if that results in a
lower point). After a minima for the new reflected point
is found, the algorithm repeats until some cutoff conditions
are reached and a local minimum is found.

Genetic Search Genetic search generates an initial ran-
dom population of parameter sets. Given a population, the
algorithm evolves that population by generating new param-
eter sets through mutation, reproduction, and elimination.
Parameter sets have a chance to mutate, creating a new pa-
rameter set with a random change that is then evaluated and
added to the population. Two parameter sets can reproduce
to create an offspring, which is a combination of the two.
Typically, a fixed population is kept, so when new param-
eter sets are evaluated, the ones with the lowest likelihood
are eliminated. Mutation allows a genetic search to branch
out with new parameter sets which might find another opti-
mum, and reproduction allows the parameter sets around an
optimum to converge to that point.

Tradeoffs and Distribution While the likelihood evalu-
ations required to calculate the gradient or simplex can be
done concurrently, the line search computes a new parame-
ter set iteratively based on previously calculated parameter
sets. Additionally, calculating a new gradient or simplex re-
flection requires the previous line search to have finished.
This means that any type of gradient descent or simplex can
only scale as far as an individual distributed likelihood eval-
uation. Additionally, the minimum found is a single mini-
mum local to the initial parameters. However, these disad-
vantages are offset by the fact that gradient descent typically
converges to a minimum faster than genetic search. Both
simplex and gradient descent quickly converge to a local
minimum, however which will converge to a minimum the
fastest is typically application dependent.

Genetic search, unlike the gradient descent and simplex
methods, does not require an iterative evaluation of the like-
lihood function. This allows for multiple likelihood evalua-
tions to be performed concurrently, which can improve the
scalability of the application. For applications with faster
likelihood evaluation times and that have access to larger

#include "gmle/framework/gradient_descent.h"
char* FILE = "constants.txt";
double* constants;
int total_constants = 100;
int min, max, length;
void init_data(int rank, int max_rank) {

min = total_constants*rank/max_rank;
max = total_constants*(rank+1)/max_rank;
length = max-min;
//read all constants from FILE
//constants[0..length] = constants[min..max]

}
double likelihood(double* parameters) {

double sum = 0.0;
for (int i = min; i < max; i++)
sum += constants[i-min] * parameters[i] * parameters[i];

return sum;
}
double combine(double* results, int n_results) {

double sum = 0.0;
for (int i = 0; i < n_results; i++) sum += results[i];
return sum;

}
int main(int argc, char** argv) {

int size = sizeof(double)*total_constants;
double* initial_parameters = malloc(size);
double* step_sizes = malloc(size);
for (i = 0; i < total_constants; i++) {
initial_parameters[i] = drand48() * 10;
step_sizes[i] = 0.000001;

}
conjugate_gradient_descent__init_likelihood(likelihood,
combine);

conjugate_gradient_descent(initial_parameters,
step_sizes,length);

}

Figure 2. A simple sum of squares example using the
MPI package (file I/O replaced with pseudo-code).

numbers of processors, a genetic search may be able to con-
verge faster than gradient descent or simplex. Additionally,
genetic search has the benefit of having sub-populations
converge to multiple minima, which can be valuable infor-
mation. Gradient descent and simplex require multiple runs
of the algorithm with different starting conditions to find
different minima.

5 Implementation

The GMLE framework is implemented in MPI as well
as SALSA, to allow for interoperability with different types
of legacy code—C code in the case of MPI, and Java code
in the case of SALSA. The MPI implementation allows the
code to be run on supercomputing architectures such as the
IBM BlueGene as well as high performance cluster environ-
ments with minimal communication overhead. The SALSA
implementation allows for easy use of the framework on
heterogeneous environments by leveraging the Java Virtual
Machine [24] and transparent autonomous reconfiguration
provided by IOS [13], the Internet Operating System.

Using the MPI and SALSA implementations involve
similar APIs 2. Figures 2 and 3 demonstrate usage of the
GMLE package with a simple sum of squares example.
Both examples demonstrate the use of the conjugate gra-
dient descent method. Note that for both the details of re-
mote communication, such as MPI function calls and Java

2The APIs, documentation, more in depth examples and details about
using the search methods can be found at http://wcl.cs.rpi.edu/gmle/

340340

import gmle.salsa.framework.Evaluator;
import gmle.salsa.framework.ConjGradientDescent;
behavior SumOfSquares implements Evaluator {
String FILE = "constants.txt", theaters_file = "theaters.txt";
int total_constants = 100, min, max, length;
double[] constants;
void init_data(int rank, int max_rank) {

min = total_constants*rank/max_rank;
max = total_constants*(rank+1)/max_rank;
length = max-min;
//read all constants from FILE
//constants[0..length] = constants[min..max]

}
double likelihood(double[] parameters) {

double sum = 0.0;
for (int i = min; i < max; i++)

sum += constants[i-min] * parameters[i] * parameters[i];
return sum;

}
double combine(double* results, int n_results) {

double sum = 0.0;
for (int i = 0; i < results.length; i++)

sum += results[i];
return sum;

}
public void act(String[] arguments) {

double[] initial_parameters = new double[total_constants];
double[] step_sizes = new double[total_constants];
for (i = 0; i < total_constants; i++) {

initial_parameters[i] = drand48() * 10;
step_sizes[i] = 0.000001;

}
ConjGradientDescent cgd = new ConjGradientDescent();
cgd<-init_data(self.getClass(),theaters_file);
cgd<-conjugate_gradient_descent(initial_parameters,

step_sizes);
}

}

Figure 3. A simple sum of squares example using the
SALSA package (file I/O replaced with pseudo-code).

sockets are completely transparent to the developer. In the
SALSA example theaters file specifies the proces-
sors that will run the application.

In the MPI implementation, the methods for reading
data, evaluating the function, and combining the results
are passed to the distributed evaluation framework via the
conjugate gradient descent init data and
conjugate gradient descent init likelihood
methods. In the SALSA implementation, an actor is de-
fined which implements the evaluator interface and defines
the init data, likelihood and combine message
handlers. When the conjugate gradient descent
method is called, the distributed evaluation framework will
call the defined init data methods and pass the total
number of MPI processes or evaluator actors being created
and the rank of that process/evaluator. This will load the
data, and then the processes/evaluators will repeatedly per-
form function evaluations with different input parameters
until the search method converges. Data initialization is
performed the same way for all search methods, however
the simplex and genetic search methods require different
initial parameters that define how the search is performed.

6 Empirical Results

The performance of the MPI and SALSA implementa-
tions were tested on a homogeneous cluster, a supercom-
puter and heterogeneous grid. The astronomy application

Figure 4. The three clusters in the Rensselaer Grid used
for experiments.

was run with a smaller sample data set on each environ-
ment to measure the communication overhead incurred by
the SALSA and MPI implementations and to show how the
framework scales on these different environments.

6.1 Test Environments

The homogeneous cluster (PPC) consists of four quad-
processor single-core Power-PC processors running at
1.7GHz with 2GB RAM, for a total of 44GB RAM.
Intra-cluster communication on the cluster is provided by
1GB/sec bandwidth with 100µsec latency Ethernet. The
PPC processors are running AIX version 5.3 as the oper-
ating system.

The heterogeneous grid environment tested uses the
Power-PC (PPC) cluster, and two Opteron (OPT) clusters
(see Figure 4). The first Opteron cluster (4x2 OPT) consists
of 10 quad-processor, dual-core processors, and the second
(4x1 OPT) consists of 4 quad-processor single-core pro-
cessors, all running at 2.2GHz. The dual-core nodes have
32GB RAM, for a total of 128GB RAM, and the single-core
nodes have 16GB RAM for another 160GB RAM (192GB
in all). The OPT processors are running GNU/Linux ver-
sion 2.6 as the operating system. Communication within
and between the OPT clusters is provided by 10GB/sec
bandwidth, 7usec latency Infiniband, and 1GB/sec band-
width, 100µsec latency Ethernet. The PPC cluster and
Opteron clusters are connected over RPI’s wide area net-
work forming the Rensselaer Grid testbed.

The supercomputing environment used is RPI’s IBM
BlueGene/L system. Our experiments used one rack of
1024 nodes, each with two 700MHz Power-PC 440 pro-
cessors with 1GB RAM, for a total of 1TB RAM across
the BlueGene. Inter-node communication is provided by
a 3-dimensional torus with 175MBps in each direction,
and 1.5usec latency. Each node can be run in non-virtual
mode, with one processor performing communication and

341341

Figure 5. The time spent per iteration by the astron-
omy application’s evaluators computing the likelihood us-
ing SALSA and MPI on the PPC cluster.

Figure 6. The time spent by the GMLE framework com-
municating and combining the likelihood for the astronomy
application during each iteration using SALSA and MPI on
the PPC cluster.

the other computation, or in virtual mode, with both pro-
cessors performing computation and communication. The
current system consists of 5 partitions, one 512 node parti-
tion, and four 128 node partitions.

6.2 Cluster Performance

The SALSA and MPI implementations of the astronomy
application are compared on a homogeneous cluster. Fig-
ure 5 shows the average computation time used per itera-
tion with varying numbers of the PPC cluster’s processors.
Figure 6 shows the average time spent by the GMLE pack-
age per iteration performing communication and combin-
ing the evaluation results. These results show that using
SALSA/Java is 1.5 times slower than MPI/C for computa-
tion, and 17 times slower for communication and combina-
tion of results. In general, the communication and combina-

Figure 7. The time spent per iteration by the astron-
omy application’s evaluators computing the likelihood us-
ing SALSA on the RPI Grid and MPI on the BlueGene.

Figure 8. The time spent by the GMLE framework com-
municating and combining the likelihood for the astronomy
application during each iteration using SALSA on the RPI
Grid and MPI on the BlueGene.

tion time is very small compared to the computation time,
so the main concern is the efficiency of the implementation
of the likelihood evaluation.

6.3 Grid Performance

While MPI outperformed SALSA on a homogeneous
cluster, it is not easy to run MPI on a heterogeneous clus-
ter, which requires additional libraries such as Globus [11]
and MPICH-G [12]. It also requires multiple binaries to
be built for different architectures and operating systems.
SALSA, on the other hand, uses the Java Virtual Machine
(JVM) which allows for transparent execution across het-
erogeneous architectures, and can easily be used in a grid
environment. Additionally, as shown in other work [25, 14],
developers using the SALSA implementation can utilize the
dynamic reconfiguration capabilities of IOS without code

342342

modification.
Figure 7 shows that the computation time per iteration of

the astronomy application on the PPC cluster and 4x1 OPT
cluster, the PPC cluster and the 4x2 OPT cluster, and all
three clusters. Using all three clusters, a 4 times speedup
was gained by using SALSA on a grid like environment,
compared to MPI on the cluster environment and a 65 times
speedup over using a single PPC processor. Figure 8 shows
the communication and combination overhead of SALSA
scales well on the grid environment. Communication and
combination overhead using the grid increased compared to
the homogeneous cluster because of communication being
done over RPI’s wide area network, which is significantly
slower than the inter-processor communication on the ho-
mogeneous cluster.

6.4 BlueGene Performance

Figure 7 shows the computation time for each iteration
of the astronomy application using 128 and 512 node parti-
tions of the BlueGene in virtual and non-virtual mode. Us-
ing the BlueGene in virtual mode resulted in the best per-
formance, because the computation to communication ra-
tio is still computation heavy. Using 128 nodes in virtual
mode resulted in a 5 times speedup over MPI on the ho-
mogeneous cluster and 74 times speedup over a single PPC
processor, and using 512 nodes in virtual mode resulted in
a 9.5 times speedup over MPI on the homogeneous cluster
and 148 times speedup over a single PPC processor. Fig-
ure 8 shows the communication and combination overhead
of using MPI on the BlueGene. This overhead is small and
scales well, however increasing from 512 to 1024 proces-
sors shows that the application has reached the limits of the
scalability of the sample data set. A larger or more divisible
data set would result in greater scalability as communica-
tion and combination overhead seem to be comparatively
low.

7 Related Work

In addition to the astronomy and particle physics ap-
plications discussed in this paper, MLE is being used in a
wide range of scientific applications. For example, MLE is
used by Efstathiou to analyze low cosmic microwave back-
ground radiation [9]. In environmental science, Cohn uses
MLE to estimate the amount of contaminants in rivers [7].
Stamatakis et al. use MLE to compute large phylogenetic
trees based on taxonomic data [23]. MLE is also being used
to determine genetic disease risk from individual genotype
data [5], to analyze epidemiological data [21], and to per-
form genetic studies of allelic dropout rates [15].

Other research efforts have focused on providing grid-
enabling frameworks for scientific applications. The Cactus

system [2] targets numerical relativity. Cactus allows users
to write application-specific modules which interface with
the Cactus framework to run on a grid. NetSolve [6] pro-
vides a client-agent-server architecture to solve problems in
computational science. Our framework differs from these in
its focus is on maximum likelihood, and provides a generic
interface to a framework which uses multiple search meth-
ods and can execute on a wide range of computing envi-
ronments. Nimrod/0 [18] is a tool which enables parameter
estimation on grids and provides a web interface. This work
differs from Nimrod in that researchers are not only able to
implement scientific models, but different search methods
as well all though a simple API and the available execution
environments are not limited to grids.

8 Conclusions

The GMLE framework allows for easily interchange-
able scientific functions, distributed evaluation strategies
and maximum likelihood search methods. The framework
leaves many avenues open for future work. One possible ex-
ecution environment, which is becoming increasingly effec-
tive for large scale scientific computing is the Internet. Ap-
plications such as SETI@home [3] and Folding@home [17]
use the BOINC [4] computing framework to distribute com-
putation across large numbers of volunteered computing re-
sources. Work is currently being done to expand the GMLE
framework to work with BOINC providing maximum like-
lihood evaluation over the Internet. Additionally, most max-
imum likelihood search methods that have been developed
are iterative and may not scale well to a distributed setting.
The GMLE framework is allowing for research into new
search methods that may work better in modern distributed
computing environments.

Rensselaer’s Computational Center for Nanotechnology
Innovation (CCNI) hosts a set of computing clusters includ-
ing a 16K-node BlueGene supercomputer with 32K proces-
sors. Examining how maximum likelihood search can scale
to such massive numbers of processors will prove to be an
interesting area of research, that will require new concur-
rent searching methods and strategies for data distribution
and distributed likelihood evaluation.

GMLE provides an easy to use package for scientific re-
searchers in various disciplines who stand to gain signifi-
cant increases in the performance of their maximum like-
lihood computations by utilizing different distributed com-
puting environments. This paper presents the framework
of GMLE, the currently implemented search methods, and
gives examples of how to use this software. Examples of
the speedup that can be gained by using GMLE on an IBM
BlueGene supercomputer, a homogeneous computing clus-
ter, and a heterogeneous grid are given. The GMLE frame-
work is shown to be scalable to over 1,000 processors on

343343

the BlueGene. As the amount of data researchers gather
increases at a much higher rate than processing power, dis-
tributed computing becomes a very important component in
making data analyses feasible. The GMLE package pro-
vides an easy to use tool for scientific researchers look-
ing to harness the power of modern distributed computing
environments, in addition to aiding research into concur-
rent maximum likelihood search methods and efficient dis-
tributed computing.

References

[1] J. e. a. Adelman-McCarthy. The 6th Sloan Digital Sky
Survey Data Release, http://www.sdss.org/dr6/, July 2007.
ApJS, in press, arXiv/0707.3413.

[2] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Supporting efficient execution
in heterogeneous distributed computing environments with
Cactus and Globus. In Supercomputing 2001 (SC 2001),
Denver, November 2001.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56–61, 2002.

[4] D. P. Anderson, E. Korpela, and R. Walton. High-
performance task distribution for volunteer computing. In
e-Science, pages 196–203. IEEE Computer Society, 2005.

[5] T. Becker and M. Knapp. Maximum-likelihood estimation
of haplotype frequencies in nuclear families. Genetic Epi-
demiology, 27:21–32, May 2004.

[6] H. Casanova and J. Dongarra. NetSolve: A network-enabled
server for solving computational science problems. The
International Journal of Supercomputer Applications and
High Performance Computing, 11(3):212–223, Fall 1997.

[7] T. A. Cohn. Estimating contaminant loads in rivers: An ap-
plication of adjusted maximum likelihood to type 1 censored
data. Water Resources Research, 41, July 2005.

[8] H. A. Cramer. Mathematical Methods of Statistics. Prince-
ton University Press, 1958.

[9] G. Efstathiou. A maximum likelihood analysis of the low
cosmic microwave background multipoles from the wilkin-
son microwave anisotropy probe. Monthly Notices of the
Royal Astronomical Society, 348:885–896, March 2004.

[10] E. Falkenauer. Genetic Algorithms and Grouping Problems.
John Wiley and Sons Ltd, Chichester, England, 1998.

[11] I. Foster and C. Kesselman. Globus: A toolkit-based grid
architecture. In The Grid: Blueprint for a New Computing
Infrastructure, pages 259–278. Morgan Kaufmann, 1999.

[12] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-
enabled implementation of the Message Passing Interface.
J. Parallel Distrib. Comput., 63(5):551 – 563, 2003.

[13] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela. The internet operating system: Middleware for adap-
tive distributed computing. International Journal of High
Performance Computing Applications (IJHPCA), Special Is-
sue on Scheduling Techniques for Large-Scale Distributed
Platforms, 10(4):467–480, 2006.

[14] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela. Dynamic malleability in mpi applications. In Sev-
enth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2007), pages 591–598. IEEE Com-
puter Society, May 2007.

[15] C. R. Miller, P. Joyce, and L. P. Waits. Assessing allelic
dropout and genotype reliability using maximum likelihood.
Genetics, 160:356–366, January 2002.

[16] J. A. Nelder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:308–313, 1965.

[17] V. Pande et al. Atomistic protein folding simulations on the
submillisecond timescale using worldwide distributed com-
puting. Biopolymers, 68(1):91–109, 2002. Peter Kollman
Memorial Issue.

[18] T. Peachey, D. Abramson, and A. Lewis. Model optimiza-
tion and parameter estimation with nimrod/o. In Interna-
tional Conference on Computational Science, University of
Reading, UK, May 2006.

[19] J. Purnell, M. Magdon-Ismail, and H. Newberg. A prob-
abilistic approach to finding geometric objects in spatial
datasets of the Milky Way. In Proceedings of the 15th In-
ternational Symposium on Methodoligies for Intelligent Sys-
tems (ISMIS 2005), pages 475–484, Saratoga Springs, NY,
USA, May 2005. Springer.

[20] C. Reina, P. Bradley, and U. Fayyad. Clustering very large
databases using mixture models. In Proc. 15th International
Conference on Pattern Recognition, 2000.

[21] S. Selvin. Statistical Analysis of Epidemiologic Data. Ox-
ford University Press, 2004.

[22] J. A. Snyman. Practical Mathematical Optimization: An
Introduction to Basic Optimization Theory and Classical
and New Gradient-Based Algorithms. Springer Publishing,
2005.

[23] A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: a fast
program for maximum likelihood-based inference of large
phylogenetic trees. Bioinformatics, 21(4):456–463, Decem-
ber 2004.

[24] C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. ACM
SIGPLAN Notices. OOPSLA’2001 Intriguing Tech-
nology Track Proceedings, 36(12):20–34, Dec. 2001.
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[25] W. Wang, K. E. Maghraoui, J. Cummings, J. Napolitano,
B. Szymanski, and C. Varela. A middleware framework for
maximum likelihood evaluation over dynamic grids. In Sec-
ond IEEE International Conference on e-Science and Grid
Computing, page 8 pp, Amsterdam, Netherlands, December
2006.

344344

