
Asynchronous Genetic Search for Scientific Modeling on Large-Scale

Heterogeneous Environments

Travis Desell Boleslaw Szymanski Carlos Varela

Department of Computer Science

Rensselaer Polytechnic Institute, Troy, NY, U.S.A.

{deselt, szymansk, cvarela}@cs.rpi.edu

Abstract

Use of large-scale heterogeneous computing en-
vironments such as computational grids and the
Internet has become of high interest to scientific
researchers. This is because the increasing com-
plexity of their scientific models and data sets
is drastically outpacing the increases in proces-
sor speed while the cost of supercomputing en-
vironments remains relatively high. However,
the heterogeneity and unreliability of these en-
vironments, especially the Internet, make scal-
able and fault tolerant search methods indispens-
able to effective scientific model verification. The
paper introduces two versions of asynchronous
master-worker genetic search and evaluates their
convergence and performance rates in compari-
son to traditional synchronous genetic search on
both a IBM BlueGene supercomputer and using
the MilkyWay@HOME BOINC Internet comput-
ing project 1. The asynchronous searches not
only perform faster on heterogeneous grid environ-
ments as compared to synchronous search, but also
achieve better convergence rates for the astron-
omy model used as the driving application, provid-
ing a strong argument for their use on grid com-
puting environments and by the MilkyWay@Home
BOINC internet computing project.

1See http://milkyway.cs.rpi.edu

1 Introduction

The rate of increase in CPU performance does
not nearly match the rapidly increasing rates of
data acquisition in all scientific disciplines. This
is leading to significantly long, if not intractable,
turn around times between the development of a
scientific model and its verification using tradi-
tional computing environments. Testing current
scientific models can involve processing terabytes
of data using computationally intense modeling
techniques, which results in program execution
times of weeks to months on a single high end com-
puter to calculate only a single parameter set for
a scientific model. Even the best scientific model
verification search methods require the evaluation
of thousands of parameter sets of a scientific model
over the data set. This makes using large-scale
computing environments, such as computational
grids and the Internet, highly desirable platforms
for performing scientific model verification. The
processing power these environments provide en-
ables them to compute these models in a short
amount of time, which in turn allows scientists
to more quickly gather results and improve their
models and understanding.

Grids and the Internet involve additional chal-
lenges in comparison to homogeneous large-scale
computing environments such as supercomputers.
In addition to scalability and heterogeneity con-
cerns, the reliability of the host nodes comes into
question, especially in the case of internet com-
puting architectures such as BOINC [4] where



computing nodes can disconnect at random and
for computationally significant amounts of time.
Most search methods used in scientific model
verification are iterative (or synchronous) in na-
ture [8], and are not well suited to heterogeneous
and unreliable computing environments. With it-
erative searches, new parameter sets for evalua-
tion depend on either the previous or a group of
previous evaluations having been completed, and
the search will only progress as fast as the slowest
results are received. Traditional redudancy tech-
niques used for fault-tolerance can result in either
lack of progress in the iterative computation for
checkpointing and restart, or significant amounts
of wasted CPU cycles for redundancy. Iterative
methods also tend not to scale well and can be
very difficult to partition over heterogeneous re-
sources.

This work examines the feasibility of using
asynchronous genetic search for large-scale com-
puting environments such as BOINC, which are
highly unstable and heterogeneous, but can po-
tentially offer millions of processors [4]. A soft-
ware framework for distributed scientific model
evaluation (GMLE [9]) is extended by providing
support for asynchronous search methods. Two
asynchronous variations of the genetic search algo-
rithm are introduced and their convergence times
are compared with traditional genetic search by
using an astronomical modeling application [19].
The effect of asychronicity and heterogeneity on
the performance of the searches is shown by us-
ing the MilkyWay@HOME BOINC computing
project. The potential increase in performance ob-
tained by using these asynchronous algorithms is
demonstrated using a heterogeneous grid environ-
ment.

2 Related Work

A wide range of parallel genetic algorithms
(PGAs) have been examined for different dis-
tributed computing environments. Generally,
there are three types of parallel genetic algorithms:
single population (panmictic, coarse-grained),
multi-population (island, medium-grained), or cel-
lular (fine-grained) [8]. Typically, these ap-

proaches are synchronous. Panmictic GAs create a
population, evaluate it in parallel, and use the re-
sults to generate the next population. Island [3, 5]
approaches evaluate local populations for a certain
number of iterations, then exchange the best mem-
bers with other islands. Cellular algorithms [2, 10]
evaluate individual parameter sets, then update
these individual sets based on the fitness of their
neighbors. Hybrid approaches [16, 20] have also
been examined.

P-CAGE [12] is a peer-to-peer (P2P) implemen-
tation of a hybrid multi-island genetic search built
using the JXTA protocol [14] which is also de-
signed for use over the Internet. Each individ-
ual processor (a member of the P2P network) acts
as an island (a subpopulation of the whole) and
evolves its subpopulation cellularly. Every few it-
erations, it will exchange exterior neighbors of its
population with its neighbors.

There have also been different approaches taken
in develping PGAs for computational grids. Imade
et. al. have studied synchronous island genetic
algorithms on grid computing environments for
bioinformatics [15], using the Globus Toolkit [13].
Lim et. al. provide a framework for dis-
tributed calculation of genetic algorithms and an
extended API and meta-scheduler for resource dis-
covery [17]. Both approaches use synchronous
island-style GAs. Nimrod/O [18] is a tool that
provides different optimization algorithms for use
with Nimrod/G [7]. Nimrod/O has been used to
develop the EPSOC algorithm [16] which is is a
mixture of a cellular and traditional GA. Popula-
tions are generated synchronously but the elimi-
nation of bad members and mutating good ones is
done locally.

It has already been shown by Dorronsoro et.
al. that asynchronous cellular GAs can perform
competitively and discuss how update rate and
different population shapes affect the convergence
rate [11]. In this paper, we introduce a novel ap-
proach (to the best of our knowledge) that evalu-
ates asynchronous panmictic GAs. This approach
is well suited for internet computing using the
BOINC infrastructure, because it easily facilities
scalability, fault tolerance without redundancy,
and does not require inter-worker communication



Figure 1. GMLE with a synchronous dis-

tributed evaluation framework.

(which is prohibited by BOINC).

3 Optimization on Heterogeneous En-

vironments

The GMLE framework has been designed to fa-
cilitate collaboration between researchers in ma-
chine learning, distributed computing and experts
with different scientific domain knowledge who are
interested in distributed model verification or pa-
rameter optimization. GMLE previously has used
a synchronous distributed evaluation framework
(see Figure 1) for performing maximum likelihood
evaluation on astronomical and particle physics
applications on an IBM BlueGene supercomputer
and the Rensselaer Grid [9]. The framework parti-
tions data across a set of processors which perform
partial evaluations of the model in parallel, after
which the results are composed into the final re-
sult. This has been shown to be efficient for both
supercomputing and grid environments, however
it does not work well on highly heterogeneous and
unstable environments like the BOINC infrastruc-
ture and some grids.

GMLE was extended with an asynchronous
distributed evaluation framework (see Figure 2).
Evaluators request work from a master, process
that work and return the result, repeating as nec-

Figure 2. GMLE with an asynchronous dis-

tributed evaluation framework.

essary. Work requests and results are all processed
asynchronously by the master which peforms the
different search methods. The master does not
need to wait or have any dependencies on the re-
sults of the different evaluators which makes eval-
uator failures easily ignored and reduces the need
for redundant, wasted computations.

4 Search Methods

Iterative Genetic Search Algorithm 1 shows
pseudocode for the IGS algorithm. In this algo-
rithm, an initial population of parameter sets is
generated randomly and the fitness of the model
for each of those parameter sets is calculated.
The iterative genetic search repeatedly calculates
a new population based on the previous one us-
ing selection, reproduction and mutation. Selec-
tion takes the best members of the previous pop-
ulation and moves them to the new population.
Reproduction takes two randomly selected mem-
bers of the previous population and generates a
new parameter set that is their average. Mutation
takes a randomly selected member of the previous
population and creates a new parameter set which
is equal to the selected member except that one
value is mutated to a new randomly selected value.
In this way, iterative genetic search will converge



Algorithm 1: Iterative Genetic Search (IGS)

Data: X /*Best to keep*/, Y /*Number
Reproductions*/, Z /*Number
Mutations*/

Result: Converged Population
for p ∈ P[1] ... P[X+Y+Z] do

p.params = random params()

evaluate(P)
while not converged(P) do

for p ∈ P’[1] ... P’[X] do
p = P.get next best()

for p ∈ P’[X+1] ... P’[X+Y] do
p = reproduce(P[random()],
P[random()])

for p ∈ P’[X+Y+1] ... P’[X+Y+Z] do
p = mutate(P[random()])

P = P’
evaluate(P)

to minima using reproduction and use mutation
to prevent being stuck in a local minimum. The
population size, S, is typically kept constant, so
S = X + Y + Z, where X is the number of selec-
tions, Y is the number of reproductions, and Z is
the number of mutations.

There are three ways that IGS can be paral-
lelized: (1) the fitness of each member in the pop-
ulation can be evaluated in parallel, (2) the fitness
calculation can be done in parallel, and (3) the fit-
ness calculation can be done in parallel as well as
the population being evaluated in parallel.

The first approach can scale to a number of pro-
cessors equal to the population size, while the scal-
ability of the second approach is dependent on how
much of the fitness calculation can be done in par-
allel. The third approach can scale to a number
of processors equal to the first times the second,
however it is the most complex to implement. All
three approaches suffer from the scalability limita-
tion imposed either by the population size and/or
the scalability of the fitness calculation. None per-
form well on heterogeneous environments without
intelligent partitioning. In the first case, the al-
gorithm will only progress as fast as the slowest
fitness calculation, while in the second case, the

Algorithm 2: Asynchronous Report Work

Data: P /*Population*/, max /*Maximum
Population Size*/, R /*Result*/

Result: Updated Population
if P.size < max then

P.insert(R)

else if R.fitness > worst(P).fitness then
P.insert(R)
P.remove(worst(P))

Algorithm 3: Asynchronous Request Work

Data: P /*Population*/, C /*Reproduction
Probability*/, max /*Maximum
Population Size*/

Result: New Parameters to Evaluate
if P.size < max then

return random params();

else

if random() < C then
p1 = P[random()]
p2 = P[random()], where p1 != p2
return reproduce(p1, p2)

else
return mutate(P[random()])

algorithm will only progress as fast as the slowest
calculation of part of the fitness. The third case
suffers from both, making partitioning the most
difficult.

Asynchronous Genetic Search AGS is simi-
lar to IGS in that it keeps a population of param-
eters and generates reproductions and mutations
based on it. However, instead of using a parallel
model of concurrency like IGS, it uses a master-
worker approach. Instead of iteratively generat-
ing new populations, new members of the popula-
tion are generated when a worker requests work,
and the population is updated when a worker re-
ports work to the master. The AGS algorithm
consists of two phases and uses two asynchronous
message handlers (see Algorithms 2 and 3). The
actor model of computation [1] is assumed, so the
server can either be processing a request work or a



report work message and cannot process multiple
messages at the same time.

In the first phase of the algorithm (while the
population size is less than the maximum pop-
ulation size) the server is being initialized and
a random population is generated. When a re-
quest work message is processed, a random pa-
rameter set is generated, and when a report work
message is processed, the population is updated
with the parameters and the fitness of that eval-
uation. When enough report work messages have
been processed, the algorithm proceeds into the
second phase which actually performs the genetic
search.

In the second phase, report work will insert the
new parameters and their fitness into the popu-
lation but only if they are better than the worst
current member, and remove the worst member
to keep the population size the same, otherwise
the parameters and the result are discarded. Pro-
cessing a request work message will either return
a mutation or reproduction from the population.

This algorithm has significant benefits in het-
erogeneous environments because the calculation
of fitness can be done by each worker concurrently
and independently of each other. The algorithm
progresses as fast as work is received, and faster
workers can processes multiple request work mes-
sages, in the style of CILK’s work stealing [6],
without waiting on slow workers. Additionally,
slower workers still improve the speed of the algo-
rithm because their results can still be useful no
matter when they are received. The only limit-
ing factor to scalability is how fast results can be
inserted into the population and how fast request
work messages can be processed. It is also pos-
sible to have multiple masters sharing the same
population for even greater scalability.

The AGS algorithm was extended with the dou-
ble shot method, on the observation that for the
astronomy model (along with many other scien-
tific modeling applications), the parameter space
is not well formed. In this case, when a reproduc-
tion is generated from two parameter sets, they
often both lie on a slope, so using the average of
two points will typically would not improve the fit-
ness. The AGS double shot (AGS-DS) algorithm

Algorithm 4: Double Shot Reproduce

Data: Member m1, Member m2
Result: Reproduced parameters
Member[] result
result[0].params = (m1.params +
m2.params)/2
diff = result[0].params - m1.params
result[1].params = diff - m1.params
result[2].params = diff + m2.params
return result

Figure 3. Minimum, median and maximum

values of the iterative genetic search popu-

lation (updated every 300 evaluations).

improves AGS by generating three children when
doing a reproduction (see Algorithm 4). One child
is the average of its parents, but the other two
children lie outside the parent parameters. One
child is equally distant from the average outside
the first parent, and the other child is equally dis-
tant from the average outside the second parent.
This allows the population to travel down gradi-
ents much faster leading to improved convergence
times.

5 Results

BlueGene Convergence The convergence
rates of the IGS, AGS and AGS-DS algorithms
were tested on Rensselaer’s CCNI BlueGene



Figure 4. Minimum, median and maximum

values for the asynchronous genetic search

population updated every evaluation.

because of the expensive fitness calculation –
15 to 30 minutes for a single evaluation on the
sample data set running on a high end processor.
A 512 node partition was used in virtual mode
for a total of 1024 processors, each a 700MHz
PowerPC 440 processor with 1GB of RAM con-
nected by a 3-dimensional torus with 175MBps
in each direction and 1.5µsec latency. Each
search was run with 10 different initial starting
populations of size 300 and allowed to run for
50,000 evaluations. AGS and AGS-DS used a
reproduction rate of 0.8 and IGS selected the best
30, reproduced 240 and mutated 30 members.
Figures 3, 4, and 5 show the convergence rates
of IGS, AGS and AGS-DS respectively. They
show the average across the different runs of the
best member (min), the worst member (max),
and the median member for each evaluation.
The AGS and AGS-DS algorithms converged
within 30,000 evaluations, so only the first 30,000
were shown. The maximum member for IGS
fluctuated between 4 and 10 for all iterations of
the population. This was due to the fact that the
median and maximum included poor mutations
and reproductions for IGS, while with AGS and
AGS-DS these poorly generated members are
never inserted into the population.

Figure 5. Minimum, median and maximum

values for the asynchronous double shot ge-

netic search population updated every evalu-

ation.

The known optimal fitness for the sample data
set used was approximately 3.026. IGS still had
not converged to the optimum after 50,000 evalua-
tions, while AGS took approxmiately 30,000 evalu-
ations and AGS-DS took 18,000 evaluations. Both
AGS and AGS-DS quickly converged to a local
minimum in the data set (at a fitness of approx-
imately 3.1). AGS-DS converged faster to both
minima (the local and the optimal) due to the dou-
ble shot technique allowing the algorithm to travel
down gradients quicker. IGS provided the most
variation in sampled population points, preventing
it from being stuck at any local minima, however
this reduced the convergence rate. Another con-
tributing factor could be that in generating pop-
ulations iteratively, the quality of the newly se-
lected members is on average lower than a contin-
uously updated population, as done in the asyn-
chronous searches. For the astronomical model
and the sample data set, the results show that the
faster convergence rates of AGS and AGS-DS out-
perform IGS, with the wider search space of IGS
not providing much benefit due to the relatively
small number of local minima in the data set.



Figure 7. Percentage of members generated by the different operators inserted into the population

as the AGS-DS search progressed on BOINC, based on how many results were reported while the

member was being evaluated.

BOINC Convergence The convergence of the
AGS-DS search was also evaluated using GMLE
and the BOINC Internet computing framework.
Figure 6 shows the progression of the average min-
imum, maximum and median values of five differ-
ent search populations. AGS-DS converged to the
known optimum in 22,000 evaluations, or 1.2 times
slower than on the BlueGene. These results are
promising, as with the current user base of around
1,000 different processors, the number of evalua-
tions processed per second by BOINC is nearly the
same as the 1024 processor partition on the Blue-
Gene, access is not limited and shared with other
users and operational costs are significantly less.
The decreased performance is due to the fact that

GMLE on the BlueGene would evaluate one mem-
ber at a time and insert it into the population, so it
is always generating new members from the most
evolved population. Using BOINC, many differ-
ent members are being evaluated concurrently so
the search is not always using the best possible
information, similar to IGS. This does however,
improve the global aspects of the search.

Due to the fact that it could take a very long
time for a member to be evaluated and the fit-
ness reported, the utility of the different operar-
tions used in the AGS-DS was also measured, in
conjunction with how long the members took to
be evaluated and the results reported. Figure 7
shows the percentage of members that were in-



Figure 8. Average position in the population a member is inserted to, based on how many results

were reported while the member was being evaluated and how it was generated. Lower positions

have better fitness.

serted based on the different operators and how
long they took to evaluate. Figure 8 shows what
position the members were inserted into the pop-
ulation, with lower positions being more fit with
respect to the rest of the population. The low
operator refers to the member generated by the
double shot approach that is on the outside of the
more fit parent, and the high operator refers to the
member generated by the double shot approach
that is on the outside of the less fit parent. Inter-
estingly, while adding the low and high operators
with the double shot approach improves the con-
vergence rate, the probability that members gen-
erated with these operators are inserted into the
population is less than with the average message.

However, when they are inserted into the popula-
tion, they are much more fit than the typical mem-
ber generated with the average operator. It is also
important to note that while members that take
longer to be reported are less likely to be inserted
into the population, when they are inserted they
typically are more fit. This analysis of the posi-
tion and insert chance suggests that the high and
low operators, as well as members reported from
slower computers are more explorative benefiting
the global search quality of the genetic algorithm,
while the average operator and results reported
faster tend to be more exploitative focus on local
search. These are very promising results for use
of asynchronous genetic search on very large scale



Figure 6. Minimum, median and maximum

values for the asynchronous double shot ge-

netic search population updated every evalu-

ation running on the BOINC framework.

and heterogeneous networks, because they mean
that adding slower processors to the computation
still contributes to the search and improves the
time to convergence.

Performance All three search methods were
also tested using the GMLE distributed evaluation
framework on four different clusters in the Rens-
selaer Grid to show how a heterogeneous environ-
ment would effect the performance of evaluations.
The Solaris cluster (SOL) consists of four single
core, dual processor SunBlade 1000 Sun Solaris
machines, running at 800MHz. The AIX cluster
(AIX) consists of four quad-processor single-core
Power-PC processors running at 1.7GHz. Two
Opteron clusters were also used. The first (OP1)
consists of 8 quad-processor, single-core machines,
and the second (OP2) consists of 2 quad-processor,
dual-core machines with each core running at
2.2MHz. Inter-cluster communication is over the
Rensselaer’s wide-area network (WAN).

The synchronous GMLE framework was tested
with IGS using partitioned and non-partitioned
data. Additionally, asynchronous GMLE was
tested using IGS and AGS. A population size of 50
was used to demonstrate how asynchronous IGS

Figure 9. Performance of AGS and IGS on

the Rensselaer Grid. IGS was used with

the asynchronous framework (IGS/A), on

the synchronous framework (IGS/S), and on

the synchronous framework with partitioned

data (IGS/SP).

can only scale up to the population size. The non-
partitioned IGS, asynchronous IGS and AGS used
one evaluator per processor, while the partitioned
IGS used one evaluator per Solaris processor, two
evaluators per AIX processor, and three evalua-
tors per core on the Opteron clusters.

Figure 9 shows the number of evaluations per-
formed per second using different combinations of
these clusters. Evaluations were done over a re-
duced data set. AGS outperformed all other op-
tions because it did not have any synchronization
points, so it did not need to wait for slower pro-
cessors. AGS and IGS on the asynchronous frame-
work (IGS/A) slightly outperformed synchronous
IGS (IGS/P) and the synchronous partitioned IGS
(IGS/SP), thanks to lower communication over-
head. As expected, IGS/A only scaled to 50 pro-
cessors, because it could only perform 50 eval-
uations concurrently. IGS/S resulted in slower
speeds on two and three clusters due to commu-
nication overhead from using the WAN. Since the
different heterogeneous architectures execute Java
at different speeds, the partitions used were sub-
optimal, resulting in IGS/SP performing better as
more clusters were added, but not by much. These



results show that using an asynchronous search
can result in significant performance gains on het-
erogeneous environments.

6 Discussion

This paper describes an extension to the GMLE
framework to support asynchronous master-work
search methods on different large-scale heteroge-
neous environments. Two asynchronous master-
worker versions of genetic search are introduced
and evaluated. Results show that using asyn-
chronous searching methods can result in sig-
nificant performance gains on a heterogeneous
grid environment and improved convergence rates.
Additionally, the convergence rate and evalua-
tion time using the asynchronous search for the
MilkyWay@HOME project is comparable to a
1024 processor rack of a BlueGene supercomputer.
These preliminary results do show that asyn-
chronous master-worker genetic search is a promis-
ing method for heterogeneous architectures, and
is an ideal candidate for the use over the BOINC
Internet computing infrastructure, thanks to its
fault tolerance, scalability, and lack of inter-worker
communication.

The analysis of the different reproduction oper-
ators used on BOINC shows interesting results in
that certain operators and slower processors tend
to be more explorative in nature, while faster pro-
cessors and other operators are more exploitative.
An an adaptive search could first focus on explo-
ration by emphasizing certain operators and then
focus on local search. It may also improve conver-
gence rates to assign members generated by ex-
plorative operators to slower computers, and ex-
ploitative operators to faster ones.

Currently, the MilkyWay@HOME BOINC
project consists of over 1,000 volunteered com-
puters, providing a very large and heterogeneous
network to study asynchronous search methods,
as well as a powerful computing environment to
use in modeling the MilkyWay galaxy. We hope
to increase membership to test the limits of the
scalability of these approaches. This work eval-
uated single population, or panmictic versions of
asynchronous genetic search. Asynchronous island

(multi-population) versions will be of interest, es-
pecially if multiple servers are required to handle
the load from a large BOINC community.

It was also shown that using a different type
of reproduction strategy (double shot) resulted in
a greatly improved convergence rate. Evaluating
different reproduction and mutation strategies for
asynchronous search could result in even better
performing algorithms. Lastly, the algorithms pre-
sented were only tested on a single scientific ap-
plication. Evaluating the algorithms with different
applications will provide a better understanding of
how they converge to a solution.

7 Acknowledgements

We would like to thank our many volunteers
for taking part in the MilkyWay@HOME BOINC
computing project as this research would not be
possible without them.

This work has been partially supported by the
following grants: NSF AST No. 0607618, NSF
IIS No. 0612213, NSF MRI No. 0420703 and
NSF CAREER CNS Award No. 0448407. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the National Science Foundation.

8 Biographies

Travis Desell Travis Desell is a Ph.D. student
in the computer science department at RPI. He
recieved his B.S. and M.S. degree from RPI in
2003 and 2007. His research interests include dis-
tributed computing, machine learning and asyn-
chronous programming languages and middleware
for large scale computing.

Boleslaw Szymanski Dr. Boleslaw Szymanski
is the Claire and Roland Schmitt Distinguished
Professor of Computer Science and the Founding
Director of the Center for Pervasive Computing
and Networking at RPI. He received his Ph.D. in
Computer Science from National Academy of Sci-
ences in Warsaw, Poland, in 1976 and M.Eng. in
Electronics from Warsaw Polytechnic in 1973. He



is an author and co-author of over three hundred
publications and an editor of three books. Dr.
Szymanski is also an Editor-in-Chief of Scientific
Programming, an IEEE Fellow and the member
of the ACM for which he was National Lecturer.
Dr. Szymanski interests focus on parallel and dis-
tributed computing and networking.

Carlos A. Varela Dr. Carlos A. Varela is an
Associate Professor at the Department of Com-
puter Science and Founding Director of the World-
wide Computing Laboratory, at RPI. He received
his Ph.D., M.S., and B.S. degrees in Computer
Science at UIUC in 2001, 2000, and 1992. Dr.
Varela is Associate Editor and Information Di-
rector of the ACM Computing Surveys journal
and has served as Guest Editor of the Scientific
Programming journal. Dr. Varela received the
National Science Foundation CAREER award in
2005. His current research interests include adap-
tive middleware and programming technology for
distributed computing over wide-area networks.

References

[1] G. Agha. Actors: A Model of Concurrent Compu-
tation in Distributed Systems. MIT Press, 1986.

[2] E. Alba and B. Dorronsoro. The explo-
ration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Transactions on Evo-
lutionary Computation, 9:126–142, April 2005.

[3] E. Alba and J. M. Troya. Analyzing synchronous
and asynchronous parallel distributed genetic al-
gorithms. Future Generation Computer Systems,
17:451–465, January 2001.

[4] D. P. Anderson, E. Korpela, and R. Walton. High-
performance task distribution for volunteer com-
puting. In e-Science, pages 196–203. IEEE Com-
puter Society, 2005.

[5] J. Berntsson and M. Tang. A convergence model
for asynchronous parallel genetic algorithms. In
IEEE Congress on Evolutionary Computation
(CEC2003), volume 4, pages 2627–2634, Decem-
ber 2003.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing.
In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (FOCS ’94),
pages 356–368, Santa Fe, New Mexico, November
1994.

[7] R. Buyya, D. Abramson, and J. Giddy. Nim-
rod/G: An architecture for a resource manage-
ment and scheduling system in a global compu-
tational grid. In 4th International Conference on
High Performance Computing in the Asia-Pacific
Region (HPC Asia 2000), pages 283–289, Beijing,
China, May 2000.

[8] E. Cantu-Paz. A survey of parallel genetic algo-
rithms. Calculateurs Paralleles, Reseaux et Sys-
tems Repartis, 10(2):141–171, 1998.

[9] T. Desell, N. Cole, M. Magdon-Ismail, H. New-
berg, B. Szymanski, and C. Varela. Distributed
and generic maximum likelihood evaluation. In
3rd IEEE International Conference on e-Science
and Grid Computing (eScience2007), page 8pp,
Bangalore, India, December 2007. to appear.

[10] B. Dorronsoro and E. Alba. A simple cellu-
lar genetic algorithm for continuous optimiza-
tion. IEEE Congress on Evolutionary Computa-
tion (CEC2006), pages 2838–2844, July 2006.

[11] B. Dorronsoro, E. Alba, M. Giacobini, and
M. Tomassini. The influence of grid shape
and asynchronicity on cellular evolutionary algo-
rithms. In IEEE Congress on Evolutionary Com-
putation (CEC2004), volume 2, pages 2152–2158,
June 2004.

[12] G. Folino, A. Forestiero, and G. Spezzano. A
JXTA based asynchronous peer-to-peer imple-
mentation of genetic programming. Journal of
Software, 1:12–23, August 2006.

[13] I. Foster and C. Kesselman. Globus: A toolkit-
based grid architecture. In The Grid: Blueprint
for a New Computing Infrastructure, pages 259–
278. Morgan Kaufmann, 1999.

[14] L. Gong. Jxta: A network programming en-
vironment. IEEE Internet Computing, 5:88–95,
May/June 2001.

[15] H. Imade, R. Morishita, I. Ono, N. Ono, and
M. Okamoto. A grid-oriented genetic algo-
rithm framework for bioinformatics. New Genera-
tion Computing: Grid Systems for Life Sciences,
22:177–186, January 2004.

[16] A. Lewis and D. Abramson. An evolutionary pro-
gramming algorithm for multi-objective optimi-
sation. In IEEE Congress on Evolutionary Com-
putation (CEC2003), volume 3, pages 1926–1932,
December 2003.

[17] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S.
Lee. Efficient hierarchical parallel genetic algo-
rithms using grid computing. Future Generation
Computer Systems, 23:658–670, May 2007.

[18] T. Peachey, D. Abramson, and A. Lewis. Model
optimization and parameter estimation with Nim-
rod/O. In International Conference on Computa-



tional Science, University of Reading, UK, May
2006.

[19] J. Purnell, M. Magdon-Ismail, and H. J. New-
berg. A probabilistic approach to finding geo-
metric objects in spatial datasets of the Milky
Way. In Foundations of Intelligent Systems, vol-
ume 3488/2005, pages 485–493. Springer Berlin /
Heidelberg, 2005.

[20] A. Sinha and D. E. Goldberg. A survey of hybrid
genetic and evolutionary algorithms. Technical
Report No. 2003004, Illinois Genetic Algorithms
Laboratory (IlliGAL), 2003.


