
Towards Learning Spatio-Temporal Data Stream
Relationships for Failure Detection in Avionics

Sida Chen, Shigeru Imai, Wennan Zhu, and Carlos A. Varela

Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{chens15,imais,zhuw5}@.rpi.edu, cvarela@cs.rpi.edu

Abstract. Spatio-temporal data streams are often related in non-trivial
ways, for example, while the airspeed that an aircraft attains in cruise
phase depends on the weight it carries, it also depends on many other
factors, some of them controllable such as engine inputs or the airframe’s
angle of attack, while others contextual, such as air density, or turbu-
lence. It is therefore a challenge to develop failure models that can help
recognize errors in the data, such as an incorrect fuel quantity, a mal-
functioning pitot-static system, or other abnormal flight conditions. In
this paper, we extend our PILOTS programming language [1] to sup-
port machine learning techniques that will help data scientists: (1) cre-
ate parameterized failure models from data and (2) continuously train
a statistical model as new evidence (data) arrives. The linear regression
approach learns parameters of a linear model to minimize least squares
error for given training data. The Bayesian approach classifies operat-
ing modes according to supervised offline training and can discover new
statistically significant modes online. Using synthetic data, we compare
the accuracy, response time, and adaptability of these machine learning
techniques. We expect these fundamental techniques to be the key build-
ing blocks to tackle more complex dynamic data-driven failure models,
which will in turn enable us to perform more accurate flight planning in
emergency conditions.

Keywords: data streaming, spatio-temporal data, declarative program-
ming, linear regression, Bayesian classification and learning.

1 Introduction

Detecting and recognizing patterns from stream data generated by multiple air-
craft sensors has become an important research area for flight safety. In the
Air France flight 447 accident in 2009, iced pitot tubes caused an error in air
speed data, and the pilots failed to react correctly, leading to crash [2]. While
there have been advances in information fusion [3] and virtual modeling [4] for
avionics control and user warnings, there is still a need for further research in
methods that allow for fault detection and recovery techniques to be easily re-
alized and implemented with minimal risk of software errors. Using redundant
information provided by different sensors, this tragedy could have been avoided
by Dynamic Data-Driven Avionics Systems (DDDAS) based on the concept of

2 Chen et al.

Dynamic Data-Driven Application Systems [5]. DDDAS can expand the flight
safety envelope of automation and support pilots with real-time decision making.

In some situations, detecting and recovering from sensor data errors is non-
trivial, even for human experts and flight assistant systems. In the Tuninter
1153 flight accident in 2005, the fuel quantity indicator of a different aircraft
model was installed, causing the instrument to display an incorrect amount of
fuel, which led to fuel exhaustion of the aircraft [6]. This accident could have
been avoided if the weight error could be detected by checking the relationship
between lift and weight during flight cruise phase. Lift depends on airspeed,
air density, wing surface area, and coefficient of lift. The coefficient of lift itself
depends on the angle of attack and this relationship will change with different
aircraft types. Understanding such complex relationships from multiple sensor
data streams is critical to accurately detecting sensor faults. In this paper, we
propose using machine learning techniques to estimate parameterized models of
aircraft sensor data relationships, and statistically determine aircraft operating
modes.

Using offline training parameters and known relationships among redundant
stream data, in prior research, we have been able to detect and correct for sen-
sor data errors using actual flight accident data [7, 8]. However, aircraft models
might change due to significant aircraft emergencies, e.g. loss of a wing or loss of
engines. To get more accurate results, an online system should be able to incre-
mentally update pre-calculated models, and detect new modes that may not be
in the offline training data set. The näıve Bayes classifier is a suitable method
for offline training and incremental learning, but needs to be extended to detect
previously unknown modes.

We are developing the ProgrammIng Language for spatiO-Temporal data
Streaming applications (PILOTS) and its run-time system for fault detection
and correction in data streams, which is especially important for flight safety.
PILOTS has evolved gradually to date. We first designed the PILOTS pro-
gramming language and proposed the concept of error signatures [9]. Next, we
implemented a compiler and a runtime system for PILOTS [1] and then added
error detection and correction support to the compiler and the runtime [10]. Fi-
nally, we applied PILOTS to data streams obtained from actual accidents, Air
France 447 [2] and Tuninter 1153 [6], and confirmed the effectiveness of its error
detection and correction capabilities [7, 8].

In this paper, we extend PILOTS to support machine learning techniques
including linear regression for linear models, and Bayesian classification and
learning for dynamic models. We use synthetic data streams to verify and com-
pare these approaches. Using the X-Plane flight simulator [11], we generate flight
sensor data to train the relationship between angle of attack and coefficient of lift
during cruise phase. With the training results and the relationship between lift
and weight during cruise phase, PILOTS is able to detect and correct for weight
data errors using error functions and error signatures. We also implemented a
dynamic Bayes classifier for offline training and incremental online learning of

Learning Spatio-Temporal Relationships for Avionics 3

different modes, which also detects new modes as the stream data switches to
an unknown pattern.

The rest of the paper is organized as follows. Section 2 describes error
signature-based error detection and correction methods as well as the PILOTS
programming language and the architecture of its runtime system. Section 3
discusses the design and implementation of the machine learning component
in PILOTS. Section 4 describes an instantiation of the machine learning com-
ponent to estimate parameters for a linear model using regression. Section 5
introduces the dynamic Bayesian classification and learning. Section 6 discusses
the methods and results of the machine learning techniques using a case study of
airplane weight error detection and correction. Section 7 describes related work.
Finally we briefly describe future research directions and conclude the paper in
Section 8.

2 Background

PILOTS1 is a highly-declarative programming language that has been applied
to both the Air France 447 [2] and the Tuninter 1153 [6] accidents data, showing
that PILOTS was able to successfully detect the data errors in both cases, and
correct the error in the case of Air France 447 [8].

2.1 Error Detection and Correction Methods

Error functions Error functions are used to detect possible faults among re-
dundant input stream data. An error function should have the value zero if there
is no error in the input data, when the whole system is working in the normal
mode.

For example, in the cruise phases of a flight, the lift equals the weight of
the airplane. The lift can also be calculated using other input data, including
airframe’s angle of attack, air density, temperature, pressure and air speed. In
this case, an error function could simply be defined as:

eplift, weightq “ lift´ weight (1)

The lift in Equation 1 is calculated using other input data. In the normal
cruise phase mode, the value of this equation should be zero. If there is an
error in the weight indicator, and the input weight data is lower than the real
weight, Equation 1 should be greater than zero. Similarly, if the input weight
data is higher than the real weight, Equation 1 should be smaller than zero.
Thus, the validity of the input data could be determined from the value of the
error function.

The values of input data are assumed to be sampled periodically from cor-
responding spatio-temporal data streams. Thus, an error function e changes its
value as time proceeds and can be represented as eptq.

1All sample programs in this paper use v.0.3.2. PILOTS v.0.3.2 is available at
http://wcl.cs.rpi.edu/pilots

4 Chen et al.

Error signatures An error signature is a constrained mathematical function
pattern that is used to capture the characteristics of an error function eptq. Using
a vector of constants K̄ “ xk1, . . . , kmy, a function fpt, K̄q, and a set of constraint
predicates P̄ “ tp1pK̄q, . . . , plpK̄qu, the error signature SpK̄, fpt, K̄q, P̄ pK̄qq is
defined as follows:

Spfpt, K̄q, P̄ pK̄qq fi t f | p1pK̄q ^ ¨ ¨ ¨ ^ plpK̄qu. (2)

Mode likelihood vectors Given a vector of error signatures xS0, . . . , Sny,
we calculate δipSi, tq, the distance between the measured error function eptq and
each error signature Si by:

δipSi, tq “ min
gptqPSi

ż t

t´ω

|eptq ´ gptq|dt. (3)

where ω is the window size. Note that our convention is to capture “normal”
conditions as signature S0. The smaller the distance δi, the closer the raw data
is to the theoretical signature Si. We define the mode likelihood vector as Lptq “
xl0ptq, l1ptq, . . . , lnptqy where each liptq is:

liptq “

#

1, if δiptq “ 0
mintδ0ptq,...,δnptqu

δiptq
, otherwise.

(4)

Mode estimation Using the mode likelihood vector, the final mode output
is estimated as follows. Observe that for each li P L, 0 ă li ď 1 where li represents
the ratio of the likelihood of signature Si being matched with respect to the
likelihood of the best signature.

Because of the way Lptq is created, the largest element lj will always be equal
to 1. Given a threshold τ P p0, 1q, we check for one likely candidate lj that is
sufficiently more likely than its successor lk by ensuring that lk ď τ . Thus, we
determine j to be the correct mode by choosing the most likely error signature
Sj . If j “ 0 then the system is in normal mode. If lk ą τ , then regardless of the
value of k, unknown error mode (´1) is assumed.

Error correction Whether or not a known error mode i is recoverable is
problem dependent. If there is a mathematical relationship between an erro-
neous value and other independently measured values, the erroneous value can
be replaced by a new value estimated from the other independently measured
values.

2.2 Spatio-Temporal Data Stream Processing System

Figure 1 shows the architecture of the PILOTS runtime system, which imple-
ments the error detection and correction methods described in Section 2.1. It
consists of three parts: the Data Selection, the Error Analyzer, and the Applica-
tion Model modules. The Application Model obtains homogeneous data streams
pd11, d

1
2, . . . , d

1
N q from the Data Selection module, and then it generates outputs

(o1, o2, . . . , oM) and data errors (e1, e2, . . . , eL). The Data Selection module takes

Learning Spatio-Temporal Relationships for Avionics 5

heterogeneous incoming data streams (d1, d2, . . . , dN) as inputs. Since this run-
time is assumed to be working on moving objects, the Data Selection module is
aware of the current location and time. Thus, it returns appropriate values to
the Application Model by selecting or interpolating data in time and location,
depending on the data selection method specified in the PILOTS program. The
Error Analyzer collects the latest ω error values from the Application Model and
keeps analyzing errors based on the error signatures. If it detects a recoverable
error, then it replaces an erroneous input with the estimated one by applying a
corresponding estimation equation. The Application Model computes the out-
puts based on the estimated inputs produced by the Error Analyzer.

Fig. 1. Architecture of the PILOTS runtime system.

3 Design of Machine Learning Component

The PILOTS system can detect and correct for errors in data streams using
models that define the relations between data streams, for example the relation-
ship between wind speed, air speed, and ground speed. For non-trivial relations
or relations with unknown parameters, we introduce prediction functionality in
a new machine learning component for PILOTS.

6 Chen et al.

3.1 Prediction in PILOTS Programming Language

To support prediction in the language, a new data selection method predict
is defined in addition to closest, euclidean, and interpolate. Method
predict (model, d1i1 ,d1i2 ,¨ ¨ ¨ ,d1in) takes the identifier of the model as used for
prediction as the first argument, model, and the data streams, d1i1 , d

1
i2
, ¨ ¨ ¨ , d1in ,

used for input as the following arguments. predict method is implemented as
an interface, accepting different machine learning models including online mod-
els, offline models, regressors, and classifiers. Figure 2 shows a simple example
PILOTS program PredictionTest, where aptq and bptq are data streams re-
trieved by closest method meaning that the values of aptq and bptq with closest
timestamp t to current time are chosen, and the predicted data stream cptq uses
the prediction method with linear regression as predictive model and aptq,
retrieved by closest, as input stream to the linear regression. Assuming
data streams aptq and bptq have a linear relationship, which is captured by the
linear regression, cptq is the prediction result of the linear regression
from aptq. The outputs section compares cptq with bptq to produce pairwise dif-
ference between actual data (stream b) and output of the linear regression
(stream c).

�

�

�

�

program PredictionTest;
inputs
a,b (t) using closest (t);
c (t) using predict(linear_regression, a);

outputs
difference: b - c at every 1 sec;

end

Fig. 2. A simple PILOTS program example outputting error.

3.2 Prediction in PILOTS Runtime

Figure 3 shows the updated PILOTS runtime system. To support the new pre-
diction feature in PILOTS language syntax, Data Selection is altered to sup-
port communication to outside components through a socket. When Applica-
tion Model requests p from Data Selection module, it first computes the input
vector x “ rd1i1d

1
i2
¨ ¨ ¨ d1ins

T using data selection method defined for each di,
and then sends model along with input vector x to the Learning Engine where
the prediction is made by requested model using input vector x. The online
Learning Engine updates the dynamic online learning model for every predic-
tion made and gives prediction result p back to the Data Selection component,
which sends the prediction result to the Application Model as requested. The of-
fline Learning Engine trains learning models using three major parts: (1) training
definition including learning hypothesis, learning algorithm configuration, pre-
processing methods and data file configuration; (2) learning algorithms such as

Learning Spatio-Temporal Relationships for Avionics 7

Fig. 3. The updated PILOTS runtime architecture with machine learning components.

least squares, Bayesian classifier or others; (3) training data, which refers to
data stored in files. The other parts of the PILOTS runtime remain the same to
maintain backward compatibility.

4 Data-driven Learning of Linear Models

Linear regression is a well-studied and powerful tool for estimating inter-variable
relations in linear models. The equation for a linear regression model is

y “ Xβ ` ε

where

y “

¨

˚

˚

˚

˝

y1

y2

...
yn

˛

‹

‹

‹

‚

, X “

¨

˚

˚

˚

˝

x11 ¨ ¨ ¨ x1m

x21 ¨ ¨ ¨ x2m

...
. . .

...
xn1 ¨ ¨ ¨ xnm

˛

‹

‹

‹

‚

, β “

¨

˚

˚

˚

˝

β1

β2

...
βm

˛

‹

‹

‹

‚

, ε “

¨

˚

˚

˚

˝

ε1
ε2
...
εn

˛

‹

‹

‹

‚

yi is dependent variable; xij is independent variable; βi is regression coefficient;
εi is error term.

4.1 Learning Algorithm

There are multiple methods to solve linear models. One of the learning algo-
rithms implemented in our system is ordinary least squares, of which the target

8 Chen et al.

is minimizing square of the Euclidean norm ||y ´ Xβ||2 by finding the best

coefficient vector β̂

β̂ “ arg min
β

||y ´Xβ||2

Assuming the columns in X are linearly independent, we could retrieve β̂ in
closed form

β̂ “ pXTXq´1XT y

4.2 Linear Model Accuracy

– Coefficient of determination: This metric is used to evaluate goodness

of regression model fitting on training set R2 “ 1 ´
ř

ipyi´ŷiq
2

ř

ipyi´ȳq
2 where yi is

measured/dependent variable, ŷi is estimated variable, ȳ is the average of all
yi.

– Root Mean Squared Error: This metric is used to evaluate the amount

of error produced by prediction on average RMSE “
b

1
n

řn
i“1pyi ´ f̂pxiqq

2

where f̂ is an estimator, xi is an independent variable vector rxi1 xi2 ¨ ¨ ¨ xims
T .

5 Statistical Learning of Dynamic Models

Näıve Bayes classifiers [12, 13] are commonly used in supervised training and
classification. For continuous data, if the values of samples in each class are
assumed to be normally distributed, the classifiers are called Gaussian näıve
Bayes classifiers [14]. In the training phase, tagged samples of different classes
are processed to train the parameters of the classifier. The parameters include
the mean value, standard variance, and prior probability of each class. In the
testing phase, the trained Bayes classifier decides the class of untagged input
samples.

One limitation of the traditional näıve Bayes classifier is that the input sam-
ples in the testing phase will only be classified into classes that appeared in the
training phase. If a sample of a previously unknown class appears, it will be
classified into one of the known classes, even if the probability that it belongs
to that class is very low. However, with dynamic stream data, new modes not
in the training set could occur in some complex situations. For example, if a
Bayes classifier is trained to recognize the “normal weight” and “underweight”
modes of the weight indicator on an airplane during flights, and a previously
unknown mode “overweight” appears in testing phase, the classifier will not be
able to detect this new mode, but will classify the samples to “normal weight”
or “underweight” based on the value and prior probability of the modes.

To tackle this limitation of the näıve Bayes classifier, we extend it into a
dynamic Bayes classifier that has two phases: (1) Offline: Supervised learning,
which is the same as Gaussian näıve Bayes classifiers. (2) Online: Unsupervised
dynamic incremental learning, that classifies samples in known modes, updates

Learning Spatio-Temporal Relationships for Avionics 9

parameters of the model, and create new modes for samples in previously un-
known modes. Because we focus on processing stream data during flights and
deciding the normal or error operational modes of an airplane, the words “mode”
and “class” are used interchangeably and have the same meaning in this paper.

5.1 Offline Supervised Learning

Gaussian Näıve Bayes Classifiers In a Gaussian näıve Bayes classifier [14],
each input sample X is described by a feature vector px1, . . . , xnq, and each
sample is classified into a target class y P ty1, . . . , ymu. In this paper, we consider
samples of only one feature x, but the results can be generalized to n features.
By Bayes’ theorem, the conditional probability P py|xq is:

P py|xq “
P pyqP px|yq

P pxq
(5)

As the samples in each feature are assumed to be normally distributed, P px|yq
is calculated by:

P px|yq “
1

b

2πσ2
y

e
´
px´µyq

2

2σ2y (6)

Where µy is the mean of the values in x associated with class y, and σy is
the standard deviation of the values in x associated with class y.

The corresponding classifier ŷ is:

ŷ “ arg maxP py|xq (7)

Because P pxq is the same for each class, ŷ is:

ŷ “ arg maxP py|xq “ arg max P pyqP px|yq (8)

Offline Learning Phase In the offline supervised learning phase, input data
tagged with mode labels are processed by a Gaussian näıve Bayes classifier. The
mean value µy, standard deviation σy, and the prior probability P pyq of each
mode y, are calculated by the classifier, as in Figure 4.

5.2 Dynamic Online Unsupervised Learning

Major and Minor Modes To support dynamically changing modes during the
online learning phase, the concepts of major and minor modes are introduced.
The modes in the offline supervised learning phase are major modes. In the
prediction and online learning phase, before a sample is processed by the Bayes
classifier, the value is checked by a pre-processor to decide if it is in the range of
each major mode. As 95% of the values in a normal distribution lie within µ˘2σ,
if the sample is not within that range of any major mode, a new minor mode

10 Chen et al.

is created. As more data are processed, when the number of samples in a minor
mode exceeds a threshold, it will be turned into a major mode. Minor modes
are used to keep samples differentiated from known major modes. A threshold is
used to diminish the impact of noise. Mode ID is automatically assigned when
a new mode is detected.

Online Learning Phase The process of dynamic online unsupervised learning
is shown in Figure 4. The parameters of initial major modes are from the training
results of the offline training phase. As untagged samples are processed, if the
value is within µ˘ 2σ of any major mode, the sample will be classified by naive
Bayes classifier, and the parameters are incrementally updated. If the value is
not within µ ˘ 2σ of any major mode, but is within µ ˘ 2σ of a minor mode,
it will be classified into the closest minor mode, and the parameters of minor
modes are updated accordingly. Finally, if the value of the sample is not within
µ˘ 2σ of any major or minor mode, a new minor mode will be created for this
sample. σ of the new minor mode is initially set as the average σ of the existing
major modes. When the size of the minor mode is greater than a threshold,
we start to calculate and use the real σ of the minor mode. The reason is that
the σ might be bias if the number of samples is too small. Each time when the
parameters of a minor mode are updated, if the number of samples exceeds a
certain threshold, it will be upgraded into a major mode.

Fig. 4. Online classification and incremental learning using dynamic Bayes classifier.

Learning Spatio-Temporal Relationships for Avionics 11

6 Case Study: Airplane Weight Estimation

To help prevent accidents caused by fuel quantity indicator errors such as the
Tuninter 1153 flight accident, we use the X-Plane flight simulator to generate
flight sensors data and simulate airplane weight error scenarios. With the syn-
thetic data, machine learning techniques are applied for inferring airplane model
parameters from data, airplane weight error detection and actual weight estima-
tion.

6.1 Experimental Settings

Data Generation X-Plane 9.7 is used to generate flying data of ATR72-500
in different altitudes, gross weights and power settings. The data is split by
selecting 3 flights’ 25 cruise phases, 1251 minutes in total, as training set, and
1 20-minutes flight with 4 cruise phases as testing set. The model is trained by
25 cruise phases in the training set and tested by 4 cruise phases in the testing
set. To evaluate the PILOTS error detection accuracy, the whole testing set is
modified to introduce artificial measurement errors as follows: weight data in
the range from 1 to 100 and 750 to 800 seconds is multiplied by 0.9, from 1025
to 1099 seconds is multiplied by 1.1, from 390 to 490 seconds is multiplied by
1.05, from 570 to 648 seconds is multiplied by normal distribution of error with
mean at 1 and standard deviation at 0.1, from 291 to 377 seconds are multiplied
by uniform distribution of error ranging from 0.9 to 1.1. The cruise phases of
testing set lie between 5 to 164, 230 to 395, 470 to 688 and 780 to 1108 seconds.
We can visualize this data as “measured” in Figure10.

Implementation and Evaluation of Learning Algorithms For learning
algorithms, the Sci-Kit package is used for the implementation of least squares
algorithm and evaluation of the trained models.

6.2 Aerodynamic Model Parameter Estimation by Linear
Regression

Synthetic data with simple relationships are used to verify the integration of
machine learning approaches into PILOTS. In this example, simulated ATR-72
500 airplane data is used for PILOTS to detect and correct for weight error in
the data streams. The relation between coefficient of lift and angle of attack is
investigated and under certain assumptions about known variables, an estima-
tion of weight from angle of attack, ambient temperature, ambient pressure and
true air speed is made possible using linear regression by the PILOTS learning
component.

Assumption To simulate and test linear regression implemented in PILOTS
machine learning component, we assume certain known variables. It is required
that the following variables are correctly measured and known: gross weight W ,

12 Chen et al.

ambient pressure p, true airspeed v, wing surface area S, special gas constant
for dry air R1, and ambient temperature T .

Linear Regression Model In cruise phase, when yaw, roll angles are close to
zero and pitch is small, we assume L “ W , in which L is total lift and W is
gross weight. Based on the assumption, we can estimate W by the lift equation:

W “ L “
1

2
v2SρCl, (9)

where ρ is air density and Cl is coefficient of lift. From ideal gas law, we know
ρ “ p

R1T and replace ρ with p
R1T in Equation 9 to get:

W “
pv2SCl
2R1T

(10)

and by transforming Equation 10, Cl, coefficient of lift could be represented by:

Cl “
2WR1T

pv2S
. (11)

Generally Cl depends on the shape of airfoil and the shape of an aircraft. To
roughly estimate Cl, the complex physical model is simplified using Thin-Airfoil
theory , which predicts a linear relationship [15] between coefficient of lift, Cl,
and the angle of attack, α, for low values of α, as shown in Figure 5 between
dashed vertical lines. This relationship can be expressed as:

Cl “ β1α` β2 ` ε (12)

where ε is noise and α is known while β1 and β2 are distinct values for
different aircrafts. A linear model could be formulated as the following:

y “ Xβ ` ε (13)

y “

¨

˚

˚

˚

˝

Cl1
Cl2

...
Cln

˛

‹

‹

‹

‚

, Cli “
2WiR

1Ti
piv2

i S
,X “

¨

˚

˚

˚

˝

α1 1
α2 1
...
αn 1

˛

‹

‹

‹

‚

, β “

ˆ

β1

β2

˙

Because each column in X is independent, we could use the least squares method
defined in Section 4.1 to retrieve β̂, and predict Ŵ using the following equation:

Ŵ “
pv2Spβ1α` β2q

2R1T
(14)

where we have substituted the linear estimation of Cl, in Equation 10.

Learning Spatio-Temporal Relationships for Avionics 13

Fig. 5. Typical graph of section coefficient of lift versus angle of attack for a cambered
airfoil, adapted from https://en.wikipedia.org/wiki/Lift coefficient.

Mode Error Signature
Function Constraints

Normal e “ k ´0.035 ă k ă 0.035
Overweight e “ k k ą 0.035

Underweight e “ k k ă ´0.035
Table 1. Vector of error signatures for weight correction.

6.3 Error Detection and Correction Using Error Signatures

PILOTS Program The linear regression model is trained with synthetic data
using training parameters as shown in Figure 7. data defines the training file
including file type and schema similar to Figure 8 as an example, and constants
used in features and labels; preprocessing defines the preprocessing meth-
ods used on the training set; model contains functions for features, labels and
training algorithms. The error function e is given by Equation 15 as the per-
centage of discrepancy between predicted weight Ŵ and measured weight W .
The vector of error signatures uses a threshold of 3.5% because this number is
more rigorous than the percentage of discrepancy between error weight and ac-
tual weight in Tuninter 1153 accident, which is about 10%. A PILOTS program
named WeightCorrection implementing the vector of error signatures in Ta-
ble 1 is shown in Figure 6 . If the error signature s1 or s2 is detected, the program
estimates weight using Equation 14. The data selection module computes v1, a1,

14 Chen et al.

p1, te1, w1 using data points with the closest time stamp, and uses a1 as an input
matrix to predict cl1 using model the with id linear regression.

e “
W ´ Ŵ

W
(15)

'

&

$

%

program WeightCorrection;
/* v = true air speed (m/s), a = angle of attack (Radian) */
/* p = pressure (Pa), te = temperature (K), w = gross weight (N) */
/* cl = coefficient of lift, R = 286.9 J/(kg K), S = 61(mˆ2)*/
inputs

v, a, p, te, w (t) using closest(t);
cl (t) using predict(linear_regression, a);

outputs
corrected_weight: w at every 1 sec;

errors
e: (w - p*(v*v)*61*cl/(2*286.9*te))/w;

signatures
s0(K): e = K, -0.035 < K < 0.035 ’’Normal’’;
s1(K): e = K, K > 0.035 ’’Overweight’’

estimate w = p*(v*v)*61*cl/(2*286.9*te);
s2(K): e = K, K < - 0.035 ’’Underweight’’

estimate w = p*(v*v)*61*cl/(2*286.9*te);
end

Fig. 6. A declarative specification of WeightCorrection PILOTS program using
error signature.

Error Detection Evaluation Criteria: We evaluate the performance of error
detection based on accuracy and response time, which are defined as follows:

– Accuracy: This metric is used to evaluate how accurately the algorithm
determines the true mode. Assuming the true mode transition mptq is known
for t “ 0, 1, 2, . . . , T , let m1ptq for t “ 0, 1, 2, . . . , T be the mode determined

by the error detection algorithm. We define accuracypm,m1q “ 1
T

řT
t“0 pptq,

where pptq “ 1 if mptq “ m1ptq and pptq “ 0 otherwise.
– Maximum/Minimum/Average Response Time: This metric is used

to evaluate how quickly the algorithm reacts to mode changes. Let a tuple
pti,miq represent a mode change point, where the mode changes to mi at
time ti. Let

M “ tpt1,m1q, pt2,m2q, . . . , ptN ,mN qu,

and
M 1 “ tpt11,m

1
1q, pt

1
2,m

1
2q, . . . , pt

1
N 1 ,m

1
N 1qu,

where M and M 1 are the sets of true mode changes and detected mode
changes respectively. For each i “ 1 . . . N , we can find the smallest t1j such
that pti ď t1jq ^ pmi “ m1jq; if not found, let t1j be ti`1. The response time ri

Learning Spatio-Temporal Relationships for Avionics 15'

&

$

%

{
"data":{

"file": ["training.csv"],
"type": "csv",
"header_type": "csvheader",
"schema": "schema.json",
"constants": {"S": 61.0, "R": 286.9}

},
"preprocessing":{

"unit_transformation": {"v":"m/s", "p":"pascal","t":"kelvin","w":"newton","a
":"radian"}

},
"model":{

"features": ["{a}"],
"labels": ["2*{w}/({v}**2*({p}/{R}/{t})*{S})"],
"algorithm":{
"id": "linear_regression",
"param": {},
"save_file": "regression.estimator"
}

}
}

Fig. 7. Offline training parameters for the linear regression model.�
�

�
�

{
"names": ["v","p","t","w","a"],
"units": ["knot","in_Hg","celsius","force_pound","degree"]

}

Fig. 8. Example data schema file.

for the true mode mi is given by t1j ´ ti. We define the maximum, minimum,

and average response time by max1ďiďN ri, min1ďiďN ri, and 1
N

řN
i“1 ri re-

spectively.

Software Parameter Settings See Section 6.1 for data generation. PILOTS
program WeightCorrection in Figure 6 is executed with different combina-
tions of window sizes ω P t1, 2, 4, 8, 16u and thresholds τ P t0.2, 0.4, 0.6, 0.8, 0.99u
to investigate the accuracy and average response time.

Results Figure 9 shows the training result of linear relationship between angle
of attack and coefficient of lift, where the learned parameters are β1 “ 6.3888 and
β2 “ 0.3589. The evaluation of the trained model gives R2 “ 0.9949, RMSE “
0.00794, showing a strong linear relationship with low in-sample error. Using
Equation 9, we compute the training error between measured weight and es-
timated weight, resulting in RMSE “ 2687N . Figure 10 shows the estimated
weight and measured weight during the 18 minutes flight where ω “ 1 and

16 Chen et al.

Fig. 9. The linear relation between angle of attack and coefficient of lift in cruise phase
of training set.

τ “ 0.99, the best combination among all combinations in accuracy and re-
sponse time. The PILOTS program can successfully detect and correct under-
weight and overweight conditions in cruise phases, with root mean squared error
close to 1617N on average. The program performs the best in system failure
simulation regions where the weight drifts by 10% or 5%, and performs well in
random error simulation regions. The overall accuracy is 97.6% and the mini-
mum response time is 0 seconds; maximum response time is 84 seconds and the
average response time is 1.45 seconds. Outside cruise phase, the program does
not estimate weight properly as the assumption L “W does not hold.

6.4 Error Detection Using the Dynamic Bayes Classifier

PILOTS Program We use Ŵ ´ W as the feature for the dynamic Bayes
classifier. Estimated weight is calculated by Equation 9 using the method de-
scribed in Section 6.2. The dynamic Bayes classifier is trained with both “nor-
mal” and “underweight” tagged data in the offline learning phase. Figure 12
shows the parameters setting for the offline training phase. data.file is the
input file for training. data.constants are parameters we used for features.
model.features are features for Bayes classifier. In this example, the feature
is the discrepancy between estimated weight Ŵ by Equation 14 and measured
weight W . model.algorithm.param is the software parameters setting. A
PILOTS program shown in Figure 11 named WeightErrorMode is used for
the online learning and classification to detect different weight error modes.

Mode Prediction Evaluation We use the same evaluation criteria for major
mode prediction: accuracy and response time as in Section 6.3.

Learning Spatio-Temporal Relationships for Avionics 17

Fig. 10. Error detection and correction using ω “ 1, τ “ 0.99 for X-Plane simulated
data.'

&

$

%

program WeightErrorMode;
/* v = true air speed (m/s), a = angle of attack (Radian) */
/* p = pressure (Pa), te = temperature (K), w = gross weight (N) */
inputs
v, a, p, te, w (t) using closest(t);
mode (t) using predict(bayes, v, a, p, te, w);

outputs
estimated_mode: mode at every 1 sec;

end

Fig. 11. A declarative specification of the WeightErrorMode PILOTS program using
the dynamic Bayes classifier.

Experimental Settings See Section 6.1 for data generation. We use the same
testing data, and 8000 seconds training data in cruise phase modified as follows:
weight data in the range from 1526 to 3129 second are multiplied by 1.1 to
simulate overweight mode. There are two major modes in the tagged training
data: mode 0 for normal status and mode 1 for overweight status. For online
learning, we set the threshold of the sample number to turn a minor mode into
a major mode to 100. The sample number threshold for calculating σ of a new
mode instead of using average σ is also set as 100. Figure 13 shows the feature
and tagged mode of training data.

Results Figure 14 shows the results of weight error mode detection by dynamic
Bayes classifier. Using the same testing data as in Figure 10, the dynamic Bayes
classifier successfully detects three major modes in the cruise phases: mode 0 for
normal status, mode 3 for underweight status, and mode 1 for overweight status.
Mode 0 and mode 1 are major modes that appeared in the tagged training data,
mode 3 is a new major mode detected by the classifier during the online incre-
mental learning and prediction phase. There are also 22 minor modes generated

18 Chen et al.'

&

$

%

{
"data":{

"file": ["bayes_error_train.csv"],
"type": "csv",
"header_type": "csvheader",
"schema":"bayes_schema.json",
"constants": {"Beta_1": 6.38883559, "Beta_2": 0.35885757, "S": 61.0}

},
"preprocessing":{

"unit_transformation": {"v":"m/s", "p":"pascal","t":"kelvin","w":"newton","a
":"radian"}

},
"model":{

"features": ["({w}-0.5*({v}**2*({p}/286.9/{t})*{S})*({Beta_1}*{a}+{Beta_2}))
"],

"labels": ["{mode}"],
"algorithm": {
"id": "bayesonline",
"param": {"sigma_scale": 2, "threshold": 100},
"save_file": "bayes_online.estimator",
"serialize_function": "to_json",
"deserialize_function": "load_json"

}
}

}

Fig. 12. Offline training parameters for the dynamic Bayes classifier.

by the noise and non-cruise phase data in the testing set. The accuracy of major
mode detection is 86.3% and the average response time is 3.43 seconds.

6.5 Comparison between Error Signatures and Dynamic Bayes
Classifier

The average response time of the error signatures approach with 0.035 as thresh-
old, ω “ 1, and τ “ 0.99, is 58% shorter than that of the dynamic Bayes clas-
sifier, and the error signatures approach is 11.3% more accurate than the dy-
namic Bayes classifier. However, the dynamic Bayes classifier discovers discrete
error states dynamically and automatically while the error signatures approach
is static, that is, every signature must be predefined manually.

7 Related Work

Stream data processing has been an important technique in flight safety sys-
tems. Fault detection, isolation, and reconfiguration (FDIR) has also been ac-
tively studied in the control community [16]. The FDIR systems evaluate a set
of residuals (what we call error functions) to detect if a fault has occurred, then
isolate the type of the fault, and reconfigure the system to recover from the
fault. To alleviate the effect of noise on residuals, robust residual generation
techniques, such as a Kalman Filter based approach [17], have been used. Error

Learning Spatio-Temporal Relationships for Avionics 19

Fig. 13. Weight error mode training data for the dynamic Bayes classifier.

residuals from different sources including ground speed, estimated wind speed,
and propeller speed, are used to successfully detect and isolate airspeed sensor
faults [18]. In some study, the residuals are not considered as binary value, but
are assumed to have different distributions according to different modes [19].
The false positive and false negative detection rate of a FDIR method can be
evaluated by several statistical models [20, 21]. The PILOTS language was de-
signed for spatio-temporal data stream filtering, error detection and correction.
PILOTS has been shown to detect and recover from sensor errors using actual
flight data from commercial accidents [8]. The PILOTS framework enables users
to implement fault detection and correction with tens of lines of code to describe
error conditions.

There have been many systems that combine data stream processing and data
base management, i.e., Data Stream Management Systems (DSMS). PLACE [22]
and Microsoft StreamInsight [23] are DSMS-based systems supporting spatio-
temporal streams. Also, the concept of the moving object data base (MODB)
which adds support for spatio-temporal data streaming to DSMS is discussed
in [24]. Also, a DSMS-based traffic congestion estimation system has been pro-
posed [25]. These DSMS-based spatio-temporal stream management systems
support general continuous queries for multiple moving objects such as “Find all
the cars running within a diameter of X from a point Y in the past Z time”. Un-
like these DSMS-based systems which handle multiple spatio-temporal objects,
a PILOTS program is assumed to be moving and tries to extrapolate data that

20 Chen et al.

Fig. 14. Weight error mode detection using dynamic Bayes classifier.

is relevant to the current location and time. This approach narrows down the
applicability of PILOTS; however, users can more easily design error signatures
to estimate data on the fly thanks to the declarative programming approach.

In the context of big data processing, distributed, scalable, and fault-tolerant
data streaming systems have been widely used. Such systems include Mill-
Wheel [26], Storm [27], and Spark Streaming [28]. Since these systems are ex-
pected to run over many computer nodes, they are designed to continue pro-
ducing correct results with reasonably degraded performance even in the case
of node failures. Unlike PILOTS, they are not aware of application-level data
failures. On the other hand, PILOTS itself does not have any fault-tolerance
mechanism to node failures.

Machine learning techniques have been widely used in stream data processing.
There is a multi-dimensional regression method for time-series data streams [29],
and a regression-based temporal pattern mining scheme for data streams [30].
Neural networks have been applied for supervised real-time learning and classi-
fication [31], and unsupervised active mining methods could be used to estimate
the error of the model on new data streams [32]. In this paper, we extend PI-
LOTS to support linear regression of stream data, and also combined offline
supervised learning and dynamic online incremental learning as implemented by
the dynamic Bayes classifier.

Learning Spatio-Temporal Relationships for Avionics 21

8 Discussion and Future Work

In this paper, we extend the PILOTS programming language to support machine
learning techniques. A linear regression approach is applied to learn the relation-
ship between coefficient of lift and the angle of attack during flights. With the
training results, and Equation 9 to calculate airplane weight during cruise phase,
the PILOTS program successfully detects and corrects underweight and over-
weight conditions in simulated flight data by using error signatures. In this case,
we only consider possible weight errors, while other sensor data like airspeed
needs additional signatures to ensure its correctness. Using dynamic Bayes clas-
sifier, when the system is trained by normal and underweight data, the PILOTS
program is able to detect a new mode when an overweight situation occurs in
the online learning phase. Error signatures and dynamic Bayes classifier both
have their advantages and limitations. Error signatures detect and correct for
data errors, while dynamic Bayes classifier only detects for data errors, but is not
able to fix them. Dynamic Bayes classifier detects statistically significant new
modes during the online learning phase, while error signatures can only detect
pre-defined modes.

When using the dynamic Bayes classifier to detect weight error, we noticed
that the system could not only detect “normal”, “underweight”, “overweight”
modes, but also classifies “5% underweight” and “15% underweight” as two dif-
ferent modes, see Figure 15. This information is useful if different strategies need
to be taken for different extent of weight errors, otherwise it would be unneces-
sarily misleading to classify them into different modes. Thus, the dynamic Bayes
classifier should be adjusted to the requirements of various use cases. This would
result in a semi-supervised online learning approach.

Future work includes exploring distributed computing for large scale data
processing to get higher efficiency. For the dynamic Bayes classifier, it would
be helpful to involve human feedback in the online learning phase, especially
when a new mode is detected, to get more accurate classification parameters
and decision making. Techniques are needed to add error correction to the dy-
namic Bayes classifier and learning. Take the weight error case for example, for
any mode except the normal mode, simply use the estimated weight instead of
detected weight as error correction. Machine learning techniques could also be
used to learn parameters in error signatures from data. Another possible di-
rection is to combine logic programming and probabilistic programming, as in
ProbLog [33], to help analyze spatio-temporal stream data. Finally, uncertainty
quantification [34] is an important future direction to associate confidence to
data and error estimations in support of decision making.

9 Acknowledgement

This research is partially supported by the DDDAS program of the Air Force Of-
fice of Scientific Research, Grant No. FA9550-15-1-0214, NSF Grant No. 1462342,
and a Yamada Corporation Fellowship.

22 Chen et al.

Fig. 15. Another weight error mode detection using dynamic Bayes classifier.

References

1. S. Imai and C. A. Varela, “Programming spatio-temporal data streaming appli-
cations with high-level specifications,” in 3rd ACM SIGSPATIAL International
Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST)
2012, (Redondo Beach, California, USA), November 2012.

2. Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, “Fi-
nal Report: On the accident on 1st June 2009 to the Airbus A330-203 reg-
istered F-GZCP operated by Air France flight AF 447 Rio de Janeiro -
Paris.” https://www.bea.aero/fileadmin/documents/docspa/2009/f-cp090601.en/
pdf/f-cp090601.en.pdf. Accessed 09-15-2016.

3. E. P. Blasch, D. A. Lambert, P. Valin, M. M. Kokar, J. Llinas, S. Das, C. Chong,
and E. Shahbazian, “High level information fusion (hlif): survey of models, issues,
and grand challenges,” IEEE Aerospace and Electronic Systems Magazine, vol. 27,
no. 9, pp. 4–20, 2012.

4. J. T. Oden, E. E. Prudencio, and P. T. Bauman, “Virtual model validation of
complex multiscale systems: Applications to nonlinear elastostatics,” Computer
Methods in Applied Mechanics and Engineering, vol. 266, pp. 162–184, 2013.

5. F. Darema, “Dynamic data driven applications systems: A new paradigm for ap-
plication simulations and measurements,” in Computational Science-ICCS 2004,
pp. 662–669, Springer, 2004.

6. A. N. per la Sicurezza del Volo, “Final Report: Accident involving ATR 72 aircraft
registration marks TS-LBB ditching off the coast of Capo Gallo (Palermo - Sicily),
August 6th, 2005.” Accessed 03-31-2015.

Learning Spatio-Temporal Relationships for Avionics 23

7. S. Imai, R. Klockowski, and C. A. Varela, “Self-healing spatio-temporal data
streams using error signatures,” in 2nd International Conference on Big Data Sci-
ence and Engineering (BDSE 2013), (Sydney, Australia), December 2013.

8. S. Imai, A. Galli, and C. A. Varela, “Dynamic data-driven avionics systems: In-
ferring failure modes from data streams,” in Dynamic Data-Driven Application
Systems (DDDAS 2015), (Reykjavik, Iceland), June 2015.

9. S. Imai and C. A. Varela, “A programming model for spatio-temporal data stream-
ing applications,” in Dynamic Data-Driven Application Systems (DDDAS 2012),
(Omaha, Nebraska), pp. 1139–1148, June 2012.

10. R. S. Klockowski, S. Imai, C. Rice, and C. A. Varela, “Autonomous data error
detection and recovery in streaming applications,” in Proceedings of the Interna-
tional Conference on Computational Science (ICCS 2013). Dynamic Data-Driven
Application Systems (DDDAS 2013) Workshop, pp. 2036–2045, May 2013.

11. Laminar Research, “X-Plane.” http://www.x-plane.com/. Accessed 09-15-2016.

12. I. Rish, “An empirical study of the naive Bayes classifier,” in IJCAI 2001 workshop
on empirical methods in artificial intelligence, vol. 3, pp. 41–46, IBM New York,
2001.

13. E. T. Jaynes, Probability theory: The logic of science. Cambridge university press,
2003.

14. G. H. John and P. Langley, “Estimating continuous distributions in Bayesian clas-
sifiers,” in Proceedings of the Eleventh conference on Uncertainty in artificial in-
telligence, pp. 338–345, Morgan Kaufmann Publishers Inc., 1995.

15. J. D. Anderson Jr, Fundamentals of aerodynamics. Tata McGraw-Hill Education,
2010.

16. I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation,
and reconfiguration methods,” Control Systems Technology, IEEE Transactions
on, vol. 18, no. 3, pp. 636–653, 2010.

17. T. Menke and P. Maybeck, “Sensor/actuator failure detection in the Vista F-16
by multiple model adaptive estimation,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 31, pp. 1218–1229, oct 1995.

18. S. Hansen and M. Blanke, “Diagnosis of airspeed measurement faults for unmanned
aerial vehicles,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,
pp. 224–239, January 2014.

19. C. Svärd, M. Nyberg, E. Frisk, and M. Krysander, “Data-driven and adaptive
statistical residual evaluation for fault detection with an automotive application,”
Mechanical Systems and Signal Processing, vol. 45, no. 1, pp. 170–192, 2014.

20. A. Zolghadri, “Advanced model-based FDIR techniques for aerospace systems: To-
day challenges and opportunities,” Progress in Aerospace Sciences, vol. 53, pp. 18–
29, August 2012.

21. J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter, “Model-based fault di-
agnosis for aerospace systems: a survey,” Proceedings of the Institution of Mechan-
ical Engineers, Part G: Journal of Aerospace Engineering, vol. 226, pp. 1329–1360,
January 2012.

22. M. F. Mokbel, X. Xiong, W. G. Aref, and M. a. Hammad, “Continuous query
processing of spatio-temporal data streams in PLACE,” GeoInformatica, vol. 9,
pp. 343–365, 2005.

23. M. H. Ali, B. Chandramouli, B. S. Raman, and E. Katibah, “Spatio-temporal
stream processing in Microsoft StreamInsight,” IEEE Data Eng. Bull., pp. 69–74,
2010.

24 Chen et al.

24. K. An and J. Kim, “Moving objects management system supporting location data
stream,” in Proceedings of the 4th WSEAS International Conference on Com-
putational Intelligence, Man-Machine Systems and Cybernetics, CIMMACS’05,
(Stevens Point, Wisconsin, USA), pp. 99–104, World Scientific and Engineering
Academy and Society (WSEAS), 2005.

25. S. Geisler, C. Quix, S. Schiffer, and M. Jarke, “An evaluation framework for traffic
information systems based on data streams,” Transportation Research Part C:
Emerging Technologies, vol. 23, pp. 29–55, 2012.

26. T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-tolerant
stream processing at internet scale,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1033–1044, 2013.

27. The Apache Software Foundation, “Apache Storm.” http://storm.apache.org/,
January 2015. Accessed 09-15-2016.

28. M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: an effi-
cient and fault-tolerant model for stream processing on large clusters,” in Proceed-
ings of the 4th USENIX conference on Hot Topics in Cloud Computing, pp. 10–10,
USENIX Association, 2012.

29. Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-dimensional regres-
sion analysis of time-series data streams,” in Proceedings of the 28th International
Conference on Very Large Data Bases, pp. 323–334, VLDB Endowment, 2002.

30. W.-G. Teng, M.-S. Chen, and P. S. Yu, “A regression-based temporal pattern min-
ing scheme for data streams,” in Proceedings of the 29th International Conference
on Very large data bases-Volume 29, pp. 93–104, VLDB Endowment, 2003.

31. G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “Artmap: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural
network,” Neural networks, vol. 4, no. 5, pp. 565–588, 1991.

32. W. Fan, Y.-a. Huang, H. Wang, and S. Y. Philip, “Active mining of data streams.,”
in Proceedings of the 2004 SIAM International Conference on Data Mining,
pp. 457–461, SIAM, 2004.

33. L. De Raedt, A. Kimmig, and H. Toivonen, “Problog: A probabilistic prolog and
its application in link discovery.,” in International Joint Conference on Artificial
Intelligence, vol. 7, pp. 2462–2467, 2007.

34. D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, and K. Willcox, “Multifidelity
DDDAS methods with application to a self-aware aerospace vehicle,” in DDDAS
2014 Workshop at ICCS’14, pp. 1182–1192, June 2014.

