
Load Balancing of Autonomous Actors over Dynamic Networks

Travis Desell, Kaoutar El Maghraoui, and Carlos Varela
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180-3590, USA

{deselt,elmagk,cvarela}@cs.rpi.edu
http://www.cs.rpi.edu/wwc/

Abstract

The Internet is constantly growing as a ubiquitous plat-
form for high-performance distributed computing. In this
paper, we propose a new software framework for distributed
computing over large scale dynamic and heterogeneous sys-
tems. Our framework wraps computation into autonomous
actors, self organizing computing entities, which freely
roam over the network to find their optimal target execution
environments.

We introduce the architecture of our worldwide comput-
ing framework, which consists of an actor-oriented pro-
gramming language (SALSA), a distributed run time envi-
ronment (WWC), and a middleware infrastructure for au-
tonomous reconfiguration and load balancing (IO). Load
balancing is completely transparent to application pro-
grammers. The middleware triggers actor migration based
on profiling resources in a completely decentralized man-
ner. Our infrastructure also allows for the dynamic addition
and removal of nodes from the computation, while continu-
ously balancing the load given the changing resources.

To balance computational load, we introduce three vari-
ations of random work stealing: load-sensitive (RS), actor
topology-sensitive (ARS), and network topology-sensitive
(NRS) random stealing. We evaluated RS and ARS with sev-
eral actor interconnection topologies in a local area net-
work. While RS performed worse than static round-robin
(RR) actor placement, ARS outperformed both RS and RR
in the sparse connectivity and hypercube connectivity tests,
by a full order of magnitude.

1 Introduction

The constantly increasing performance of personal com-
puters accompanied by rapidly growing network bandwidth
has equipped the Internet with a large pool of abundant

and inexpensive computational resources. A wide range of
large scale, distributed and parallel scientific problems that
require massive computation could benefit tremendously
from this huge pool of inexpensive resources if we have
the ability to find and utilize them efficiently and securely.
Devising a scalable architecture to find these resources
and distributing the computation efficiently among them
is necessary to achieve worldwide execution of programs.
Therefore, dynamically reconfigurable high-performance
distributed middleware services need to be developed to ad-
dress the challenges of dynamicity, heterogeneity, load bal-
ancing, fault tolerance, and security over highly dynamic
open large scale computer networks.

With a large scale network, such as the Internet or the
World-Wide Web, a single point of failure is unacceptable
so a decentralized (a.k.a peer-to-peer) coordination model
must be used. In a worldwide computing infrastructure,
nodes can join and leave nondeterministically and applica-
tions must adapt to the changing environment. Manual load
balancing and fault tolerance by application programmers
in such large infrastructures is extremely time consuming,if
not impossible. To address these complex tasks, we present
three different strategies to autonomously load balance and
tolerate faults in a dynamic environment.

The goal of our work is to create a smart, adaptive, dy-
namic and scalable computing middleware infrastructure
where the computation of various scientific problems is dis-
tributed in a way transparent to the programmer. Our frame-
work is based on the actor model [1] where computation and
data are encapsulated within a single entity. Our extention
to the actor model consists ofautonomous actors, that are
able to:

• Profile available resources.

• Find and migrate to optimal execution environments,
or theaters.

1

• Replicate themselves to improve reliability.

• Split and merge as more available resources emerge or
disappear to improve performance.

These operations are supported by middleware services
forming part of a global Internet Operating System (IO)
running on a single virtual worldwide supercomputer (the
Internet). IO provides various services such as coordinat-
ing all the activities involved in distributing the computation
among actors, managing the constantly changing resources
(e.g. storage, memory, bandwidth, etc), and balancing the
load among various nodes. There is a traditional tradeoff
between information profiling and decision making. The
load balancing strategies presented differ in the amount of
information used to decide how to place the actors in the
network and discuss their performance.

We provide preliminary empirical results using our own
worldwide computing software framework. The worldwide
computing framework consists of an actor-oriented pro-
gramming language (SALSA) [21], a distributed program
execution environment (WWC), and an internet operating
system for autonomous distributed system reconfiguration
(IO).

The rest of the paper is organized as follows. Section 2
introduces our worldwide computing model and Section 3
discusses its architecture. In Section 4, we present different
load balancing strategies. Section 5 discusses our prelim-
inary performance results. Section 6 discusses related ap-
proaches. Finally, Section 7 concludes our work with dis-
cussions and future work.

2 Model of Autonomous Worldwide Comput-
ing

2.1 Actors

The Actor model of computation is based around the
concept of encapsulating state and process into a single en-
tity. Each actor has a unique name, which can be used as a
reference by other actors. Communication between actors is
purely asynchronous. The actor model guarantees message
delivery and fair scheduling of computation. Actors only
process information in reaction to messages. While pro-
cessing a message, an actor can carry out any of the three
basic operations: alter its state, create new actors, or send
messages to peer actors (see Figure 1). Actors are therefore
inherently independent, concurrent and autonomous which
enables efficiency in parallel execution [8] and facilitates
mobility [3].

The actor model and languages provide a very use-
ful framework for understanding and developing open dis-
tributed systems. For example, among other applications,

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

� � �� � �� � �� � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message � � �� � �
� � �� � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

 standardOutput<−print("World");

 standardOutput<−print("Hello ") @

behavior HelloWorld {

 void act(){

 }

}

Figure 1. Actors are reactive entities. In re-
sponse to a message, an actor can (1) change
its internal state, (2) create new actors, and/or
(3) send messages to peer actors.

actor systems have been used for enterprise integration [18],
real-time programming [15], fault-tolerance [2], and dis-
tributed artificial intelligence [5].

2.2 Universal Actors

In considering mobile computation, it becomes useful
to not only model the interactions of actors between each
other, but also to model the interactions of actors with their
environments. In the actor model, locations are not explic-
itly represented, therefore semantically there is no differ-
ence if two actors are in the same memory space, or on two
computers on opposite ends of the earth. However, when
considering the problems associated with worldwide com-
puting, it becomes important to represent the actor’s envi-
ronment, to account for different latencies or unreliable en-
vironments.

Universal actors are an extension to the actor model
adding locations, mobility, and the concept of universal
names and universal locators. Names represent actor ref-
erences that do not change with actor migration. Locators
represent references that enable communication with uni-
versal actors at a specific location. Each location represents
an actor’s run-time environment and serves as an encapsula-
tion unit for local resources. Ubiquitous resources, such as
CPU, have a generic representation – actors keep references
which get updated to the new resources upon migration to a

2

new location.

2.3 Autonomous Actors

When a system is composed of mobile actors, it can be
reconfigured arbitrarily, as long as all its used resources are
ubiquitous. Autonomous actors extend universal actors by:

• Profiling performance to improve quality of service.

• Migrating autonomously to balance the load.

• Spliting and merging to improve performance over dy-
namic networks

• Replication to tolerate failures.

• Introducing message priorities to allow for urgent re-
configuration messages.

2.3.1 Profiling

Autonomous actors can adopt different profiling strategies,
based on the way profiles will be used. Generally, ac-
tors profile processing power, memory, storage, latency and
bandwidth. Each actor keeps a record of the number of
messages received, messages sent, and messages processed.
Autonomous actors can also profile where messages are
sent to and received from, as well as the time taken to pro-
cess or send a message. Based on the profiled informa-
tion, the middleware’sdecision agentdecides how the au-
tonomous actors are to be distributed (More details about
how the decision is made will be given in section 4).

2.3.2 Migration

Migration of actors is triggered when one these three events
occur:

• A migration message is processed (sent by another ac-
tor in the computation).

• A decision agent determines that the actor should be
migrated.

• A soft failure happens in a theater. This causes the cor-
responding actors to migrate to any available theaters.

2.3.3 Split and Merge

Split and merge affect the granularity of the actor system.
A static number of actors will only scale so far. Splitting
actors into finer granularities will allow for the system to
take a computation and make it scalable to the amount of
resources as more nodes join the computation. Merging al-
lows for the system to combine actors together as resources
leave the computation and the overhead of additional actors
is not needed.

2.3.4 Replication

Hard failures of nodes can cause parts of a computation to
be lost, preventing its completion. Replication allows for
multiple instances of the same actor to be created, to allow
for fault tolerance when hard failures occur, preserving the
computation.

2.3.5 Message Priority

Message priorities are a necessity in that when an actor is in
a poor location, it’s mailbox can become flooded with mes-
sages. Therefore, migration messages from the middleware
should have the highest priority. This ensures that these mi-
gration messages will be the next message processed by an
actor, vastly improving the speed at which actors are prop-
agated throughout the network.

3 Architecture of the World-Wide Computer

The implementation of actor mobility and autonomous
actor reconfiguration consists of three software compo-
nents. 1) SALSA provides a programming language for
applications development, 2) WWC provides for other ser-
vices including naming and message sending, along with
a distributed execution environment, and 3) IO provides a
middle layer set of services for autonomous actor reconfig-
uration, such as resource profiling for actors and theaters,
and autonomous load balancing of actors across theaters
(see Figure 2).

3.1 SALSA Programming Language

SALSA [21] programmers define behaviors much in the
same way that Java programmers define a class that imple-
ments the Runnable class to control threads. Each behavior
contains message handlers for manipulating the state of an
actor and its thread of execution. The language support for
coordination includes a variety of continuation primitives.
The programming language component, SALSA, provides
primitives for message passing. Messages are passed asyn-
chronously between actors, each of which is the instantia-
tion of an actor behavior. The language also includes mi-
gration primitives for actor mobility.

SALSA programs may be executed in heterogeneous
distributed environments. During the compilation process
SALSA code is compiled into Java. This precompilation al-
lows SALSA programs to employ components of the Java
class library. It also provides for a homogenous environ-
ment for distributed execution.

3

												Autonomous Actors

												Universal Actors

												Actors

Computation Data Representation

Migration Message Sending

Actor Profiling Meta Rules of Splitting/Merging

Actor Profiling

Decision Agent

Split/Merge Replication Migration

Protocol Handler

Theater

Messaging Service Transport Service Namimg Service

		Salsa
 Application

			Layer

IO
Middleware

 Layer

WWC
 Layer

Figure 2. Architecture of the World-Wide Com-
puter.

3.2 Theaters and Run-Time Components (WWC)

The World Wide Computer architecture provides a
framework that enables distributed computing over the in-
ternet. Components of the framework communicate us-
ing Universal Actor Naming Protocol (UANP) and Remote
Message Sending Protocol (RMSP). RMSP enables mes-
sage sending and actor migration. UANP provides for com-
munication with naming authorities that map actor locations
to human readable names.

Theaters are nodes of the WWC that provide execution
environments to actor. Each theater consists of an RMSP
server, a mapping between relative actor locations and ex-
ecuting actor references, and a runtime environment. The
theater might also contain stationary environmental actors
that provide access to stationary resources such as standard
output.

The WWC provides a naming service which enables

messages to be sent to an actor as its location changes from
one theater to another. The universal actor naming proto-
col consists of a small number of message types and is very
extensible.

3.3 Middleware for Autonomous Reconfiguration
(IO)

IO builds upon the theaters of the WWC by allowing the-
aters to monitor system resources. IO also allows for the-
aters to use plug-in middleware components. The middle-
ware components consist of:

• A Protocol Handler to allow for inter-theater commu-
nication, which provides methods for gathering infor-
mation about the network topology.

• A Resource Profiling Component that gathers infor-
mation about the actors’ communication topology, the
network topology, and the available resources in the
theaters.

• A Decision Agent which decides placement of ac-
tors in the worldwide computer; given information
from the Resource Profiling component. The decision
agent also provides methods to determine when actors
should split, merge and replicate.

These components make IO a highly reconfigurable sys-
tem which is not restricted to any certain method of load
balancing or fault tolerance. Therefore IO provides a
testbed for comparing multiple methodologies for load bal-
ancing and fault tolerance as well as enabling hybrid load
balancing schemes.

4 Strategies for Autonomous Load Balancing

In this section, we describe various methodologies for
load balancing that vary by the amount of profiling done
and the complexity of the decision agents. The simplest de-
cision agents take into account the load of the individual
theaters and autonomous actors, while the more complex
agents consider additional factors such the network and ac-
tor topologies. All the network protocols are peer-to-peerin
nature to allow for maximum scalability.

In all cases, a theater joins the autonomous network by
registering with a peer server and receiving addresses of
other peers in the network from it. Peer servers are not cen-
tralized, as many may serve addresses of peers for a single
network.

4

4.1 Load Balancing Concepts

Before describing the strategies for autonomous load
balancing, the following concepts are used to describe the
attributes of an actor system over a heterogenous network.

4.1.1 Actor Satisfaction

Actor satisfaction is a measure of an actor’s ability to pro-
cess and send messages. If an actor is not satisfied, it cannot
process messages as quickly as it is receiving them. This
includes the cost of message sending, because processing
a message also involves sending messages. When an actor
is unable to handle the load of messages it is receiving, the
size of its message queue begins to increase. An actor with
an increasing message queue is unsatisfied.

4.1.2 Theater Load

Every theater hosts a group of active actors. A theater
is considered lightly loaded if all its actors are satisfied,
whereas a theater is considered heavily loaded if at least
one of its actors is not satisfied.

4.2 Load-Sensitive Random Stealing (RS)

The simplest strategy is based on random work stealing,
a simple but effective algorithm described by [4]. We mod-
ified this algorithm to work in a peer-to-peer network by
randomly propagating a random steal packet over the net-
work. A lightly loaded theater chooses a neighbor at ran-
dom and sends it a steal packet. This continues from theater
to theater until a candidate for migration is chosen or the
packet’s time to live has been reached. When either occurs
a notification is sent back to the originating theater. This
prevents a theater form performing multiple steals simulta-
neously. One benefit of random steal propagation is that it
avoids costly broadcasts to the network, reducing the im-
pact of the middleware on the application. In RS, a peer
theater finds its first unsatisfied actor (if one exists) and se-
lects that as its candidate for migration. Also, since only
lightly loaded theaters send steal packets, with high loads
the overhead for RS becomes almost non-existant.

4.3 Actor Topology Sensitive Random Stealing
(ARS)

Actor topology sensitive random stealing builds on the
previous strategy by using additional profiling information.
Actors monitor the number of messages they send to remote
theaters, allowing this strategy to find a actor placement in
the network according to the communication patterns in the
application. This approach enables actors with high fre-
quencies of communication to be co-located or located in

nodes with low latencies, according to the results of a deci-
sion function.

The decision function estimates the increase in the per-
formance of an actor if it migrates to a specific foreign the-
ater. Random steal packets now also contain the available
processing power of their origin theater. Let∆(l, f, a) de-
note the normalized increase in performance of actora that
results from migratinga from the local theaterl to the for-
eign theaterf . The normalized increase in performance
is determined by the normalized increase in communica-
tion, ∆c(l, f, a) and the normalized increase in processing,
∆p(l, f) that would occur in that actor after this migra-
tion. Migration only happens when the estimated change
in throughput is positive (∆(l, f, a) > 0).

The following equations illustrate how the decision func-
tion is evaluated (Refer to Table 1 for notation).

∆(l, f, a) = ∆p(l, f) + ∆c(l, f, a) (1)

where

∆p(l, f) =
P(f) − P(l)

P(f) + P(l)
(2)

and

∆c(l, f, a) =
M(f, a) −M(l, a)

M(a)
(3)

This decision function was chosen because while it is not
very precise, it does provide very reasonable results with a
minimal amount of overhead. It places a strong emphasis on
inter-actor communication and tries to colocate tightly cou-
pled actors (actors which frequently communicate). Both
the difference in processing and communication have been
normalized to a value between−1 and1, and in the future
we could add weights to these values based on empirical
research.

4.4 Network Topology Sensitive Random Stealing
(NRS)

In addition to resource availability, NRS takes into con-
sideration the topology of the network. In the IO network
a peer might belong to local, regional, national, or interna-
tional clusters [12]. In these cases, while bandwidth may
be high, latency will play a large factor in the throughput
of messages between theaters. NRS locates tightly coupled
actors close together in the IO network, but allows loosely
coupled actors to migrate more freely, as they do not need
this restriction.

NRS classifies its neighbors into four groups: local, re-
gional, national and international. These groups are classi-
fied into locales by the following ping times [12]:

• Local: 10 ms or less

• Regional: 11 ms to 100 ms

5

Table 1. Notation Used in the Decision Func-
tion Equations.

Notation Explanation

M(t, a) The number of messages communicated
between an actora and theatert.

M(a) The total number of messages sent
by actora.

∆(l, f, a) The normalized change in actor
performance obtained by migrating
actora from theaterl to theaterf

∆c(l, f, a) Actor performance change due
to communication.

∆p(l, f) Actor performance change due
to message processing.

P(t) The processing power available
in theatert

• National: 101 ms to 250 ms

• International: 251 ms and higher

The algorithm then proceeds similar to cluster-aware ran-
dom stealing described by [20]. Random steal packets
specify which locale they are to travel. A theater first se-
lects a local peer randomly and sends a local random steal
packet. A theater will only propagate a steal packet to its
specified locale. If a local random steal packet fails (the
theater receives a terminated packet without an actor), the
theater will then attempt a regional random steal, and so on.

Using this method to propagate random steal packets
through the network keeps groups of coupled actors close
together in the network. NRS uses the previously men-
tioned methods for determining the best candidate actor
when a random steal packet reaches a theater, thus NRS
comes in two versions: RS and ARS.

4.5 Fault Tolerance Strategies

Currently, all the decision agents use a round-robin strat-
egy to disperse their actors to all their available neighbors in
the case of a soft termination of the theater. In this case, the
goal is not to optimize actor placement, but rather to com-
plete the termination process as soon as possible before the
node failure. We have yet to create application-independent
strategies for tolerating gracefully hard node failures atthe
middleware level.

5 Preliminary Results

We ran a series of tests on our IO system using a manual
round robin placement of actors (RR), peer-to-peer random

stealing (RS) and the actor topology sensitive random steal-
ing (ARS) strategies.

We ran four simulations each pertaining to a level of
inter-actor communication. The unconnected actor graph
had actors simply process messages over and over, with no
inter-actor communication. The sparse actor graph linked
actors randomly, providing a moderate amount of inter-
actor communication. The tree simulation linked actors in
a tree structure, for a higher amount of inter-actor com-
munication. Lastly, the hypercube provided a very high
amount of inter-actor communication. (see Figures 3, 4,
5 and 6). We compared throughput of RS and ARS to
manual load balancing to measure the overhead that the IO
middleware incurred on the computation. All actors were
loaded in a round robin fashion across the eight theaters,
then were allowed to compute until their throughput leveled
off. Throughput is the number of messages processed by all
actors in a given amount of time – the higher the throughput,
the faster a computation is running.

Figure 3 shows that both ARS and RS imposed a mini-
mal amount of overhead for the simulation, as a round robin
placement of actors is the optimal load balancing solution
for an unconnected graph of actors in a homogeneous net-
work, and the round robin placement imposed no middle-
ware overhead. ARS and RS performed comparatively to
RR in this test. On the more communication-bound simu-
lations (see Figures 5 and 6), ARS outperformed both the
manual load balancing and RS. On a sparsely connected
graph, ARS performed superbly, bringing throughput to
nearly the level of an unconnected graph. In all simulations
involving inter-actor communication, ARS highly outper-
formed RR and RS, showing that the co-location of actors
significantly improves message throughput. RS was shown
to be too unstable in all these simulations and did not out-
perform either RR or ARS. Our conjecture is that because
the Java thread scheduling mechanism is not fair, actors are
found to be unsatisfied when they are actually not, leading
to the unstable migration behavior of actors when IO uses
RS.

To show how IO can handle a dynamically changing net-
work, the same simulations were ran on a changing network
of peer theaters. The simulations were loaded entirely onto
one peer theater, then every 30 seconds an additional peer
theater was added to the computation. After eight peer the-
aters had joined the computation, IO was allowed to run for
two minutes to balance the load, after which a peer theater
was removed every 30 seconds, until the computation was
entirely running on the last peer theater added to the com-
putation.

With the unconnected graph join/leave simulation (see
Figure 7), both RS and ARS performed well in distributing
the load across the peer theaters (see Figures 9 and 11), and
increased the throughput by a factor of about six when all

6

Figure 3. Unconnected Graph Actor Topology.

eight theaters had joined the simulation. The addition and
removal of peer theaters shows that IO can rebalance load
with removal and addition of nodes without much overhead.

In the tree join/leave simulation (see Figure 8) ARS per-
formed well, increasing throughput by a factor of about 3.5
when all eight theaters were joined in the simulation. RS
however performed worse than simply loading the simula-
tion entirely onto one theater. The graphs of actor place-
ment (see Figures 10 and 12) show that while both ARS
and RS managed to distribute the actors evenly across the
network of theaters, ARS co-located actors more appropri-
ately accorting do their connectivity, significantly improv-
ing overall throughput.

These preliminary results show that the IO system with
ARS performs well in most situations for load balancing of
an actor system. While the more traditional strategy of ran-
dom stealing does not fare so well in an autonomous system
of actors, a more intelligent strategy can exploit the proper-
ties of the actor model to provide autonomic solutions for
load balancing across a dynamic network. The results also
show that IO can handle the addition and removal of nodes
from a computation without any central coordination, a ne-
cessity for large dynamic heterogeneous networks.

6 Related Work

A significant amount of research has been done on load
balancing at various system levels. Network-level load bal-
ancing tries to optimize the utilization of existing network
resources by controlling traffic flow and minimizing the
number of over-utilized links and under-utilized links [16],
while operating system-level load balancing aims at balanc-
ing the load between shared distributed resources such as
processors, disks, or memory [11]. Middleware-based load
balancing provides the most flexibility in terms of balanc-
ing the load to different types of applications [13]. It is not

Figure 4. Sparse Graph Actor Topology.

Figure 5. Tree Actor Topology.

Figure 6. Hypercube Actor Topology.

constrained to the OS or network level but it spans different
system levels. Different load balancing strategies exist that
range from static to dynamic, centralized to distributed, and
sender-initiated to receiver-initiated strategies. For amore
detailed classification of load balancing strategies, we refer
the reader to [10].

7

Figure 7. Unconnected Graph Actor Topology
on a Dynamic Network.

Figure 8. Tree Actor Topology on a Dynamic
Network.

Figure 9. Actor Distribution for Unconnected
Graph Actor Topology with ARS.

Figure 10. Actor Distribution for Tree Actor
Toplogy with ARS.

Figure 11. Actor Distribution for Unconnected
Graph Actor Topology with RS.

Figure 12. Actor Distribution for Tree Actor
Topology with RS.

8

This work focuses on middleware-level based load bal-
ancing strategies across large scale, highly dynamic peer-
to-peer networks. Several load balancing strategies have
been studied for structured and unstructured P2P systems.
Some of them distribute objects across structured P2P sys-
tems [14, 17, 6]. They are all based on the concept of dis-
tributed hash tables. However they assume that all objects
are homogenous and have the same size. Rao et al. [7] have
accounted for heterogeneity by using the concept of virtual
servers that move from heavy nodes to light nodes which is
similar in concept to migration of our actors. However they
assume that the load on virtual servers is stable. They also
assume that there is only one bottleneck resource that needs
to be optimized at a time.

Triantafillou et al. [19] have suggested load balancing
algorithms to distribute contents over unstructured P2P sys-
tems. They aggregate global meta-data over a two-level hi-
erarchy and they use it to re-assign objects.

Our work does not assume any specific P2P structure.
Our load balancing decision functions are not restricted to
optimizing a specific bottleneck resource. Rather, our deci-
sion agents use the nature of the actor model to determine
the placement of actors in the system. Moreover, our mid-
dleware environment IO is not restricted to one load balanc-
ing strategy. It has been designed and implemented with the
intention of plugging in different load balancing strategies
depending on the nature of the running applications. This
allows us to create concepts and decision functions based on
this actor model, where placement of actors is not restricted
to specific resources. We have used this middleware as a
testbed to evaluate different strategies with several applica-
tion communication topologies simulating diverse applica-
tions.

The issue of adaptive middleware in distributed systems
have been studied by several researchers. Gul Agha et al.
have introduced meta-actors to implement different interac-
tion services such as fault tolerance, security, and synchro-
nization [2]. Fabio Kon et al. have presented a model of
reflective middelware that allows dynamic inspection and
modification of the execution semantics of running applica-
tions as a response to changing resources in a distributed en-
vironment in order to improve performace [9]. Research has
also been done at the level of middleware security. Venkata-
subramanian discussed the safe composibility of reflective
middleware services to ensure the trustworthiness of sys-
tems [22]. As future work, we are planning to adopt similar
reflective strategies that allow our IO middleware to adapt
more efficiently to the dynamic nature of large scale net-
works. The middleware should be able to integrate easily
more decision functions, to choose on the fly what decision
function and what profiling level to use depending on the
nature of the computation, the network topology, or the ac-
tor topology.

7 Discussion and Future Work

We have introduced a software framework for distributed
computing over the Internet, consisting of an actor program-
ming language (SALSA), a distributed run-time system for
actor programs (WWC), and a middleware layer for dy-
namic program reconfiguration based on profiling resource
usage (IO).

Our preliminary version of IO has shown that more in-
formed load balancing schemes improve the performance
of a coordinated computation across a distributed actor en-
vironment. The implemented decision functions have fo-
cused mainly on (1) profiling CPU processing power in dis-
tributed theaters, and (2) being sensitive to application actor
topologies to attempt co-location of actors with high fre-
quencies of communication. Since applications have dif-
ferent resource requirements, the ideal level of profiling is
highly dependent on the nature of computation that is being
performed by the actors. For this reason, we have devel-
oped a modular architecture that enables plugging-in com-
ponents for different decision, profiling, and coordination
protocols..

The development of the World-Wide Computer is still an
ongoing process. The IO middleware should eventually be
able to select different levels of profiling and different de-
cision agents depending on the dynamic and heterogeneous
distributed environment.

Future work includes: (1) profiling more resources, such
as bandwidth, memory, and storage; (2) devising strate-
gies for the split and merge, and replication components;
(3) interoperating with existing high-performance messag-
ing implementations (such as MPI) and evolving standard-
ization efforts in the grid computing community (such as the
Open Grid Services Architecture); (4) creating application-
independent strategies for fault-tolerance at the middleware
level; (5) scaling computations up to thousands and millions
of nodes; and (6) providing security mechanisms such as
human and software agents authentication and fine-grained
resources access control.

Our long term goal is to define, develop, and deploy a
platform for worldwide computing that enables resource-
intensive applications to locate and allocate resources and
adapt to highly dynamic, potentially unreliable, distributed
computing environments.

Acknowledgements

We acknowledge the Worldwide Computing Labora-
tory members (including the SALSA and IO development
groups) at Rensselaer Polytechnic Institute. In particular,
we would like to thank Abraham Stephens and Boleslaw
Szymanski for careful readings of previous drafts of this
paper. Any errors and omissions remain our own.

9

References

[1] G. Agha,Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, 1986.

[2] G. Agha, S. Frølund, R. Panwar, and D. Sturman, “A
linguistic framework for dynamic composition of de-
pendability protocols,” inDependable Computing for
Critical Applications III, International Federation of
Information Processing Societies (IFIP). Elsevier
Science Publisher, 1993, pp. 345–363.

[3] G. Agha, N. Jamali, and C. Varela, “Agent Nam-
ing and Coordination: Actor Based Models and In-
frastructures,” inCoordination of Internet Agents,
A. Ominici, F. Zambonelli, M. Klusch, and R. Tolks-
dorf, Eds. Springer-Verlag, 2001, ch. 9, pp. 225–248.

[4] R. D. Blumofe and C. E. Leiserson, “Scheduling Mul-
tithreaded Computations by Work Stealing,” inPro-
ceedings of the 35th Annual Symposium on Founda-
tions of Computer Science (FOCS ’94), Santa Fe, New
Mexico, November 1994, pp. 356–368.

[5] J. Ferber and J. Briot, “Design of a concurrent lan-
guage for distributed artificial intelligence,” inPro-
ceedings of the International Conference on Fifth
Generation Computer Systems, vol. 2. Institute
for New Generation Computer Technology, 1988, pp.
755–762.

[6] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao, “Distributed object location in a dynamic net-
work,” in Proceedings of the Fourteenth ACM Sympo-
sium on Parallel Algorithms and Architectures, Aug.
2002, pp. 41–52.

[7] A. R. Karthik, “Load balancing in structured p2p
systems,” Berkeley, CA, 2003. [Online]. Available:
citeseer.nj.nec.com/570645.html

[8] W. Kim and G. Agha, “Efficient Support of Loca-
tion Transparency in Concurrent Object-Oriented Pro-
gramming Languages,” inProceedings of Supercom-
puting’95, 1995.

[9] F. Kon, F. Costa, G. Blair, and R. H. Campbell,
“The case of reflective middleware,”Commun. ACM,
vol. 45, no. 6, pp. 33–38, 2002.

[10] R. Krahl, J. Nolte, and L. Bttner, “A load balancing
approach for the peace operating system.” [Online].
Available: citeseer.nj.nec.com/krahl93load.html

[11] W. G. Krebs, “Queue load-balancing/distributed batch
processing and local rsh replacement system.” [On-
line]. Available: http://www.gnuqueue.org/home.html

[12] T. T. Kwan and D. A. Reed, “Performance of an infras-
tructure for worldwide parallel computing,” in13th In-
ternational Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing,
San Juan, Puerto Rico, 1999.

[13] O. Othman and D. C. Schmidt, “Issues in the Design
of Adaptive Middleware Load Balancing,” Proceed-
ings of the 2001 ACM SIGPLAN workshop on Opti-
mization of middleware and distributed systems, pp.
205–213, 2001.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, “A scalable content address-
able network,” in Proceedings of ACM SIG-
COMM 2001, 2001. [Online]. Available: cite-
seer.nj.nec.com/ratnasamy01scalable.html

[15] S. Ren, G. A. Agha, and M. Saito, “A modular ap-
proach for programming distributed real-time sys-
tems,”Journal of Parallel and Distributed Computing,
vol. 36, pp. 4–12, 1996.

[16] H. Saito, Y. Miyao, and M. Yoshida, “Traffic engi-
neering using multiple multipoint-to-point LSPs,” in
INFOCOM (2), 2000, pp. 894–901.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, “Chord: A scalable peer-to-
peer lookup service for internet applications,” inPro-
ceedings of the ACM SIGCOMM ’01 Conference, San
Diego, California, August 2001.

[18] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk,
“The extensible services switch in Carnot,”IEEE Par-
allel and Distributed Technology, vol. 1, no. 2, pp. 16–
20, May 1993.

[19] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos, “Towards high performance peer-to-peer
content and resource sharing systems,” 2003.

[20] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal,
“Efficient load balancing for wide-area divide-and-
conquer applications,”ACM, vol. 36, pp. 34–43, 2001.

[21] C. Varela and G. Agha, “Programming dy-
namically reconfigurable open systems with
SALSA,” ACM SIGPLAN Notices. OOP-
SLA’2001 Intriguing Technology Track Proceed-
ings, vol. 36, no. 12, pp. 20–34, Dec. 2001,
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[22] N. Venkatasubramanian, “Safe composibility of mid-
dleware services,”Commun. ACM, vol. 45, no. 6, pp.
49–52, 2002.

10

