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ABSTRACT
This paper examines the use of a probabilistic simplex oper-
ator for asynchronous genetic search on the BOINC volun-
teer computing framework. This algorithm is used to opti-
mize a computationally intensive function with a continuous
parameter space: finding the optimal fit of an astronomical
model of the Milky Way galaxy to observed stars. The asyn-
chronous search using a BOINC community of over 1,000
users is shown to be comparable to a synchronous contin-
uously updated genetic search on a 1,024 processor parti-
tion of an IBM BlueGene/L supercomputer. The proba-
bilistic simplex operator is also shown to be highly effective
and the results demonstrate that increasing the parents used
to generate offspring improves the convergence rate of the
search. Additionally, it is shown that there is potential for
improvement by refining the range of the probabilistic op-
erator, adding more parents, and generating offspring dif-
ferently for volunteered computers based on their typical
speed in reporting results. The results provide a compelling
argument for the use of asynchronous genetic search and vol-
unteer computing environments, such as BOINC, for com-
putationally intensive optimization problems and, therefore,
this work opens up interesting areas of future research into
asynchronous optimization methods.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning

General Terms
Algorithms
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1. INTRODUCTION
In many scientific disciplines, the rate of data acquisition

and model complexity is far outpacing developments in com-
puting speed. As a result, distributed computing is becom-
ing essential in advancing scientific discoveries by making
complex modeling of large data sets possible in a reason-
able amount of time. Volunteer computing platforms such
as BOINC, can be extremely powerful computing tools, as
has been shown by projects such as SETI@Home [4] and
Folding@Home [16], because they have the potential to pro-
vide millions of processors [5] at a fraction of the cost of
supercomputing environments. However, in contrast to su-
percomputers, volunteer computing involves significant chal-
lenges to overcome, namely scalability in the presence of
higher heterogeneity and volatility. Volunteered computers
can be of any speed and can disconnect randomly, possibly
never to reappear. Because of this, traditional synchronous
programming methods and algorithms are innapropriate.

A wide range of parallel genetic algorithms (PGAs) have
been examined for different distributed computing environ-
ments. Generally, there are three types of parallel genetic
algorithms: single population (panmictic, coarse-grained),
multi-population (island, medium-grained), or cellular (fine-
grained) [7]. Panmictic GAs create a population, evaluate
it in parallel, and use the results to generate the next pop-
ulation. Island approaches evaluate local populations for a
certain number of iterations, then exchange the best mem-
bers with other islands [3, 6, 12, 15, 11]. Cellular algorithms
evaluate individual parameter sets, then update these indi-
vidual sets based on the fitness of their neighbors [2, 10].
Hybrid-granularity approaches have also been examined [14,
21].

Unfortunately, these approaches do not scale to the thou-
sands of processors offered by the BOINC computing project.
For these approaches, scalability is limited to the size of the
population being used and the parallelizability of the fitness
calculation. Additionally, they are not fault tolerant - if any
processor becomes unavailable, the search cannot proceed
and will fail. Finally, while load balancing and partitioning
is feasible on computational grids [14, 12], it becomes im-
practical or impossible when there are no clusters of homo-
geneous processors and failures are frequent. Previous work
has introduced an asynchronous genetic search framework
that is both scalable and fault tolerant [9]. It uses a sin-
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Algorithm 1: Asynchronous Report Work

Data: P /*Population*/,
max /*Maximum Population Size*/,
R /*Result*/
Result: Updated Population
if P.size < max then

P.insert(R)

else if R.fitness < worst(P).fitness then
P.insert(R)
P.remove(worst(P))

gle population, and asynchronously generates new members
to be evaluated when work is requested and continuously
updates the population by inserting members when their
fitness is reported. They have also shown that using dif-
ferent operators as part of this asynchronous genetic search
can significantly improve the convergence rate to the global
optimum.

This paper investigates the use of a new crossover operator
based on the Nelder-Mead simplex algorithm and compares
it to the double shot operator introduced by Desell et al for
an astronomical modeling application. This application fits
models of the Milky Way galaxy to stars observed by the
SLOAN digital sky survey [17, 1]. Due to the expense of
calculating a single model (approximately 15 minutes to an
hour for a small wedge of observed stars), finding the opti-
mal fit in any reasonable amount of time requires a large
amount of processing power. Because of this, the asyn-
chronous search uses a BOINC-based computing project.
Additionally, to measure the impact of asynchronicity and
heterogeneity, the search is also tested synchronously on an
IBM BlueGene/L supercomputer.

Results show that using the simplex crossover operator
provides significant improvement in the convergence rates
of the asynchronous genetic search compared to the double
shot method. Additionally, utilizing asynchronous genetic
search on BOINC is shown to be competitive to continu-
ously updated synchronous genetic search on the BlueGene
supercomputer. Analysis of the effects of heterogeneity and
asynchronous reporting of member fitness shows that there
is distinct possibility to further improve convergence rates
through adaptive generation of new members and refinement
of the space into which new members are generated. We feel
that these results provide a strong argument for the use of
asynchronous search on volunteer computing environments
to perform computationally expensive scientific model op-
timization and that such searches are a viable alternative
to their synchronous counterparts (which can only perform
well on vastly more expensive computing environments).

2. ASYNCHRONOUS GENETIC SEARCH
Asynchronous genetic search (AGS) is similar to tradi-

tional iterative genetic search (IGS) in that it keeps a pop-
ulation of parameters and generates reproductions and mu-
tations based on it. However, instead of using a parallel
model of concurrency like IGS, it uses a master-worker ap-
proach. Rather than iteratively generating new populations,
new members of the population are generated when a worker
requests work and the population is updated whenever work
is reported to the master. The AGS algorithm consists of

Algorithm 2: Asynchronous Request Work

Data: P /*Population*/,
C /*Reproduction Probability*/,
max /*Maximum Population Size*/
Result: New Parameters to Evaluate
if P.size < max then

return random params();

else
if random() < C then

p1 = P[random()]
p2 = P[random()], where p1 != p2
return reproduce(p1, p2)

else
return mutate(P[random()])

two phases and uses two asynchronous message handlers (see
Algorithms 1 and 2). The server can either be processing a
request work or a report work message and cannot process
multiple messages at the same time. In some ways this ap-
proach is very similar to steady-state genetic search, where
n members of the population are replaced at a time by newly
generated members.

In the first phase of the algorithm (while the population
size is less than the maximum population size) the server
is being initialized and a random population is generated.
When a request work message is processed, a random pa-
rameter set is generated, and when a report work message
is processed, the population is updated with the parameters
and the fitness of that evaluation. When enough report work
messages have been processed, the algorithm proceeds into
the second phase which performs the actual genetic search.

In the second phase, report work will insert the new pa-
rameters and their fitness into the population but only if
they are better than the worst current member and remove
the worst member if required to keep the population size
the same. Otherwise the parameters and the result are dis-
carded. Processing a request work message will either return
a mutation or reproduction (crossover) from the population.

This algorithm has significant benefits in heterogeneous
environments because the calculation of fitness can be done
by each worker concurrently and independently of each other.
The algorithm progresses as fast as work is received, and
faster workers can processes multiple request work messages
without waiting on slow workers. This approach is also
highly scalable, as the only limiting factor is how fast re-
sults can be inserted into the population and how fast re-
quest work messages can be processed. It is also possible
to have multiple masters using an island approach for even
greater scalability.

3. HYBRID METHODS AND CROSSOVER
OPERATORS

Most hybrid approaches to genetic search involve perform-
ing the genetic search in tandem with the hybrid. Chelouah
and Siarry use iterations of genetic search to perform di-
versification until stopping conditions are met, then inten-
sification on the best point found, repeating these two steps
and achieved promising results on a set of classical test func-
tions [8]. Satapathy et al. use a similar approach for image
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Figure 1: The simplex method takes the worst point
and reflects it through the centroid of the remain-
ing points. The probabilistic simplex operator ran-
domly generates a point on some section of the line
connecting the worst point and its reflection.

clustering, where the best N +1 points in the population are
used to generate the simplex, instead of generating a sim-
plex around the best point [19, 13]. Yen et al. use the same
strategy in modeling metabolic systems, and examine some
variations on reflecting the worst point through the centroid
(reflecting the worst through the best point and the centroid
through the best point) [24]. Wei et al. apply this strategy
within niches created after a set number of genetic search
iterations by partitioning of the population, and performing
the simplex search within each [23].

Renders and Bersini propose two methods to hybridize
genetic search and hill climbing methods [18]: interleav-
ing genetic search with hill-climbing and using hill climb-
ing to create new crossover operators for the genetic search.
The interleaving approach performs iterations of the simplex
search on each individual of the population per iteration.
However, they focus on utilizing a simplex crossover opera-
tor in addition to an average crossover operator and muta-
tion. The simplex crossover operator selects N +1 members
of the population and performs an iteration of the simplex
search - first attempting reflection, then expanding or con-
tracting iteratively. Both hybrids are shown to outperform
the non-hybrids, with the crossover hybrid performing the
best. In future work, Seront and Bersini propose a mixture
of these two methods, utilizing both interleaving and a sim-
plex crossover operator [20], for even better performance.

3.1 Probabilistic Simplex Operator
Unfortunately, all of these approaches require synchrony

by creating dependence between fitness calculations. While
is it not possible to effectively perform the traditional Nelder-
Mead simplex search in a highly heterogeneous and volatile
environment like BOINC, a probabilistic operator can mimic
its behavior. The Nelder-Mead simplex search takes N + 1
sets of parameters, and performs reflection, contraction and
expansion operators between the worst set of parameters
and the centroid of the remaining N (see Figure 1). After
calculating the centroid, a line search is performed by ex-
panding or contracting the simplex along this line. Because
in our asynchronous model it is not possible to iteratively
perform expansions and contractions, a random point is se-
lected on the line joining the worst point and its reflection.
There are three parameters involved in this operator, N ,

Figure 2: The double shot operator generates three
children: the average, a point outside the worse par-
ent (higher), and a point outside the better parent
(lower), the latter two points are a distance from the
average equal to the distance between their parents.

the number of points used to form the simplex (chosen ran-
domly from the population), and two limits l1 and l2 which
specify where on the line the point can be generated. For
example, l1 = −1 would set one limit to the reflection and
l2 = 1 would set the other limit to the worst point. For the
purposes of this study, we use l1 = −1.5 and l2 = 1.5 and
examine how children generated from different parts of this
line effect the evolution of the population.

3.2 Double Shot Operator
Desell et al. [9] show that using a double shot operator as

opposed to a standard average operator can significantly im-
prove convergence rates for the astronomical modeling appli-
cation. The double shot operator produces three children in-
stead of one. The first is the average of the two parents, and
the other two are located outside the parents, equidistant
from the average (see Figure 2). This approach is loosely
based on line search, the point outside the more fit parent is
in a sense moving down the gradient, while the point outside
the less fit parent is moving up the gradient created by the
two parents. The motivation for the latter point is to escape
local minima.

4. RESULTS

4.1 Convergence
The hybrid simplex method was evaluated using the as-

tronomical modeling problem detailed by Purnell et al [17].
Performing the evaluation of a single model to a small wedge
of the sky consisting of approximately 200,000 stars can take
between 15 minutes to an hour on a single high end proces-
sor. Because of this, to be able to determine the globally op-
timal model for that wedge in any tractable amount of time
requires extremely high powered computing environments.
To measure the effect of asynchronicity on the hybrid genetic
search, both synchronous and asynchronous computing en-
vironments are used, 1024 processors of an IBM BlueGene/L
and a BOINC volunteer computing project with over 1,000
volunteered computers.

Figure 3 shows the performance of the double shot ap-
proach, and the simplex approach with varying numbers of
parents N being used to calculate the centroid on both en-
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Figure 3: Fitness of the best member found averaged over five searches for the double shot approach and the
simplex hybrid with N = 2..5, using the BOINC volunteered computers and the BlueGene supercomputer.

vironments. Previous work has shown that the double shot
approach significantly outperforms iterative genetic search
and asynchronous genetic search using only the average and
mutation operators [22]. All approaches converged to the
known global optimum of the data. For both computing en-
vironments, a population of size 300 was used, and the muta-
tion operator was applied 20% of the time, all other members
were generated with the corresponding operator. The range
of the probabilistic line search for the simplex hybrid was
defined by the limits l1 = −1.5 and l2 = 1.5. For the syn-
chronous execution on the BlueGene, each model evaluation
was performed by dividing the work over the 1024 proces-
sors, and immediately attempting to insert the member into
the population - in this way only the most evolved popula-
tion was used to generate new members and the population
was continuously updated. The asynchronous execution on
BOINC generates new members from the current population
whenever users request more work. After a user has com-
pleted the evaluation of a member, it’s sent to the server
and inserted into the population. There is no guarantee of
when the fitness of a generated member will be returned, or
even if it will be returned at all.

On the BlueGene, the hybrid simplex method shows dra-
matic improvement over the double shot approach, with the
difference increasing as more parents are used to calculate
the centroid. While the double shot method typically con-
verges in around 18,000 iterations, the simplex hybrid with
N = 4 converges in approximately 8,000. Compared to the
50,000 iterations reported for traditional iterative genetic
search [9], the convergence rate is excellent. Using BOINC
shows similar results, however the convergence rates are not
as fast on the BlueGene, which is to be expected. Gener-
ally, increasing the number of points used to calculate the
centroid results in better searches, however on BOINC the
simplex with N = 2 and double shot operators initially seem
to converge more quickly than the more informed simplex
with N = 3..5, which was not the case on the BlueGene.
The asynchronous approach on BOINC may take more iter-
ations, but BOINC is much more accessible as it is dedicated
to the project at hand, while use of the BlueGene is shared
among many researchers. Because of this, even though the

quantity of fitness evaluations done per second is similar for
both computing environments, the BOINC framework can
perform more searches and does so at a fraction of the cost.
These results are very promising for the use of asynchronous
search and volunteer computing for computationally inten-
sive scientific modeling.

4.2 Operator Analysis
To better understand the effect of the operators in evolv-

ing the population, as well as the effect of asynchronicity
and of a highly heterogeneous computing environment on
the fitness returned, the number of members processed be-
tween the generation and reporting of a members fitness was
tracked, as well as information about how it was generated.
For both environments, the best N was used. Figure 4 shows
the percentage of members inserted into the population and
at what position in the population they were inserted based
on what part of the line they were generated with using the
simplex hybrid with N = 4 on the BlueGene. The popu-
lation is sorted from the best fit to the least, so the lower
the position at which a member is inserted, the better its
fitness with respect to the rest of the population. Figures 5
and 6 show the same information for BOINC and N = 4. To
provide a measure of how far the population evolved while
a member was being evaluated, these results are partitioned
by how many other members were reported before the fit-
ness of the current member was reported. The range of the
probabilistic line search for the simplex was defined by lim-
its l1 = −1.5 and l2 = 1.5 and the statistics are taken from
five seperate searches.

On the BlueGene, the best insert rate and quality was
from points around the centroid (generated between limits
of 0.5 and -0.5). While inside of the worst point (1.0 to 0.5)
had the highest insert rate, the quality of inserted members
was rather low. Points near the reflection of the worst point
through the centroid (-1.5 to -0.5) tended to have low insert
rates, however when they were inserted they tended to be
very fit. Points outside of the worst member (1.0 to 1.5)
had the worst insert rate and the least fit. These results
suggest that the probabilistic simplex search could be fur-
ther optimized by restricting the range to limits l1 = −1.5
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Figure 4: Average insert rate and insert position of members based on what part of the line calculated by
the simplex hybrid they were generated on, for N = 4 using the BlueGene supercomputer. A lower insert
position means the member is more fit than the rest of the population.

and l2 = 0.5, by eliminating the poorest performing range
of 0.5 to 1.5.

BOINC showed similar results for quickly reported results
(less than 200 members reported while the member was be-
ing evaluated) with points generated near the centroid (-0.5
to 0.5) having the best fitness and insert rate (see Figures 5
and 6). One notable exception was that points generated
on the inside of the worst point (0.5 to 1.0) had a notably
lower insert rate and that points generated near the worst
point (0.5 to 1.5) quickly degraded in terms of insert rate
compared to other points. With over 1600 evaluations be-
ing reported during a members round trip time, not a single
point generated past the worst point was inserted. Another
point of interest is that while points generated near the re-
flection (-1.5 to -0.5) had lower insertion rates than those
near the centroid (-0.5 to 0.5), as the report time increased,
their average insert position stayed the same and eventually
had better fitness than points generated near the centroid.
As with the BlueGene, the results suggest that refining the
limit on the probabilistic simplex operator to l1 = −1.5 and
l2 = 0.5 would improve the convergence rates. Additionally,
it appears that the result report time does have an effect on
which part of the line used by the probabilistic simplex op-
erator is better to draw new members from. An intelligent
work scheduling mechanism could assign members gener-
ated near the reflection to processors with slower reporting
times, and those generated near the centroid to processors
with faster reporting times. Also, as the search progresses,
there are fluctuations as to where the best points are gen-
erated from. An adaptive search could refine the limits to
improve convergence rates. It is important to note that even
the slowest processors retain their ability to evaluate mem-
bers that are of benefit to the search, which is an important
attribute for any algorithm running on massively distributed
and heterogeneous environments.

5. DISCUSSION
This paper examines the use of asynchronous genetic search

on the BOINC volunteer computing framework and com-
pares it to synchronous continously updated genetic search

on a BlueGene supercomputer. The genetic search is used
in a computationally intensive scientific application - opti-
mizing the fit of an astronomical model of the Milky Way
galaxy to observed stars. While the search converges in less
evaluations synchronously on the BlueGene, and the 1024
processor partition of the BlueGene provides a similar num-
ber of fitness evaluations per second as the approximately
1,000 user BOINC community, access to the BlueGene is
limited and shared with other researchers. Alternatively,
the BOINC project is dedicated to the astronomy project
and operates at a fraction of the cost. Because of these
factors, we argue that asynchronous genetic search on vol-
unteer computing platforms is a valuable asset to scientific
researchers doing computationally intensive scientific mod-
eling and it is comparable with synchronous genetic search
on supercomputing environments.

Two different crossover methods were compared: a double
shot and a probabilistic simplex operator. The probabilis-
tic simplex operator was shown to converge to the global
minima faster than the double shot approach in all cases.
Additionally, as more parents were used in the probabilistic
simplex operator, the convergence rate increased. Analy-
sis of the range from which the points were generated with
this operator shows that there is definite room for improve-
ment in multiple ways. For future work, increasing the num-
ber of parents to determine if and when this ceases to im-
prove convergence is of interest. Also, the analysis suggests
that bounds closer to the reflection and centroid points of
the simplex would result in faster convergence or that an
adapative approach that changes the bounds of the search
based on how previously generated members have performed
would improve performance. For BOINC, utilizing differing
numbers of parents in the same search may also improve
convergence, as at different times in the search progression,
a smaller number of parents resulted in temporarily faster
convergence. Yen et al. have also shown that using dif-
ferent points in the simplex for reflection, contraction and
expansion may improve convergence [24] and using differ-
ent points instead to generate the line for the probabilistic
simplex operator may provide even better results.
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Figure 5: Average insert rate of members based on what part of the line calculated by the simplex hybrid
they were generated on, for N = 5 using the BOINC framework. The results are partitioned by how many
other members were reported while the used members were being generated (0..100 to 1601+) to show the
effects of asynchronicity and of a heterogeneous computing environment.
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Figure 6: Average insert position of members based on what part of the line calculated by the simplex hybrid
they were generated on, for N = 4 using the BOINC framework. A lower insert position means the member
is more fit than the rest of the population. The results are partitioned by how many other members were
reported while the used members were being generated (0..100 to 1601+) to show the effects of asynchronicity
and of a heterogeneous computing environment.
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Finally, as our BOINC community grows and more vol-
unteered computers become accessible, the scalability of a
single server may become a problem. In this case, extending
the asynchronous genetic search strategy to utilize multiple
islands may be required. Also, modification of other search
methods such as simulated annealing and particle swarm
optimization for large scale asynchronous use may provide
new insights and better convergence rates. As the number
and heterogeneity of computers being used for computation-
ally intense applications continues to increase, research into
asynchronous searches of this nature will become increas-
ingly important.
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