
A Middleware Framework for Maximum Likelihood Evaluation over

Dynamic Grids

Wei-Jen Wang† Kaoutar El Maghraoui† John Cummings‡ Jim Napolitano‡
Boleslaw K. Szymanski† Carlos A. Varela†

†Department of Computer Science ‡Department of Physics, Applied Physics, and Astronomy

Rensselaer Polytechnic Institute, Troy, NY, U.S.A.

{wangw5, elmagk, cummij, napolj, szymab, varelc}@rpi.edu

Abstract

We have designed a maximum likelihood fitter us-

ing the actor model to distribute the computation over

a heterogeneous network. The prototype implementa-

tion uses the SALSA programming language and the

Internet Operating System middleware. We have used

our fitter to perform a partial wave analysis of particle

physics data. Preliminary measurements have shown

good performance and scalability. We expect our ap-

proach to be applicable to other scientific domains, such

as biology and astronomy, where maximum likelihood

evaluation is an important technique. We also expect

our performance results to scale to Internet-wide run-

time infrastructures, given the high adaptability of our

software framework.

1. Introduction

While computational power, network bandwidth,
and storage capacity are growing exponentially, the
same technological progress responsible for that growth
has improved data acquisition rates in some fields to
even larger degrees. This has led to an embarrassment
of riches: we often have more data than we can analyze
using traditional techniques. One strategy to address
this problem is to make use of idle computational re-
sources scattered throughout the Internet. The main
difficulties with this strategy arise from the Internet’s
heterogeneous and dynamic nature.

The above concerns are simultaneously addressed
by using SALSA, an actor oriented programming lan-
guage [35]. SALSA actors execute on a Java Virtual
Machine, essentially turning a heterogeneous unsafe
network of physical machines into a homogeneous se-

cure network of virtual machines. An actor encapsu-
lates its state and a thread of execution, and thus may
migrate easily, allowing for dynamic reconfiguration of
the distributed application as the conditions of the net-
work change. This can be done either by the applica-
tion itself, or transparently by the middleware when
using the Internet Operating System (IOS) [27].

Particle physics is facing the described above embar-
rassment of riches in the field of spectroscopy. Partial
wave analysis (PWA) of the very large data sets soon
expected to be available seems intractable by current
methods. The maximum likelihood fitting technique
used in PWA is amenable to the strategy sketched
above, and with suitable generalizations, is applicable
to many scientific fields.

The remainder of the paper is structured as fol-
lows: Section 2 discusses partial wave analysis, its sig-
nificance in particle physics, and maximum likelihood
evaluation as a computational technique. Section 3 de-
scribes the actor implementation of maximum likeli-
hood evaluation. Section 4 introduces the IOS middle-
ware components and its ability to adapt distributed
executions to dynamic run-time environments. Sec-
tion 5 presents performance and scalability results of
our prototype. Section 6 discusses the potential gen-
eralization of the maximum-likelihood evaluation tech-
nique to other scientific domains. Section 7 discusses
related work. Finally, Section 8 concludes the paper.

2. Partial Wave Analysis

Although fundamental physics has not yet been able
to unify the forces of nature into one encompassing the-
ory, sometimes called a Grand Unified Theory, as we
enter the 21st century, we are making progress. Elec-
tricity and magnetism were united in the late 1800’s

and came to be understood as a quantum gauge field
theory in the 1940’s. In the 1960’s attempts to under-
stand the weak nuclear force as a quantum gauge field
theory led to the discovery that quantum electrody-
namics (QED) was the result of spontaneous symme-
try breaking in a unified electro-weak field theory, thus
uniting electromagnetism and the weak force.

The great success of quantum gauge field theory in
describing electro-weak interactions led to the devel-
opment of quantum chromodynamics (QCD) in the
1970’s. This theory describes the strong force which
is felt between objects with “color”—the strong force
analog of electric charge—such as quarks. QCD has
proven more difficult to understand than QED, how-
ever. The technique of perturbation theory, used suc-
cessfully in QED, works only at high energies in QCD.
However, the world we inhabit typically is not at high
energies, in a perturbative QCD sense. Tests of QCD in
the non-perturbative region are less quantitative, due
to the lack of accurate analytic predictions. What we
have for this region is a model which predates QCD:
the Quark Model that is a classification system for par-
ticles made up of quarks (and anti-quarks). The par-
ticles properties are determined by the properties of
the constituent quarks and the quantum state they are
in. Surprising agreement with the observed states is
found; despite ignoring all the complications of a non-
abelian gauge field theory, the Quark Model describes
the observed states well!

One complication ignored is that the force carriers of
QCD—gluons—carry color, unlike the neutral photon
of QED. Gluons feel the strong interaction, so bound
states should exist with gluons as constituents. Entire
families of states beyond the quark model seem to be
predicted by QCD. Understanding why (and if) the
quark model works so well will help us understand the
properties of QCD, and extend its tested domain down
from the perturbative region.

Experimentally, we need to observe particle states
and measure their quantum numbers known as “spin”
and “parity”. One important technique used to deter-
mine the spin-parity of particles is Partial Wave Anal-
ysis (PWA). Consider an example: a beam of mesons,
say pions, is produced in an accelerator and hits a liq-
uid hydrogen target. Some fraction of the pions inter-
act with a proton in the target, and if the energy of the
pion is high enough, a spray of particles is produced.
Some of the particles will live long enough to create
trails in a suitable detector, but many will decay after
an extremely short time, ∼ 10−23s and will not travel
a measurable distance. It is these short lived particles
that are of interest. Their existence and properties can
be inferred from correlations in the final state particles

into which they decay.
There are many ways of reaching this final system,

through various allowed intermediate states. Quantum
mechanics dictates that all of them need to be consid-
ered. Each possibility is described by a complex num-
ber known as the quantum mechanical “amplitude”
which must be added coherently before squaring the
total amplitude to get the probability distributions.
Every intermediate state with an assumed spin-parity
has its own angular distributions of the final state par-
ticles. By varying the amount of each intermediate
state to fit the observed distributions, PWA can deter-
mine the amount of each spin-parity state present in
the data set.

These fits are done using the maximum likelihood
method. The likelihood is defined as the product of
the probabilities of observing each event given a set of
fit parameters. In our case the fit parameters are the
complex amplitudes for producing each of the interme-
diate states. In practice, we minimize the negative of
the logarithm of the likelihood, or − ln(L), which can
be written

− ln(L) = −

n
∑

i

ln
(

∣

∣ψp
αψ

d
α(τi)

∣

∣

2
)

− nψp
αΨαα′ψp∗

α′ (1)

where the sum over i runs over all events in the data set,
and the sums over the repeated αs, the fit parameter
index, are implicit. The ψp

α are the complex fit param-
eters, related to the amount of the intermediate state
α produced. The ψd

α(τi) is the quantum amplitude
for the ith event with angles τi assuming intermediate
state α. The possibility of non-interfering amplitudes
has been ignored here. While physically important, it
is a detail which further complicates the expression for
the likelihood, yet serves no illustrative purpose for the
discussion at hand. The second term on the right hand
side is the normalization integral, where any known in-
efficiencies of the detector are taken into account. The
total number of events in the data being fit is n; and
Ψαα′ is the result of the normalization integral, done
numerically before the fit is performed.

Finding the best fit to a typical data set might re-
quire hundreds of trials: experimenting with various
parameter sets, trying slightly different selections of
the original data, repeating fits with various parameter
starting values, etc. Each trial may require thousands
of evaluations of Eq. 1. For this type of exploratory
analysis, it is desirable to keep the time per fit as
short as possible. Today’s data sets typically are ≈ 105

events in size, and usually require 10-100 parameters.
These fits, using our current C++ (serial) code, take
hours to complete. This is tolerable today, but the
next generation detectors [8, 26] will record data sets

of 106 − 107 events. Eq. 1 is dominated by the sum
over events, meaning these larger data sets will require
weeks per fit!

Fortunately, the same dominance of the event sum
helps us distribute the work. The sum is split into
more manageable pieces and each piece is evaluated on
a separate processor. By using the dynamic reconfig-
urability of SALSA and the load balancing of IOS we
can achieve near optimal performance on a heteroge-
neous cluster of nodes.

3 A Maximum Likelihood Fitter

The physics data are currently fit using a fitter writ-
ten in C++ [13] and based on the MINUIT functional
minimization library from CERN [10]. The code makes
no attempt at concurrency; the likelihood is evaluated
serially on a single processor. The evaluation of the
likelihood is done by a virtual stack machine inspired
by hoc [25].

To experiment with an actor based fitting scheme,
we have implemented a simple fitting program in
SALSA. SALSA (Simple Actor Language, System,
and Architecture) [35] is an actor programming lan-
guage with high-level constructs for remote messaging,
universal naming, migration, and coordination. An ac-
tor [1] is a unit of encapsulation for both a state (proce-
dures and data) as well as processing of such a state (a
thread of control). All communication between actors
is through asynchronous message passing. While pro-
cessing a message, an actor can carry out any of four
basic operations: (1) alter its state, (2) create new ac-
tors, (3) send messages to peer actors, or (4) migrate
to another run-time environment. Actors are therefore
inherently independent, concurrent, and autonomous,
which enables efficiency in parallel execution and facil-
itates mobility [2, 16]. SALSA programs are compiled
into Java code, leveraging the existence of virtual ma-
chine implementations in multiple heterogeneous plat-
forms and operating systems. We therefore view a het-
erogeneous network of physical machines as a homoge-
neous network of Java virtual machines. While Java’s
main perceived drawback is its lack of performance—
due to its bytecode interpretation overhead— advances
in just-in-time (JIT) and adaptive compilation, make
Java a very attractive platform for scientific applica-
tions [7].

The World-Wide Computer (WWC) [2] run-time ar-
chitecture consists of naming servers and virtual ma-
chines running as Java applications on different In-
ternet nodes. The virtual machines, called theaters,
provide an environment for execution of universal ac-
tors using local resources. High-level programming lan-

S i m p l e xM L E S e r v e ra t T h e a t e r 0M L EW o r k e r s M L EW o r k e r sM L EW o r k e r s M L E S e r v e ra t T h e a t e r NM L E S e r v e ra t T h e a t e r 1
Figure 1. Simplified representation of the fitter.

guage abstractions enable actors to create remote com-
munication links with peer actors running on other
WWC theaters. Furthermore, actors can easily mi-
grate with their full state to other WWC theaters as
they become available, supporting load balancing and
scalability. The naming servers keep track of universal
actor locators, so that communication remains trans-
parent to actor location and migration.

We know from our C++ code that the likelihood
evaluation is the most expensive part of a fit, and this
expense grows linearly with the size of the data set
being fit. The large data sets expected to be obtained
shortly will become prohibitively expensive to process.
For typical numbers of fit parameters, the likelihood
(Eq. 1) is dominated by the sum over events. Our
distributed fitter splits the sum into smaller pieces and
uses worker actors on distributed theaters to evaluate
each piece.

While the C++ code uses more sophisticated min-
imization routines available in MINUIT, we chose for
our tests to write a minimizer using the simplex algo-
rithm [30] that is easy to understand and implement.
For our early experiments with fitting using SALSA

and IOS, a conceptually simple minimization method
allowed us to concentrate on the evaluation of the like-
lihood function. For an n parameter fit, the simplex
is a n+ 1 vertex polygon resting on the likelihood sur-
face. The function to be minimized is evaluated at each
vertex, and the “worst” vertex moved to a better po-
sition. By repeating this procedure, the simplex can
be made to “tumble” down the function surface to the
minimum.

The simplified architecture of the prototype fitter
is shown in Fig. 1. The simplex actor is associated
with the main MLEserver and instantiates several peer
MLEservers at different WWC theaters. Each of the
MLEservers processes some part of the input data set.
The size of data to process depends on the number
of theaters joining the computations and configuration
parameters. A MLEserver may have n MLEworkers to

evaluate partial sums of the input data it has. The
value of n may be set at runtime and parameterizes the
degree of parallelism in a single computing host. The
main MLEserver merges computing results returned by
peer servers and itself. It also provides the simplex

actor with access to the data files to be fit and any ad-
ditional input such as the results of the normalization
integrals in Eq. 1.

4 Middleware-Driven Parallel Execu-

tion over Dynamic Grids

The dynamicity of grid environments—new nodes
joining, old nodes leaving, node loads fluctuating, re-
sources changing availability—makes it necessary to
adapt applications based on information obtained dur-
ing their distributed execution to improve their per-
formance. Maximum likelihood computations can also
significantly change the computation required at differ-
ent time steps due to different input data sets or differ-
ent convergence properties of the minimization routine
in use. The load imbalance inherent in the data and
algorithm, along with the dynamicity of the grid, make
it a requirement to adapt distributed computations dy-

namically since these imbalances are not possible to
predict at compile-time.

While several application-level frameworks have
been created to dynamically adjust computational load
(e.g., by redistributing a mesh of data values to differ-
ent processors when a significant performance degra-
dation is detected) [33, 14, 20, 19, 6], this strategy
imposes a significant burden on scientific code devel-
opers and is better tackled at a middleware level. Mid-
dleware is a software layer between applications and
their distributed execution environments dealing with
non-functional concerns, e.g., resource management,
fault-tolerance, security, and quality of service (see
e.g., [3, 36]).

Middleware can be organized as a virtual network of
agents which gather and exchange information on the
physical resources dynamically and in a completely de-
centralized manner. The application components can
also be profiled to detect their communication topol-
ogy and make better placement, relocation, granularity
refinement, or replication decisions.

We have developed a modular middleware frame-
work, called the Internet Operating System (IOS) [27],
to trigger application reconfiguration decisions based
on a generic weighted resource management model [16].
The IOS architecture (see Fig. 2) consists of a peer-to-
peer network of middleware agents, each of which is
composed of:

• a profiling module: that gathers information at
two levels: (i) at an application level to determine
the communication topology of application enti-
ties as well as their resource usage over time, and
(ii) at a physical level to determine local resource
availability;

• a protocol module: that enables communica-
tion of middleware agents to exchange local and re-
motely profiled information, as well as work steal-
ing requests and forwarding; and

• a decision module: that uses the information
given by the profiling and protocol modules to trig-
ger application reconfiguration decisions at run-
time.

While the IOS middleware is programming language
and programming model neutral, we already have in-
terfaced it to MPI and SALSA programs. Therefore,
the maximum likelihood fitter described in Section 3
can make use of IOS’ dynamic reconfiguration algo-
rithms directly.

5. Experimental Results

We have initially made experiments using a static
load-balancing approach which distributes computing
tasks in optimal conditions. Three large data sets were
fit — 9053 ∗ 26 events as MIX1, 9053 ∗ 27 events as
MIX2, and 9053∗28 events as MIX3, where each event is
represented by seven complex numbers. Typically, the
maximum likelihood application requires about 2000
function calls for an acceptable solution. In case of
MIX1 for example, each function call in a uni-processor
machine takes about one minute, indicating the total
execution time is more than 33 hours.

Results from our experiments indicate, as we ex-
pected, that the maximum likelihood problem with
large input data is scalable; see Fig. 3 and 4. Par-

allel efficiency, used in Fig. 3 and 4, is defined as
(Tsequential/(n ∗ Tparallel)), where Tsequential is the se-
quential execution time per function call, n is the num-
ber of processors, and Tparallel is the execution time per
function call with n processors. We use two different
clusters to run the tests — a small and heterogeneous
cluster, Cluster one 1, and another relatively large and
homogeneous cluster, Cluster two 2. In the scalabil-
ity experiment, each processor is assigned an actor to

1Cluster one contains four IBM Workstations (six processors)
and four SUN Blades (eight processors), where an IBM Work-
station processor is twice as fast as a SUN Blade processor.

2Cluster two consists of three 4-dual-core Opteron machines
and fourteen 4-single-core Opteron machines.

Figure 2. Internet Operating System(IOS) Architecture.

perform computing tasks, and each actor has a cache
size of 10000 events. Fig. 4 shows that the execution
time per function call decreases roughly by half as the
total number of processors doubles, and the parallel ef-
ficiency decreses faster for smaller data input. Fig. 3
also shows scalability but reveals a difference in the fact
that there exist two different slopes for each curve. The
relatively weak computing power of Processors 7 to 14
is the main cause of the drastic decrease of the parallel
efficiency.

Cache size is one possible factor that affects per-
formance. By changing the cache size, we found that
increasing the cache size uniformly in Cluster two (ho-
mogeneous) can improve performance for more than
25%. Surprisingly, increasing the cache size in Cluster
one (heterogeneous) has trivial impact or even negative
impact (2% slower) on the performance. We attribute
this to the fact that a uniform cache size does not work
well in a more heterogeneous environment and thus
precludes smart memory use by the operating systems.

These preliminary experimental results are very
promising and demonstrate that maximum likelihood
evaluations can be effectively parallelized to exe-
cute over distributed and heterogeneous environments.
While we have not explicitly tested the dynamicity of
the run-time environments using this particular max-
imum likelihood fitter, we have shown using a simi-
lar iterative application in astronomy [17] that IOS is
capable of adjusting to dynamic environments to im-
prove performance. In Fig. 5, every 6 iterations, the
environment was artificially changed, from 8 to 12 to
16 to 15 to 10 back to 8 processors. The last 8 pro-
cessors removed were the initial 8 processors. A non-
reconfigurable application would not scale beyond 8
processors, nor be able to move to the new processors

128

64

32

16

8

4
1684210.5

1.5

1.3

1.1

1

0.9

0.7

0.5

E
x

ec
u

ti
o

n
 T

im
e

p
er

 F
u

n
ct

io
n

 C
al

l
(s

)

P
ar

al
le

l
E

ff
ic

ie
n

cy

Number of Processors

MIX1EFF
MIX2EFF
MIX3EFF

MIX1
MIX2
MIX3

Figure 3. Scalability experiment results for different
input sizes at Cluster one (heterogeneous).

32

16

8

4

2

1

0.5
643216842

1.7

1.5

1.3

1.1

1

0.9

0.7

0.5

E
x
ec

u
ti

o
n

 T
im

e
p

er
 F

u
n

ct
io

n
 C

al
l

(s
)

P
ar

al
le

l
E

ff
ic

ie
n

cy

Number of Processors

MIX1EFF
MIX2EFF
MIX3EFF

MIX1
MIX2
MIX3

Figure 4. Scalability experiment results for different
input sizes at Cluster two (homogeneous).

when the initial ones were removed. The performance
of the application increased by 22% on average with
the availability of new resources.

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35

It
er

at
io

n
 T

im
e

(s
)

Iteration

Split/Merge
Migration (16 Workers)

Figure 5. Autonomous reconfiguration using migra-
tion and malleability.

6. Toward a Generic MLE Framework

The importance of the method of maximum likeli-
hood in the sciences cannot be overstated. “From a
theoretical point of view, the most important general
method of estimation known so far is the method of

maximum likelihood” [12]. While the method has been
used for decades to fit small data sets, modern tech-
niques have allowed the collection of data volumes that
exceed the capabilities of current fitting techniques.
While our prototype fitter has been designed and im-
plemented with a particular problem—Partial Wave
Analysis—in mind, we are aware that the techniques
we are developing are useful to a broader population of
researchers. The lessons we are learning will allow us
to abstract out the appropriate parts of the problems
at hand and produce a more general application to as-
sist studies in diverse fields of inquiry. Following are
brief descriptions of ongoing collaborations that might
illustrate the potential impact of a generic MLE frame-
work.

Biology Application: The origins of bacterial

pathogenicity. Intimate cooperative associations be-
tween bacterial symbionts and their hosts have given
rise to a variety of adaptations. In each of such sym-
bioses, the microbial partner is specific to the host or-
ganism and may be a necessary part of the normal life
cycle of the host, providing some critical function or
capability. Comparisons between complete genomes
of various parasitic and free-living states of symbi-
otic bacteria may help uncover mechanisms of infec-
tion and colonization, and may shed light on the evo-
lution of virulence and pathogenesis [28]. To address
these questions effectively, complete genomic sequences
of bacteria that have multiple life history stages must
be analyzed to identify patterns in the evolution of

genome composition and organization. Many of the
problems in phylogenetic analysis are known to be
NP-complete [22], yet for smaller genomes they are
tractable with effective heuristic algorithms, some of
which are based on tree re-arrangement methods [15].
The quality of these trees (optimality value) could
be measured by a maximum likelihood model-based
approach (in reality the negative logarithm of the
likelihood is minimized), giving rise to the computa-
tional problem of exactly the same type as discussed
in the physics application. For analyses based on
single molecular loci, given pre-specified alignments,
these techniques can analyze effectively thousands of
taxa [24]. The automatic load balancing and fault tol-
erance capabilities of the software platform supported
by our system are essential in such application, as the
genomic rearrangement problems require unpredictable
and unequal effort. Biologically, the benefits of analyz-
ing such complex data sets will not only generate a
more complete phylogenetic survey among taxa, but
will also give us the ability to detect specific groups
of genes (i.e., islands of pathogenicity) that contain
unique genetic signatures that can be used to identify
differences in virulent and benign bacteria.

Astronomy Application: The origins and

structure of the Milky Way. The Sloan Digital Sky
Survey (SDSS) has already accumulated 9000 square
degrees of imaging data in five wavelength ranges by
June 2005. Additional 4000 square degrees of imag-
ing data and individual spectra for 240,000 stars in the
Milky Way will be collected by 2008. This huge amount
of data will enable evaluation of complex astronomi-
cal models but will also require tremendous amount
of computational power. Many of the questions aris-
ing in the study of the Milky Way galaxy, such as the
structures existing in this galaxy and their spatial dis-
tribution, require a probabilistic algorithm for locating
geometric objects in spatial databases [32] that can be
treated as a mixture density estimation problem. For
a given cross-sectional observation region, the densities
for the background and structure conditioned on being
in this region can be normalized. After such normaliza-
tion, the observed density of stars is drawn from a mix-
ture distribution parameterized by (i) the fraction of
structure stars in the data (compared to background),
(ii) the parameters that govern the structure distribu-
tion which specify the position of the structure, as well
as other important properties, and (iii) the parameters
of the Milky Way halo. Such formulated, the prob-
lem can again be solved using a maximum likelihood
approach. Specifically, the likelihood is the probabil-
ity (density) of obtaining the observed star distribution
after repeated independent sampling from the mixture

distribution. Such probabilistic framework gives a nat-
ural sampling algorithm for separating structure from
background [31]. The scientific significance of being
able to separate the structure from the background
stars lies in the resulting ability to analyze and test
various theories for the dynamics of the background
and the structure separately.

7 Related Work

Over the last few years, several efforts have focused
on building middleware-level software tools to enable
resource sharing and problem solving on large grids
within the scientific community. The Globus/OGSA
project seeks to enable the construction of large com-

putational grids [21] by providing a set of services
that solve common grid deployment problems. Con-
dor is a distributed resource management system that
is designed to support high-throughput computing by
harvesting idle resource cycles [34]. Virginia’s Le-
gion meta-system integrates research in object-oriented
parallel processing, distributed computing, and secu-
rity to form a programmable world-wide virtual com-
puter [23]. Caltech’s Infospheres project envisions a
world-wide pool of millions of objects (or agents) much
like the pool of documents on the World-Wide Web to-
day [11]. [36] presents more detailed discussion about
middleware research over dynamic grid environments.

Other research efforts have focused on providing
grid-enabling frameworks for typical scientific applica-
tions. One system that in particular targets numeri-
cal relativity is the Cactus system [4]. Cactus allows
users to write application-specific modules and inter-
face them to the Cactus framework which can run these
modules on the grid. NetSolve [9] is a system that
has been designed to solve computational science prob-
lems through a client-agent-server architecture. Grid-
Solve [37] is an extension to NetSolve targeted specif-
ically at grid environments. The Grid Physics Net-
work (GriPhyN) project [5] uses grid technologies that
provide virtual data management and workflow man-
agement to support physicists. The Particle Physics
Data Grid [29] also employs grid technologies to sup-
port physics research. GridPP [18] is an ongoing col-
laboration of Particle Physicists and Computing Sci-
entists from 19 UK universities. It aims at building
grid-enabled interfaces and software tools to provide a
problem-solving environment for particle physicists.

8. Conclusion

We have developed a prototype distributed maxi-
mum likelihood fitter and applied it to the particle

physics problem of partial wave analysis. This fitter
uses the SALSA programming language and the Inter-
net Operating System middleware to achieve a dynam-
ically reconfigurable system. By reconfiguring itself
while running it is able to adapt to the changing condi-
tions on a heterogeneous network such as the Internet.
We have demonstrated excellent scalability properties
of the program. Our plans for future work include the
development of a generic framework for maximum like-
lihood fitting for diverse problem domains and studies
of IOS-driven autonomous reconfiguration under differ-
ent run-time environments.

Acknowledgements

We would like to express our gratitude to Chris Kona,

Heschi Kreinick, and Zack Goldstein for implementing the

initial versions of the SALSA maximum likelihood pro-

grams. We would also like to acknowledge the National

Science Foundation (NSF CAREER Award No. CNS-

0448407), IBM (SUR Awards 2003 and 2004) and RPI

(Seed Funding Grant) for partial support for this research.

References

[1] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, 1986.

[2] G. Agha, N. Jamali, and C. Varela. Agent Naming and
Coordination: Actor Based Models and Infrastruc-
tures. In A. Ominici, F. Zambonelli, M. Klusch, and
R. Tolksdorf, editors, Coordination of Internet Agents,
chapter 9, pages 225–248. Springer-Verlag, 2001. in-
vited book chapter.

[3] G. Agha and C. Varela. Worldwide computing mid-
dleware. In M. Singh, editor, Practical Handbook on
Internet Computing. CRC Press, 2004. invited book
chapter.

[4] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ri-
peanu, E. Seidel, and B. Toonen. Supporting efficient
execution in heterogeneous distributed computing en-
vironments with Cactus and Globus. In Supercomput-
ing 2001 (SC 2001), Denver, November 2001.

[5] P. Avery and I. Foster. The GriPhyN project:
Toward petascale virtual data grids. Available:
http://www.griphyn.org, 2001.

[6] C. L. Bottasso, J. E. Flaherty, C. Ozturan, M. S.
Shephard, B. K. Szymanski, J. Teresco, and L. Ziantz.
The quality of partitions by an iterative load balancer.
In Proc. 3rd Workshop on Languages, Compilers and
Run-Time Systems for Scalable Computers, 1996.

[7] J. M. Bull, L. A. Smith, L. Pottage, and R. Free-
man. Benchmarking java against c and fortran for
scientific applications. In Proceedings of ACM Java
Grande/ISCOPE Conference, pages 97–105, 2001.

[8] D. S. Carman. Gluex: The search for gluonic ex-
citations at jefferson laboratory. AIP Conf. Proc.,
814:173–182, 2006.

[9] H. Casanova and J. Dongarra. NetSolve: A network-
enabled server for solving computational science
problems. The International Journal of Supercom-
puter Applications and High Performance Computing,
11(3):212–223, Fall 1997.

[10] CERN Program Library. Available: http://cernlib.
web.cern.ch/cernlib/, 2006.

[11] K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandel-
son, M. Richardson, W. Tanaka, and L. Weisman. A
World-Wide Distributed System Using Java and the
Internet. In Proceedings of the Fifth IEEE Interna-
tional Symposium on High Performance Distributed
Computing, New York, U.S.A., Aug 1996.

[12] H. A. Cramer. Mathematical Methods of Statistics.
Princeton University Press, 1958.

[13] J. P. Cummings and D. P. Weygand. An object-
oriented approach to partial wave analysis, 2003.

[14] H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M.
Loy, C. Özturan, and M. S. Shephard. Load balancing
for the parallel adaptive solution of partial differential
equations. Appl. Numer. Math., 16:157–182, 1994.

[15] R. Desalle, G. Giribet, and W. Wheeler. Molecu-
lar Systematics and Evolution: Theory and Practice.
Birkhauser Verlag, 2002.

[16] T. Desell, K. E. Maghraoui, and C. Varela. Load bal-
ancing of autonomous actors over dynamic networks.
In Proceedings of the Hawaii International Conference
on System Sciences, HICSS-37 Software Technology
Track, pages 1–10, January 2004.

[17] T. Desell, K. E. Maghraoui, and C. Varela. Malleable
Components for Scalable High Performance Comput-
ing . In Proceedings of the HPDC’15 Workshop on
HPC Grid programming Environments and Compo-
nents (HPC-GECO/CompFrame), pages 37–44, Paris,
France, June 2006. IEEE Computer Society.

[18] D.I. Britton et al. GridPP: From prototype to pro-
duction. In UK e-Science All Hands Conference, Not-
tingham, UK, September 2006.

[19] J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard,
B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. Par-
allel structures and dynamic load balancing for adap-
tive finite element computation. Appl. Numer. Math.,
26:241–263, 1998.

[20] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szy-
manski, J. D. Teresco, and L. H. Ziantz. Adaptive local
refinement with octree load-balancing for the parallel
solution of three-di mensional conservation laws. J.
Parallel Distrib. Comput., 47:139–152, 1997.

[21] I. Foster and C. Kesselman. The Grid 2: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[22] L. Foulds and R. L. Graham. Steiner tree problem in
phylogeny is np-complete. Advances in Applied Math-
ematics, (3):43–49, 1982.

[23] A. S. Grimshaw, W. A. Wulf, and ”the Legion team”.
The legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1):39–45, January
1997.

[24] D. Janies and W. Wheeler. Parallel efficiency of POY.
Birkhauser Verlag, 1997.

[25] B. W. Kernighan and R. Pike. The UNIX Program-
ming Environment. Prentice Hall Professional Techni-
cal Reference, 1984.

[26] W. Li. Bepcii/besiii upgrade and the prospective
physics, 2006.

[27] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and
C. A. Varela. The Internet Operating System: Mid-
dleware for adaptive distributed computing. Interna-
tional Journal of High Performance Computing Appli-
cations (IJHPCA), Special Issue on Scheduling Tech-
niques for Large-Scale Distributed Platforms, 2006. To
appear.

[28] M. Nishiguci and B. Jones. Microbial biodiversity
within the Vibrionaceae. Cole-Kluwer Academic Pub-
lishers, 2003.

[29] Particle Physics Data Grid (PPDG) project . Avail-
able: http://www.ppdg.net, 2004.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
New York, NY, USA, 1992.

[31] J. Purnell, M. Magdon-Ismail, and H. Newberg. A
probabilistic approach to finding geometric objects in
spatial datasets of the milky way. In Proc. 15th Inter-
national Symposium on Methodoligies for Intelligent
Systems (ISMIS 2005), Saratoga Springs, NY, May
2005.

[32] C. Reina, P. Bradley, and U. Fayyad. Clustering
very large databases using mixture models. In Proc.
15th International Conference on Pattern Recognition,
2000.

[33] J.-F. Remacle, J. Flaherty, and M. Shephard. An
adaptive discontinuous Galerkin technique with an or-
thogonal basis applied to compressible flow problems.
SIAM Review, 45(1):53–72, 2003.

[34] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the condor experience. Con-
currency - Practice and Experience, 17(2-4):323–356,
2005.

[35] C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. ACM SIG-
PLAN Notices. OOPSLA’2001 Intriguing Technology
Track Proceedings, 36(12):20–34, Dec. 2001.

[36] C. A. Varela, P. Ciancarini, and K. Taura. Worldwide
computing: Adaptive middleware and programming
technology for dynamic Grid environments. Scientific
Programming Journal, 13(4):255–263, December 2005.
Guest Editorial.

[37] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Don-
garra. Recent developments in gridsolve. International
Journal of High Performance Computing Applications
(IJHPCA), 20(1):131–141, 2006.

