
Dynamic Data-Driven Avionics Systems:

Inferring Failure Modes from Data Streams

Shigeru Imai, Alessandro Galli, and Carlos A. Varela

Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{imais,gallia}@.rpi.edu, cvarela@cs.rpi.edu

Abstract
Dynamic Data-Driven Avionics Systems (DDDAS) embody ideas from the Dynamic Data-
Driven Application Systems paradigm by creating a data-driven feedback loop that analyzes
spatio-temporal data streams coming from aircraft sensors and instruments, looks for errors
in the data signaling potential failure modes, and corrects for erroneous data when possible.
In case of emergency, DDDAS need to provide enough information about the failure to pilots
to support their decision making in real-time. We have developed the PILOTS system, which
supports data-error tolerant spatio-temporal stream processing, as an initial step to realize the
concept of DDDAS. In this paper, we apply the PILOTS system to actual data from the Tuninter
1153 (TU1153) flight accident in August 2005, where the installation of an incorrect fuel sensor
led to a fatal accident. The underweight condition suggesting an incorrect fuel indication for
TU1153 is successfully detected with 100% accuracy during cruise flight phases. Adding logical
redundancy to avionics through a dynamic data-driven approach can significantly improve the
safety of flight.

Keywords: programming models, spatio-temporal data, data streaming

1 Introduction

Dynamic Data-Driven Avionics Systems (DDDAS) based on the concept of Dynamic Data-
Driven Application Systems [1] use sensor data in real-time to enrich computational models
in order to more accurately predict aircraft performance under partial failures. DDDAS can
therefore support better-informed decision making for pilots and can also be applicable to
autonomous unmanned air and space vehicles. As a first step towards realizing DDDAS, we have
developed a system called PILOTS (ProgrammIng Language for spatiO-Temporal Streaming
applications) [2, 3, 4] that enables specifying error detection and data correction in spatio-
temporal data streams using a highly-declarative programming language. Figure 1 shows a
conceptual view of DDDAS. Upon a request from the Avionics Application, the Pre-Processor
takes raw data streams from aircraft sensors and then produces homogeneous and corrected
streams. Following data pre-processing, the Avionics Application can constantly compute its

Procedia Computer Science

Volume XXX, 2015, Pages 1–10

ICCS 2015. International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

1

desired output with the corrected data. Since the Avionics Application controls the aircraft
ultimately based on the raw data streams from the sensors, we can see that understanding data
errors to detect potential sensor and instrument failures can significantly augment the envelope
of operations of autonomous flight systems.

��������

������������	
��

������������������	
�

��	
����	

��

����	������	���

����	��������

�������

�����������

�������

������������
����	��

��		���������

����������

����������	
��

����������

�����������

��������	�

���!����

��
����	��

������"�

�	�
��

Figure 1: Conceptual view of Dynamic Data-Driven Avionics Systems

PILOTS has been successfully applied to detect the airspeed sensors failure which occurred
in the Air France flight 447 accident from its recovered black box data [5]. In this paper, we
analyze the TU1153 flight [6], where the installation of an incorrect fuel sensor led to a fatal
accident. In the AF447 case, we used the relationship between airspeed, ground speed, and
wind speed data to infer the pitot tubes failure. In the TU1153 case, we use the relationship
between fuel weight, and aircraft performance (airspeed) data.

The rest of the paper is organized as follows. Section 2 describes error signature-based
error detection and correction methods as well as the PILOTS programming language and the
architecture of its runtime system. Section 3 discusses the design of error signatures and results
of error detection performance for the TU1153 flight data, and Section 4 describes related
work. Finally, we briefly describe future research directions for real-time error-tolerant stream
processing and conclude the paper in Section 5.

2 Error-Tolerant Spatio-Temporal Data Streaming

2.1 Error Detection and Correction Methods

Error functions An error function is an arbitrary function that computes a numerical value
from independently measured input data. It is used to examine the validity of redundant data.
If the value of an error function is zero, we normally interpret it as no error in the given data.

The relationship between ground speed (ÝÑvg), airspeed (ÝÑva), and wind speed (ÝÑvw) shown in
Equation 1 is visually depicted in Figure 2.

ÝÑvg “ ÝÑva `ÝÑvw. (1)

A vector ÝÑv can be defined by a tuple pv, αq, where v is the magnitude of ÝÑv and α is the
angle between ÝÑv and a base vector. Following this expression, ÝÑvg ,ÝÑva, and ÝÑvw are defined as
pvg, αgq, pva, αaq, and pvw, αwq respectively. We can compute ÝÑvg by applying trigonometry to
4ABC and define an error function as the difference between measured vg and computed vg
as follows:

epÝÑvg ,ÝÑva,ÝÑvwq “ |ÝÑvg ´ pÝÑva `ÝÑvwq| “ vg ´
a

v2
a ` 2vavw cospαa ´ αwq ` v2

w. (2)

The values of input data are assumed to be sampled periodically from corresponding spatio-
temporal data streams. Thus, an error function e changes its value as time proceeds and can
also be represented as eptq.

Imai et al.

2

v
w

v
a

α
a
-α

w

v
g

α
a

C

A

B

α
w

Figure 2: Trigonometry applied to the
ground speed, airspeed, and wind speed.

O
t

f

.
.
.

5

2

f(
t)

= t
+ 2

f(t
) =

 t
+

5

Figure 3: Error signature SI with a linear
function fptq “ t` k, 2 ď k ď 5.

Error signatures An error signature is a constrained mathematical function pattern that
is used to capture the characteristics of an error function eptq. Using a vector of constants
K̄ “ xk1, . . . , kmy, a function fpt, K̄q, and a set of constraint predicates P̄ “ tp1pK̄q, . . . , plpK̄qu,
the error signature SpK̄, fpt, K̄q, P̄ pK̄qq is defined as follows:

Spfpt, K̄q, P̄ pK̄qq fi t f | p1pK̄q ^ ¨ ¨ ¨ ^ plpK̄qu. (3)

For example, an interval error signature SI can be defined as SI “ Spfpt, K̄q, ĪpK̄, Ā, B̄qq “
t f | a1 ď k1 ď b1, . . . , am ď km ď bmu, where Ā “ xa1, . . . , amy and B̄ “ xb1, . . . , bmy. When
fpt, K̄q “ t ` k, K̄ “ xky, Ā “ x2y, and B̄ “ x5y, the error signature SI contains all linear
functions with slope 1, and crossing the Y-axis at values r2, 5s as shown in Figure 3.

Mode likelihood vectors Given a vector of error signatures xS0, . . . , Sny, we calculate
δipSi, tq, the distance between the measured error function eptq and each error signature Si by:

δipSi, tq “ min
gptqPSi

ż t

t´ω

|eptq ´ gptq|dt. (4)

where ω is the window size. Note that our convention is to capture “normal” conditions as
signature S0. The smaller the distance δi, the closer the raw data is to the theoretical signature
Si. We define the mode likelihood vector as Lptq “ xl0ptq, l1ptq, . . . , lnptqy where each liptq is:

liptq “

#

1, if δiptq “ 0
mintδ0ptq,...,δnptqu

δiptq
, otherwise.

(5)

Mode estimation Using the mode likelihood vector, the final mode output is estimated as
follows. Observe that for each li P L, 0 ă li ď 1 where li represents the ratio of the likelihood
of signature Si being matched with respect to the likelihood of the best signature. Because of
the way Lptq is created, the largest element lj will always be equal to 1. Given a threshold
τ P p0, 1q, we check for one likely candidate lj that is sufficiently more likely than its successor
lk by ensuring that lk ď τ . Thus, we determine j to be the correct mode by choosing the most
likely error signature Sj . If j “ 0 then the system is in normal mode. If lk ą τ , then regardless
of the value of k, unknown error mode (´1) is assumed.

Error correction Whether or not a known error mode i is recoverable is problem depen-
dent. If there is a mathematical relationship between an erroneous value and other indepen-
dently measured values, the erroneous value can be replaced by a new value computed from the

Imai et al.

3

other independently measured values. In the case of the speed example used in Equations 1
and 2, if the ground speed vg is detected as erroneous, its corrected value v̂g can be computed

by the airspeed and wind speed as v̂g “
a

v2
a ` 2vavw cospαa ´ αwq ` v2

w.

2.2 Spatio-Temporal Data Stream Processing System

2.2.1 System Architecture

Figure 4 shows the architecture of the PILOTS runtime system, which implements the error
detection and correction methods described in Section 2.1. It consists of three parts: the Data
Selection, the Error Analyzer, and the Application Model modules. The Application Model
obtains homogeneous data streams pd11, d

1
2, . . . , d

1
N q from the Data Selection module, and then it

generates outputs (o1, o2, . . . , oM) and data errors (e1, e2, . . . , eL). The Data Selection module
takes heterogeneous incoming data streams (d1, d2, . . . , dN) as inputs. Since this runtime is
assumed to be working on moving objects, the Data Selection module is aware of the current
location and time. Thus, it returns appropriate values to the Application Model by selecting or
interpolating data in time and location, depending on the data selection method specified in the
PILOTS program. The Error Analyzer collects the latest ω error values from the Application
Model and keeps analyzing errors based on the error signatures. If it detects a recoverable
error, then it replaces an erroneous input with the corrected one by applying a corresponding
error correction equation. The Application Model computes the outputs based on the corrected
inputs produced from the Error Analyzer.

d1 (x, y, z, t)

d2 (x, y, z, t)

dN (x, y, z, t)

.
.
.

Outputs

Application

Model

Incoming

Data Streams

Outgoing

Data Streams

o2

o1

.
.
.

oM

e2

e1

.
.
.

eLErrors

Data

Selection

Request data at a specified rate

d1'

d2'

dN'

Error

Detection

Error Signatures

.
.
.

Current

Time

Current

Location S = {S0, S1, …, Sn}

mode ?

Compute likelihood vector

L = <l0, l1, ..., ln>Flag error

unknown or

Error

Correction

recoverable or

Correct data if

recoverable

mode

unrecoverable

no error

Error Analyzer

Corrected Data

Figure 4: Architecture of the PILOTS runtime system.

2.2.2 PILOTS Programming Language

PILOTS is a programming language specifically designed for analyzing spatio-temporal data
streams, which potentially contain erroneous data. Compiled PILOTS programs are designed
to run on the runtime system described in Section 2.2.1. Using PILOTS, developers can eas-
ily program an application that handles spatio-temporal data streams by writing a high-level
(declarative) program specification.

PILOTS application programs must contain inputs and outputs sections. The inputs

section specifies the incoming data streams and how data is to be extrapolated from incomplete

Imai et al.

4

data, typically using declarative geometric criteria (e.g., closest, interpolate, euclidean

keywords). Note that these extrapolations are performed based on the current location and
time of the PILOTS system. The outputs section specifies outgoing data streams to be pro-
duced by the application, as a function of the input streams with a given frequency. errors

and signatures sections are optional and can be used to detect errors. Similar to the outputs

section, the errors section specifies an error stream to be produced by the application and
to be analyzed by the runtime system to recognize known error patterns as described in the
signatures section. If a detected error is recoverable, output values are computed from cor-
rected input data using correction formulas under the correct section (See Figure 7 for an
actual PILOTS program example).

3 Analyzing Tuninter 1153 Flight Data

Tuninter 1153 flight (TU1153) was a flight from Bari, Italy to Djerba, Tunisia on August 6th,
2005. About an hour after departure, the ATR 72 aircraft ditched into the Mediterranean Sea
due to exhaustion of its fuel, killing 16 of 39 people on board (see Figure 5 for the altitude
transition from the accident report [6]). The accident was caused by the installation of an
incorrect fuel quantity indicator. That is, a fuel quantity indicator for the smaller ATR 42 was
mistakenly installed, reporting 2150 kg more fuel than actually available. We call this incorrect
indicated weight fictitious weight following the accident report.

How could DDDAS have prevented this accident from happening? If all other conditions
are the same between two flights except for the weight, the one with lighter weight would have
a higher airspeed. If we could compute expected airspeed from the monitored weight, we can
compare the expected and monitored airspeed to detect if there is a discrepancy between the
two. Once the system detects the discrepancy, it can warn pilots in an early stage of the flight
to prevent the accident. Using this idea, we design a set of error signatures and evaluate it with
actual data recorded in the flight data recorder (black box) during the TU1153 flight.

3.1 Error Signatures Design

In the ATR 72 flight crew operating manual [7], there are tables for pilots to estimate cruise
airspeed (knots) under certain conditions of engine power settings, temperature difference to
the International Standard Atmosphere (˝C), flight level (feet), and weight (kg) of the aircraft,
which are denoted by va, t∆, h, and w respectively. According to the accident report, t∆ “ `10
is a reasonable approximation at the time of the accident. By using polynomial regression, we

�

����

�����

�����

�����

�����

� ���� ���� ���� ���� ����

�

�

�

�

�

�

�

�

�

	

�

�

�

�

���������	

�� ��
���

������
���

Figure 5: Altitude transition of the
TU1153 flight.

��

��

��

�

�

�

�

���� ���� ���� ���� ���� ����

�

�

�

�

�

�

�

�

�

�

�

	

���������	

��������

�����

	
����

���������

�����

	
����

��
�

Figure 6: Calibration of the error function
by the first cruise phase.

Imai et al.

5

can derive a formula for the estimated airspeed v̂a as follows:

v̂a “ zT ¨ k “

»

—

—

—

—

—

—

–

1
w
h

w ¨ h
w2

h2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T

¨

»

—

—

—

—

—

—

–

6.4869E` 01
1.4316E´ 02
6.6730E´ 03
´3.7716E´ 07
´2.4208E´ 07
´1.1730E´ 07

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6)

Using Equation 6, the error function is defined as the difference between the monitored (va)
and estimated (v̂a) airspeed:

epva, w, hq “ va ´ v̂a (7)

Figure 6 shows how the error function behaves for the first cruise phase from 2170 to 2370
seconds of the flight (see Figure 5 for the two cruise phases observed in the flight) using actual
weight. As we can see from the original error plot, error values range from around -4 to -1.5
knots. This is expected because there are variables that are not considered in Equation 6 such
as angle of attack, center of gravity, and aircraft tear and wear. To improve the overall fitness
of the error function to the TU1153 data, we can “calibrate” the error function by adding a
constant. In Equation 8, CP1 is a set of data points during the first cruise phase and N is the
number of data points in CP1 (i.e., N “ |CP1|). This equation is meant to find a constant
that minimizes the squared difference between the error function and the constant itself. By
subtracting the value of Kcalib “ ´2.59 from Equation 7, we get a new calibrated error function
ecalib “ e´Kcalib as shown in the dotted-line of Figure 6.

Kcalib “ argmin
k

1

N

N
ÿ

iPCP1

‖ ei ´ k ‖2“
1

N

N
ÿ

iPCP1

ei (8)

Since the error function is adjusted to be zero after calibration, naturally we use the error
value of zero with small margins to identify a normal condition. For underweight conditions,
we set a constraint that will identify 10% discrepancy in weight regardless of the value of τ .
Since the 10% weight difference leads to a 4.69 knots difference in airspeed using Equation 6
(computed by averaging over w “ 13000 „ 22000 kg at h “ 23000 feet), we use 4.69 as the
boundary for the underweight conditions. Note that from Equation 6, the estimated airspeed
v̂a monotonically decreases as the weight w increases for fixed h and t∆. Since cruise flights
keep the same altitude, the error should be positive in underweight conditions as occurred in
the TU1153 flight. In summary, we derive the error signature set shown in Table 1.

Table 1: Error signatures for the Tuninter 1153 flight.

Mode Error Signature
Function Constraints

Normal e “ k ´2 ă k ă 2
Underweight e “ k 4.69 ă k

Note that this error signature set is not generally applicable, but specifically adjusted for
the first cruise phase of the TU1153 flight. In a real-world application, we would use more data
sets to derive a general error signature set for ATR 72 aircraft; however, we do not have access
to actual ATR 72 flight data including airspeed, weight, altitude, and temperature. Therefore,
we create a model for the cruise phases, adjust it to the first cruise phase, and evaluate it with
the second cruise phase.

Imai et al.

6

3.2 PILOTS Program

A PILOTS program called WeightCheck implementing the error signature set of Table 1 is
presented in Figure 7. This program tries to detect an underweight condition by comparing the
monitored airspeed and estimated airspeed computed from the weight and altitude. Once the
program detects the underweight condition by the error signature S1, it estimates the corrected
weight ŵ by Equation 9, assuming airspeed, altitude, and temperature difference are all correct.
This equation is obtained by solving Equation 6 for w after the calibration (i.e., adding Kcalib

to the right-hand side of the equation).

ŵ “
´b´

?
b2 ´ 4ac

2a
, (9)

where a “ kp5q, b “ kp2q ` kp4q ¨ h,

c “ kp1q ` kp3q ` kp6q ¨ h2 ´ va `Kcalib.'

&

$

%

program WeightCheck;
/* v_a: airspeed , w: weight , h: altitude */
inputs

v_a , w, h(t) using closest(t);

outputs
corrected_w: w at every 10 sec;

errors
e: v_a - (6.4869E+01 + 1.4316E-02 * w + 6.6730E-03 * h + (-3.7716E-07) * w * h +

(-2.4208E-07) * w * w + (-1.1730E-07) * h * h) + 2.59;

signatures
S0(K): e = K, -2 < K, K < 2 "Normal";
S1(K): e = K, 4.69 < K " Underweight ";

correct
S1: w = 3.34523E-12 * (sqrt (1.09278E+22 * h * h + (-1.65342E+27) * h +

(-3.69137E+29) * v_a + 1.01119E+32) - 2.32868E+11 * h +
8.83906E+15);

end

Figure 7: A declarative specification of the WeightCheck PILOTS program.

3.3 Evaluation

Flight Data: The airspeed, fictitious fuel weight, and altitude of the aircraft are collected from
Attachment H of the accident report [6]. Since we need the total weight of the aircraft for our
model to work, we compute it by adding the fuel weight to the zero fuel weight of the aircraft.
As a result, before the departure, the fictitious weight of the aircraft is 19420 kg whereas the
real weight is 17270 kg.

Evaluation Criteria: We evaluate the performance of error detection based on accuracy
and response time, which are defined as follows:

• Accuracy: This metric is used to evaluate how accurately the algorithm determines the
true mode. Assuming the true mode transition mptq is known for t “ 0, 1, 2, . . . , T , let
m1ptq for t “ 0, 1, 2, . . . , T be the mode determined by the error detection algorithm.

We define accuracypm,m1q “ 1
T

řT
t“0 pptq, where pptq “ 1 if mptq “ m1ptq and pptq “ 0

otherwise.

Imai et al.

7

• Maximum/Minimum/Average Response Time: This metric is used to evalu-
ate how quickly the algorithm reacts to mode changes. Let a tuple pti,miq repre-
sent a mode change point, where the mode changes to mi at time ti. Let M “

tpt1,m1q, pt2,m2q, . . . , ptN ,mN qu and M 1 “ tpt11,m
1
1q, pt

1
2,m

1
2q, . . . , pt

1
N 1 ,m1N 1qu be the sets

of true mode changes and detected mode changes respectively. For each i “ 1 . . . N , we
can find the smallest t1j such that pti ď t1jq^pmi “ m1jq; if not found, let t1j be ti`1. The re-
sponse time ri for the true mode mi is given by t1j´ti. We define the maximum, minimum,

and average response times by max1ďiďN ri, min1ďiďN ri, and 1
N

řN
i“1 ri respectively.

Experimental Settings: We run the WeightCheck PILOTS program in Figure 7 for 1500
seconds, which is from 2000 to 3500 seconds after the departure including the first (2170–2370
seconds) and the second cruise phase (2960–3450 seconds), to see how the error signature set
works for these two cruise phases. On the other hand, we evaluate only the second cruise phase
since the error signature set is adjusted by the first cruise phase. The true mode changes for
the second cruise phase is defined as M “ tp2960, 1qu. The accuracy and average response time
are investigated for window sizes ω P t1, 2, 4, 8, 16u and threshold τ P t0.2, 0.4, 0.6, 0.8u.

Results: Figure 8 shows the transitions of (a) aircraft weights and (b) error and detected
modes when ω “ 1 and τ “ 0.8. As shown in Figure 8(b), the PILOTS program correctly
detects the underweight condition for the first cruise phase whereas it detects the underweight
condition well before the second cruise phase starts. This is because the error goes beyond 4.69
(the boundary for the underweight condition) around 2770 seconds. From Figure 8(a), we can
tell that corrected weight is reasonably close to the real weight during the first cruise phase,
but is not very close during the second phase. That is, the differences between the corrected
and real weights are at most -643 kg for the first cruise phase and -1935 kg for the second
cruise phase. This corrected weight discrepancy between the two phases can be explained by
inaccuracy of the airspeed estimation during the second cruise phase. This result reveals that
our airspeed prediction model is not accurate enough to precisely estimate the airspeed from
the weight, but nonetheless, it is able to detect the underweight condition.

When we ran the experiments for accuracy and response time, we noticed that the accuracy
was 1.0 and response time was 0 second for all combinations of ω and τ . As explained above, the
PILOTS program recognizes the correct mode (=1, underweight) for the entire second cruise
phase, which makes the accuracy 1.0. Since there is a 190 seconds (=19 window periods) buffer
between when the program starts recognizing the underweight condition at 2770 seconds and
when the actual second cruise phase starts at 2960 seconds, changing the window size ω from
1 to 16 does not affect the response time at all. Assuming the ground truth mode for the non
cruise phases is 0 (i.e., normal mode), the accuracy goes down to 0.84 for all mode detection
period (i.e., 2000-3500 seconds).

��

�

�

�

���

���

���

���

���

��

�

�

��

��

���� ���� ���� ����

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

���������	

���������	

���
�

��

��

�
	�

���������	

��������	

�����

�����

�����

�	���

�
���

�����

�����

���� ���� ���� ����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

�����������

����

�������
��

�����������

�
������	

�����������

���������	
��������	

����������	
����
�
�

�	�	��	�����	����������	��	����� �������������������������

��������� ������
��
��������

Figure 8: Aircraft weights and detected modes for the TU1153 flight (ω “ 1, τ “ 0.8).

Imai et al.

8

4 Related Work

There have been many systems that combine data stream processing and data base manage-
ment, i.e., Data Stream Management Systems (DSMS). PLACE [8] and Microsoft StreamIn-
sight [9] are DSMS-based systems supporting spatio-temporal streams. These DSMS-based
spatio-temporal stream management systems support general continuous queries for multiple
moving objects such as “Find all the cars running within a diameter of X from a point Y in the
past Z time”. Unlike these DSMS-based systems which handle multiple spatio-temporal ob-
jects, a PILOTS program is assumed to be moving and tries to extrapolate data that is relevant
to the current location and time. This approach narrows down the applicability of PILOTS;
however, users can more easily design error signatures to correct data on the fly thanks to the
declarative programming approach.

Fault detection, isolation, and reconfiguration (FDIR) has been actively studied in the
control community [10]. Mission critical systems, such as nuclear power plants, flight control
systems, and automotive systems, are main application systems of FDIR. FDIR systems 1) gen-
erate a set of values called residuals and determine if a fault has occurred based on residuals,
2) identify the type of the fault, and 3) reconfigure the system accordingly. To alleviate the
effect of noise on residuals, robust residual generation techniques, such as a Kalman-filter based
approach [11], have been used. Since the PILOTS system is a fault-tolerance system that
endures data failures, it is expected PILOTS’ framework has resemblance to FDIR systems.
However, due to PILOTS’ domain-specific programming language approach, PILOTS users
have the ability to control error conditions more generally through error signatures, which is
not part of the FDIR framework.

5 Conclusion and Future Work

Supplementing flight systems with error detection and data correction based on error signatures
can add another layer of (logical) fault-tolerance and therefore make airplane flights safer. With
a few tens of lines of PILOTS programs, a data scientist can test and validate their error
detection models in the form of error signatures. In previous work [3], we showed our error
signature-based approach was able to detect and correct the airspeed sensor failure in the Air
France 447 flight accident. In this paper, an evaluation of the Tuninter 1153 flight accident
illustrates the fuel quantity indicator failure could also have been detected.

Scalability becomes paramount as the number of data streams to be analyzed increases–
e.g., due to the increasing number of sensors in aircraft–and also, as we capture more complex
aircraft failure models as error signatures and damaged aircraft performance profiles. Future
work includes exploring distributed computing as a mechanism to scale the performance and
quality (e.g., see [12, 13]) of online (real-time) data analyses. It is also important to investigate
high-level abstractions (e.g., see [14]) that will enable data scientists and engineers to more
easily develop concurrent software to analyze data, and that will facilitate distributed computing
optimizations. Finally, uncertainty quantification [15, 16] is an important future direction to
associate confidence to data and error estimations in support of decision making.

Acknowledgments This research is partially supported by the DDDAS program of the Air Force

Office of Scientific Research, Grant No. FA9550-11-1-0332 and a Yamada Corporation Fellowship.

Imai et al.

9

References

[1] F. Darema, “Dynamic data driven applications systems: A new paradigm for application simula-
tions and measurements,” in Computational Science-ICCS 2004, pp. 662–669, Springer, 2004.

[2] S. Imai and C. A. Varela, “A programming model for spatio-temporal data streaming applications,”
in DDDAS 2012 Workshop at ICCS’12, (Omaha, Nebraska), pp. 1139–1148, June 2012.

[3] R. S. Klockowski, S. Imai, C. Rice, and C. A. Varela, “Autonomous data error detection and
recovery in streaming applications,” in DDDAS 2013 Workshop at ICCS’13, pp. 2036–2045, May
2013.

[4] S. Imai, R. Klockowski, and C. A. Varela, “Self-healing spatio-temporal data streams using error
signatures,” in 2nd International Conference on Big Data Science and Engineering (BDSE 2013),
(Sydney, Australia), December 2013.

[5] Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, “Flight AF447 on 1st
June 2009, A330-203, registered F-GZCP.” http://www.bea.aero/en/enquetes/flight.af.447/

rapport.final.en.php, 2012.

[6] ANSV - Agenzia Nazionale per la Sicurezza del Volo, “Final Report: Accident involving ATR
72 aircraft registration marks TL-LBB ditching off the coast of Capo Gallo (Palermo - Sicily).”
http://www.ansv.it/cgi-bin/eng/FINAL%20REPORT%20ATR%2072.pdf, August 2005.

[7] ATR, ATR72 - Flight Crew Operating Manual. Aerei da Trasporto Regionale, July 1999.

[8] M. F. Mokbel, X. Xiong, W. G. Aref, and M. a. Hammad, “Continuous query processing of
spatio-temporal data streams in PLACE,” GeoInformatica, vol. 9, pp. 343–365, 2005.

[9] M. H. Ali, B. Chandramouli, B. S. Raman, and E. Katibah, “Spatio-temporal stream processing
in Microsoft StreamInsight,” IEEE Data Eng. Bull., pp. 69–74, 2010.

[10] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfigu-
ration methods,” IEEE Trans. Control Systems Technology, vol. 18, no. 3, pp. 636–653, 2010.

[11] T. E. Menke and P. S. Maybeck, “Sensor/actuator failure detection in the Vista F-16 by multi-
ple model adaptive estimation,” IEEE Trans. Aerospace and Electronic Systems, vol. 31, no. 4,
pp. 1218–1229, 1995.

[12] K. E. Maghraoui, T. Desell, B. K. Szymanski, and C. A. Varela, “The Internet Operating Sys-
tem: Middleware for adaptive distributed computing,” International Journal of High Performance
Computing Applications (IJHPCA), vol. 20, no. 4, pp. 467–480, 2006.

[13] S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud computing using application-level
migration,” in 5th IEEE/ACM International Conference on Utility and Cloud Computing (UCC
2012), (Chicago, Illinois, USA), November 2012.

[14] C. A. Varela, Programming Distributed Computing Systems: A Foundational Approach. MIT
Press, May 2013.

[15] E. Prudencio, P. Bauman, S. Williams, D. Faghihi, K. Ravi-Chandar, and J. Oden, “Real-time
inference of stochastic damage in composite materials,” Composites Part B: Engineering, vol. 67,
pp. 209–219, 2014.

[16] D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, and K. Willcox, “Multifidelity DDDAS meth-
ods with application to a self-aware aerospace vehicle,” in DDDAS 2014 Workshop at ICCS’14,
pp. 1182–1192, June 2014.

Imai et al.

10

http://www.bea.aero/en/enquetes/flight.af.447/rapport.final.en.php
http://www.bea.aero/en/enquetes/flight.af.447/rapport.final.en.php
http://www.ansv.it/cgi-bin/eng/FINAL%20REPORT%20ATR%2072.pdf

	Introduction
	Error-Tolerant Spatio-Temporal Data Streaming
	Error Detection and Correction Methods
	Spatio-Temporal Data Stream Processing System
	System Architecture
	PILOTS Programming Language

	Analyzing Tuninter 1153 Flight Data
	Error Signatures Design
	PILOTS Program
	Evaluation

	Related Work
	Conclusion and Future Work

