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Abstract

Detecting and recovering from errors in data streams is paramount to developing successful autonomous real-time
streaming applications. In this paper, we devise a multi-modal data error detection and recovery architecture to enable
automated recovery from data errors in streaming applications based on available redundancy. We formally define
error signatures as a way to identify classes of abnormal conditions and mode likelihood vectors as a quantitative
discriminator of data stream condition modes. Finally, we design an extension to our own declarative programming
language, PILOTS, to include error correction code. We define performance metrics for our approach, and evaluate
the impact of monitored data window size and mode likelihood change threshold on the accuracy and responsiveness
of our data-driven multi-modal error detection and correction software. Tragic accidents—such as Air France’s flight
from Rio de Janeiro to Paris in June 2009 killing all people on board— can be prevented by implementing auto-pilot
systems with an airspeed data stream error detection and correction algorithm following the fundamental principles
illustrated in this work.

Keywords: redundant data error correction, spatio-temporal data streams, programming languages

1. Introduction

We present a software framework for developing resilient data driven applications and systems that act upon re-
dundant spatio-temporal data streams. In this work we assume a spatio-temporal data streaming application model,
where input streams associated to space and time get converted into output streams and error streams according to a
mathematical description of the behavior of the application. Much like redundant bits in error correcting hardware,
stream redundancies allow for dynamic detection and correction of known types of failures. Redundancy is a key
aspect present in many spatio-temporal data streaming applications. However, unless it is effectively used by systems,
autonomous recovery from error conditions is not possible. There are many complex ways in which a set of redundant
input streams may fail. We propose a system towards automatically correcting known failures that can be detected in
the source streams. We formalize error signatures, mathematical function patterns that enable autonomous systems to
accurately detect when an erroneous condition exists in an input data stream. A multi-modal architecture uses these
error signatures to switch each stream between different modes of operation. Mode likelihood vectors are computed
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in real-time by interpolating streamed data to a set of known error signatures. These vectors are used to determine
the condition that input streams are exhibiting. When in a known error condition mode, the erroneous original data
stream is automatically replaced by a data stream that is computed from the redundant (correct) data streams. The
system dynamically adapts to errors in the data streams by switching modes, and it can resume normal behavior when
input data is no longer categorized as being erroneous. We design an extension to PILOTS, a declarative program-
ming language to not only compute error signatures from high-level specifications of spatio-temporal data streaming
applications, but also to enable these applications to recover from known errors by using available redundancy in the
data.

The Air France AF447 accident in June 2009 left 12 crew members and 216 passengers dead [1]. The reason
for the crash was faulty sensor data that caused the automatic pilot to disengage, ultimately confusing the human
pilots who were unable to take timely corrective actions. The pitot tubes of the airplane began to freeze which caused
incorrect air speed readings, switching the plane from normal law to alternate law, and eventually causing the pilots to
enter an unintended fatal stall. After a technical investigation by the Bureau d’Enquêtes et d’Analyses pour la Sécurité
de l’Aviation Civile (BEA) it is clear that this error condition is detectable and can be corrected by an active redundant
data-driven flight system. We argue that disasters like this are preventable by using an automatic pilot that implements
the framework described in this paper: a multi-modal dynamic data-driven error correction software framework using
error signatures and mode likelihood vectors.

2. Data Error Detection and Correction Architecture

Our contribution is an autonomous error correcting architecture for data streaming applications (depicted in Fig-
ure 1). The architecture was designed for applications with redundant input streams. For a set of input streams
D � td1, d2, ..., dnu, the redundancy of the streams can be defined as the set of functions R � tr1, r2, ..., rmu where
each ri is a function ripd̂1, . . . , d̂kq � d j for j P r1...ns, k   n, d̂1, . . . , d̂k P D and d j R td̂1, . . . , d̂ku. An error function
associated to a particular input stream d j may take the form e j � d j � ripd̂1, . . . , d̂kq, where ri is the redundancy func-
tion ripd̂1, . . . , d̂kq � d j. We define error signatures as the shape of these error functions for previously known error
conditions. Additionally we formalize the mode likelihood vector, which is used to determine whether there is an error
and whether or not it can be corrected. Data stream error correction is provided in the case that a redundancy within
the other working streams is available. Especially in the case of spatio-temporal streams that use inherently redundant
physical data such as those found in a flight system using sensor data, error signatures enable developing effective
real-time error warning and correction systems. We contend that our proposed software framework can be useful to
prevent tragedies such as the Air France plane crash. For this purpose we are developing PILOTS: a programming
language for spatio-temporal data streaming applications [2]. PILOTS allows us to view heterogeneous data streams
as homogeneous by declaratively selecting data according to geometric principles. In this paper, we describe an exten-
sion to the language design to include error correction code using the notion of error signatures. This software should
prove very helpful for streaming application developers to enable them to create effective error correcting software.

2.1. Error Signatures

The purpose of an error signature is to be able to reason about which data stream may contain an error. A collection
of error signatures, called an error signature set, is matched against the observed error which provides a means of
error detection. We assume the existence of an error function which is simply a function of the input streams that
captures the redundancy in the data streams. The measured error for an application is the value of the error function
over a window of time. Each error signature corresponds to a particular type of failure in the input streams. The
effectiveness of error signatures is highly dependent on the choice of error function. When there are no problems with
the input streams, error functions typically evaluate to zero.

An error signature describes the behavior of the error function under particular operating conditions which we
choose to call modes. An important distinction is made between theoretical error signatures, which correspond to
known error modes, and measured error which is generated by looking at the raw input data. Theoretical error signa-
tures are currently defined as a function of time which may contain constants k0, . . . , kn satisfying a set of constraints.
In order to identify useful error signatures for a particular application, we currently employ an empirical method of
simply running a simulation using data that exhibits a certain type of error and observe the results in the measured
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Figure 1: Data streaming architecture with error detection and correction

error. The error signature under normal conditions signifies that no errors have been detected. When all input streams
are working properly the system assumes normal mode. Otherwise one of three modes is assumed: unknown, re-
coverable, or unrecoverable. If the system reaches recoverable mode, an error signature has been matched with the
observed error and the appropriate redundancy is available to replace the stream producing the error. Thus for each
error signature there exists a corresponding mode. If no redundancy is available the system switches to unrecoverable
mode where a flag is raised (e.g., a red light bulb) denoting the type of error that was detected. In unknown error mode
a similar type of flag is raised, but there is no known error signature that corresponds to the observed error. Only
specific types of errors, those which have distinct error signatures and place the system into a recoverable mode, can
be detected and corrected.

2.2. Error Detection

The measured error is compared to each of the theoretical error signatures in an attempt to find a strong match.
Our current method for comparing error signatures is accomplished by formulating what we call the mode likelihood
vector. Let ts0, . . . , snu be the collection of known theoretical error signatures, where s0 corresponds to the normal
mode signature with no errors. We calculate the distance vector ∆ptq �  δ0ptq, . . . , δnptq ¡ where δiptq is the distance
between the measured error eptq and siptq. Specifically, δiptq �

³t
t�ω |eptq � siptq|dt where eptq is the measured error

and ω is the window size. The smaller the distance, the closer the raw data is to the theoretical signature. We formally
define the mode likelihood vector to be Lptq �  l0ptq, l1ptq, . . . , lnptq ¡ where each liptq is defined as:

liptq �

#
1, if δiptq � 0
mintδ0ptq,...,δnptqu

δiptq
, otherwise.

Observe that for each li P L it follows that 0 ¤ li ¤ 1, where li represents the ratio of the likelihood of signature si

being matched with respect to the likelihood of the best signature. At each time stamp, the maximum two elements l j

and lk of the mode likelihood vector, where l j ¡ lk, are inspected in order to determine the error mode. Because of the
way Lptq is created, the maximum entry l j will always be equal to 1. Given a threshold τ P p0, 1q we check for one
likely candidate that is sufficiently more likely than its successor by ensuring that lk ¤ τ. Consequently, a known error
mode is assumed. The correct mode is determined by choosing the error signature, and error mode, corresponding to
l j which is s j. Each recoverable error mode uniquely determines the input streams that are erroneous. If j � 0 then
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the system is in normal mode. If lk ¡ τ then, regardless of the value of j, unknown error mode is assumed and an
error flag is raised. No corrective action can be taken because the measured error cannot be recognized, and the input
data flows through the application uncorrected. A well-behaved set of error signatures will produce nearly orthogonal
mode likelihood vectors, where one element is a one and the rest are close to zero. In sections 3 and 4 we study the
impact of the choice of theoretical error signature sets on detection and correction results.

2.3. Error Recovery
If we assume that the system is in one of the known error modes (i.e., a match has been found for the measured

error) then an attempt can be made at correcting the error. Recall that the error function is given and contains infor-
mation about the redundancy between data streams. If an input stream d j experiences an error and a redundancy ri

exists which can replace that stream, then the error is recoverable. After the error has been corrected, the original
input streams will continue to be monitored to determine if the error has subsided and the system is able to reenter
normal mode.

3. Twice: A Case Study

We explore how error signatures affect the values of mode likelihood vectors defined in Section 2 by using a very
simple data streaming application called Twice.

3.1. A Simple Data Streaming Application
Twice is a simple data streaming application which takes two input data streams, a and b, where b is supposed to

be twice as large as a, and outputs an error defined by b�2�a. Stream data for a and b are expected to increase by one
for a and by two for b every second (i.e., aptq � t and bptq � 2 � t), so the error is zero in the normal case; however,
several modes of errors could happen depending on different types of failures as shown in Figure 2. Figure 2(a) shows
normal mode, where most of the time the error remains zero, but there are several spikes due to transient fluctuation
of the data input timing. Figure 2(b) suggests critical failure of a’s data source. We will call this a failure mode. At
around 50 seconds of the simulation time, the error starts growing linearly. This linear increase of the error explains
that a remains a constant value whereas b continues increasing its value. Similarly, Figure 2(c) shows a situation
where a correctly increases, but b fails to increase its value. Similarly, we will call this b failure mode. Figure 2(d)
shows an example of an out-of-sync mode, where the error becomes consistently large at around 30 seconds of the
simulation time. This is because a’s input data stream becomes consistently one second behind b’s input data stream.
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Figure 2: Known error patterns for twice example

3.2. Error Signatures for Twice
To correctly differentiate the four different modes of errors presented in Figure 2, we define error signatures for

each mode. In the course of our case study, we evaluated three sets of error signatures as shown in Table 1. For the
no error, a failure, and b failure modes, all error signatures are the same in these error signature sets. That is, e � 0
for no error, e � 2t � k for a failure, and e � �2t � k for b failure. Each error signature is designed to capture a
characteristic pattern of error we see in the previous section. For example, an error signature for a failure is a linear
function with a slope of 2 and a constant k, which resembles the increasing line starting at around 50 seconds of
a failure shown in Figure 2(b). Differences among error signature sets are limited to the out-of-sync failure mode.
Both base and out-of-sync restricted error signature sets have e � k for the out-of-sync mode, but the out-of-sync
restricted imposes a constraint on the value of k (|k| ¡ τoos). The τoos threshold is intended to prevent noise and small
out-of-sync conditions from being categorized as abnormal.
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Table 1: Error signature sets defined for twice example
Mode

Error signature set No error A failure B failure Out-of-sync
Base e � k, where k � 0

Out-of-sync restricted e � 0 e � 2t � k e � �2t � k e � k, where |k| ¡ τoos

Out-of-sync removed none

3.3. Mode Estimation Study
Using the error signatures defined in Table 1, we estimate the operating modes for a 480 seconds sequence of

measured error including mode change within sixty-second intervals as shown in Figure 3(a). Figure 4(a) shows the
ground truth: the transition of modes that is used to generate the streams. In Figure 4, modes are mapped to 0 for
unknown, 1 for no error, 2 for a failure, 3 for b failure, and 4 for out-of-sync. For each set of error signatures presented
in the previous section, we first compute the likelihood of each mode, and then estimate mode likelihoods relative to
the maximum likelihood which represents the minimum signature interpolation distance.
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Figure 3: Measured error and mode likelihood results for twice example

The results of the mode likelihood and the estimated modes are shown in Figure 3(b)-(d) and 4(b)-(d) respectively.
Figure 3(b) and 4(b) are results for the base error signatures, Figure 3(c) and 4(c) are results for the out-of-sync
restricted error signatures, and Figure 3(d) and 4(d) are results for the out-of-sync removed error signatures.

• Base: Looking at the result of estimated mode in Figure 4(b), most of the first and last 60 seconds are recognized
as the out-of-sync mode, where they are actually supposed to be in the normal mode. This incorrect estimation
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occurs because the given error in Figure 3(a) contains noise so that the actual value of the error is not always
exactly zero. Thus, the out-of-sync error signature fits better to the measured error than no error since the
constant k in the out-of-sync error signature can be any value other than zero. This essentially illustrates an
ill-defined error signature set: since normal and out-of-sync conditions are difficult to distinguish from each
other, computed mode likelihood vectors are far from orthogonal.
• Out-of-sync restricted: The result of estimated mode in Figure 4(c) looks closer to the true mode in Figure 4(a)

than the result of the base error signature set. The threshold τoos (τoos � 20 for this experiment) is a constraint
on the out-of-sync error signature that prevents it from matching the first and last 60 seconds, and correctly lets
the normal signature match those periods instead.
• Out-of-sync removed: The result of estimated mode in Figure 4(d) does not match the out-of-sync mode at

around 120-180 and 300-360 seconds since that mode does not exist, but it successfully goes into unknown
error mode which are valid estimations when using this signatures set. Also, it succeeds to match normal mode
at around 0-60 and 420-480 seconds most of the time.
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Figure 4: Estimated modes for twice example

4. Performance Metrics and Experimental Results

We evaluate the performance of the proposed error detection algorithm which depends on the window size, ω,
representing how much historical data we consider, and the minimum likelihood threshold τ, representing how well
data must match a single signature in order to select a corresponding operation mode.
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4.1. Performance Metrics

• Accuracy: This metric is used to evaluate how accurately the algorithm determines the true mode. Assuming
the true mode transition mptq is known for t � 0, 1, 2, ...,T , let m1ptq for t � 0, 1, 2, ...,T be the mode determined
by the error detection algorithm. We define accuracypm,m1q � 1

T

°T
t�0 pptq, where pptq � 1 if mptq � m1ptq

and pptq � 0 otherwise.
• Average Response Time: This metric is used to evaluate how quickly the algorithm reacts to mode changes.

Let a tuple pti,miq represent a mode change point, where the mode changes to mi at time ti. Let M �
tpt1,m1q, pt2,m2q, ..., ptN1 ,mN1qu and M1 � tpt11,m

1
1q, pt

1
2,m

1
2q, ..., pt

1
N2
,m1

N2
qu be the sets of true mode changes

and detected mode changes respectively. We compute the average response time as shown in Algorithm 1.

input : True mode changes M � tpt1,m1q, pt2,m2q, ..., ptN1 ,mN1qu, tN1�1 � simulation end time,
Detected mode changes M1 � tpt11,m

1
1q, pt

1
2,m

1
2q, ..., pt

1
N2
,m1

N2
qu

output: Average response time AvgResp

Responses � 0;
for i Ð 1 to N1 do

Find the smallest t1j such that pti ¤ t1jq ^ pmi � m1
jq; if not found, t1j Ð ti�1;

Responses � Responses � pt1j � tiq;
end
return AvgResp � Responses{N1;

Algorithm 1: Average response time computation

4.2. Experimental Results

Based on the metrics defined in the previous section, we evaluate the monitored error for the twice example in
Figure 3(a) with five different random seeds for noise generation. We use each of the error signature sets for evaluation:
base, out-of-sync restricted, and out-of-sync removed. For the base and out-of-sync restricted error signature sets, a
set of true mode changes is given by M � tp1, 1q, p61, 3q, p121, 4q, p181, 2q, p301, 4q, p361, 3q, p421, 1qu. However, for
the out-of-sync removed error signature, we replace the out-of-sync errors with unknown errors (respectively 4 and 0
on the y-axis of Figure 4) in M. We do this for fairness because the out-of-sync removed error signatures cannot detect
an out-of-sync error at all. To find out the effect on the accuracy and average response time by the window size ω and
threshold value τ, we measure these metrics for window size ω P t5, 10, 15, 20u and threshold τ P t0.2, 0.4, 0.6, 0.8u.

Accuracy and average response time results for the base, out-of-sync restricted, and out-of-sync removed error
signature sets are shown in Figure 5. For all the three error signature sets, there is a trend that the accuracy and
average response time improve as the threshold τ increases. This result can be explained by the following: there are
some cases in which there are two competing modes whose likelihood values are close to each other, and due to the
closeness, the mode detection algorithm tends to regard it as an unknown error mode. Higher threshold values are
more permissive, thus give better results in this example. However if the choice of τ is too large then this system may
choose to enter a known error mode when the correct choice is actually unknown error mode.

There is a positive correlation between the window size and average response time for all the threshold values.
This is an intuitive result: the less the algorithm uses past data, the more responsive it becomes to mode changes.
Also, a faster average response time leads to a better accuracy result since the error detection algorithm cannot predict
mode changes, but only react to them. That is, a smaller window size implies better accuracy. In fact, the base and
out-of-sync restricted error signature sets take the best accuracy/average response time when the window size is the
smallest ω � 5 and threshold τ � 0.8. On the other hand, in the case of the out-of-sync removed error signature set,
the accuracy and average response time are peaked when window size ω � 10. Thus, the most appropriate window
size is different depending on each error signature set.

The out-of-sync removed error signature set works best. By analyzing three different sets of error signatures
for this simple example, we see the importance of the error signature set to get accurate mode estimation results
quickly. Especially, as we can see in the results from the base error signatures set, error signatures should not be very
close in terms of error patterns they match, otherwise those error signatures are vulnerable to noise. Well-behaved
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error signatures are those that, under normal and known error conditions, produce near orthogonal mode likelihood
vectors.

5. Implementation with A Spatio-Temporal Data Streaming Programming Language

PILOTS (ProgrammIng Language for spatiO-Temporal data Streaming applications) is a programming language
specifically designed for analyzing data streams incorporating space and time, as in applications running on moving
objects [3, 2]. Using PILOTS, application developers can easily program an application that handles spatio-temporal
data streams by writing a high-level declarative program specification. The system architecture for applications im-
plemented in the PILOTS programming language is shown in Figure 1: everything outside of the dotted box. In this
architecture, the application gets data pd11, d

1
2, . . . , d

1
nq from the data selection module. This takes incoming heteroge-

neous spatio-temporal data streams (d1, d2, . . . , dn) and outputs homogeneous data streams depending on the current
location and time, and the application generates output (o1, o2, . . . , om) and data errors (e1, e2, . . . , el) based on an ap-
plication model. Whereas spatio-temporal data is available with various spatial density and time frequency depending
on data sources, applications often need to process data at a constant frequency. To view such heterogeneous data
streams as homogeneous data streams, the data selection module specifically provides first-class support for data se-
lection and interpolation so that applications can get data consistently regardless of the data’s original spatio-temporal
heterogeneity.

We extend the PILOTS programming language to incorporate an error correction method. Two new keywords,
signatures and correct, are introduced in addition to the existing PILOTS grammar defined in [3] to specify
which data streams have an associated redundancy and how to correct the incoming data. The statements under
the signature keyword describe the application’s error signature set. Each statement has a label containing any
constant parameters, a functional description of the error signature, and an optional list of constraints on the constant
parameters separated by commas. The statements under the correct keyword declare the relationship between a
particular error signature, the corresponding erroneous stream, and the redundancy available to fix the error. This
information is enough to know how to handle recoverable error modes. If a data error is detected when matching a
known error signature, we can correct an erroneous input as specified under correct. If a signature is not included in
the correct clause, then it is a known but unrecoverable error. Here we explain how error corrections can be written
in the program specification by using the Twice example, as shown in Figure 6. The error correction support for
PILOTS is realized by the error detection module, depicted in Figure 1, which takes all the error outputs pe1, e2, ..., elq
and tries to detect erroneous data inputs by comparing the error outputs with the known error signatures. If an error
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on data input d1i is detected, it will be replaced by the value specified in the correct clause by the error recovery
module. '

&

$

%

program twice;

inputs

a: (t) using closest(t);

b: (t) using closest(t);

outputs;

errors

e: (b - 2 * a) at every 1 sec;

signatures

s0: e = 0;

s1(k): e = 2*t + k;

s2(k): e = -2*t + k;

s3(k): e = k, abs(k) > 20;

correct

s1(k): a = b / 2;

s2(k): b = 2 * a;

end;

Figure 6: A simple program specification with error correction

6. Related Work

First and foremost this work builds upon the programming language PILOTS [2, 3] which targets spatio-temporal
data streaming applications such as those found in flight systems. The detailed investigation reported in [1] suggests
that our notion of error signatures to detect data errors can be quite useful. The concept of the moving object data base
(MODB) which supports spatio-temporal data streaming is discussed in [4]. This research is relevant because many
applications of error signatures will include data corresponding to a moving object (such as a plane).

Stream processing has become very attractive in the last decade. Surveys on general data streaming applications
and methods include [5, 6]. The concept of the rule engine is discussed in [5] which has many similarities to our
error signatures system but does not correct the input streams. General-purpose data stream management systems
[7, 8, 9] cannot afford the declarative specification of data streams and data error correction that our domain-specific
approach provides. In [10] a component is added to stream processing systems to orchestrate the behavior of the
applications, including correcting domain specific errors. However this is an event driven system, the input data is
not being directly monitored. To incorporate error correction using the notion of error signatures into a distributed
environment, the work presented in [11] for setting up a set of distributed stream processing systems may be useful.
A distributed data processing framework can help with the performance and scalability of data analyses.

7. Conclusion

In this paper we devised a multi-modal data error detection and recovery architecture based on our definition of
error signatures as mathematical function patterns. We defined mode likelihood vectors as a quantifiable measure
of the likelihood of the application being in a normal or a particular error mode, as defined by an error signature.
Well-behaved error signatures are those that produce orthogonal mode likelihood vectors on normal and known error
conditions. Ill-defined error signatures (those producing non-orthogonal vectors) lead to more undesirable or incorrect
unknown error mode conditions, rendering our error detection and correction framework less useful. Real-time anal-
ysis of error streams and pattern matching against known error signatures enables streaming applications to switch
from normal operation mode into known error modes. If the known error is recoverable, thanks to the redundancy
available in the data, we autonomously correct the faulty data stream, so that applications continue to behave nor-
mally. Furthermore, we continue monitoring the input streams, so that normal operation can be reinstated when data
are considered no longer erroneous.

Accuracy and responsiveness depend on the window size, ω, of the monitored data, and on the threshold, τ, im-
posed on the relative likelihood of a mode before accepting a change in the application’s mode of operation. Using a
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simple streaming application we found that, the larger ω is, the less responsive (higher response time) the algorithm.
However if ω is too small, the system enters unknown mode more frequently affecting both accuracy and responsive-
ness. When the signature set is well-behaved, τ has less effect on accuracy, since mode likelihood vectors will be near
orthogonal. However, for less well-behaved signature sets, smaller values of τ will cause the system to enter unknown
error mode more often, while larger values of τ will produce more false positives. Since, the requirements on accu-
racy and responsiveness are ultimately application-dependent, application developers need to find the right balance
of these parameters to tune their applications’ error detection and correction behavior. The implementation of the
extended PILOTS programming language, due to its declarative nature, will help quickly prototype new applications
and develop better error detection and correction methodologies.

Future work includes creating well-behaved error signatures for aeronautical applications in order to correct redun-
dant data such as air speed or fuel levels. We intend to extend this work to incorporate quantitative logical inference
based on spatio-temporal knowledge and constraints to promote autonomous data stream management. A method for
enforcing logical constraints within streaming applications is presented in [12]. A comprehensive look at the varia-
tions of spatio-temporal logic and their computational complexity is presented in [13]: the dichotomy of qualitative
and quantitative logic is discussed with respect to space and time. Further research on spatio-temporal logic and
constraint logic programming includes [14, 15].
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[1] B. d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, Final Report: On the accident on 1st June 2009 to the Airbus A330-203
registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro - Paris.
URL http://e1.flightcdn.com/live/special/Air_France_447_AFR447_Final_Report-en.pdf

[2] S. Imai, C. A. Varela, Programming spatio-temporal data streaming applications with high-level specifications, in: 3rd ACM SIGSPATIAL
International Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST) 2012, Redondo Beach, California, USA, 2012.

[3] S. Imai, C. A. Varela, A programming model for spatio-temporal data streaming applications, in: Dynamic Data-Driven Application Systems
(DDDAS 2012), Omaha, Nebraska, 2012, pp. 1139–1148.

[4] K. An, J. Kim, Moving objects management system supporting location data stream, in: Proceedings of the 4th WSEAS international confer-
ence on Computational intelligence, man-machine systems and cybernetics, CIMMACS’05, World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA, 2005, pp. 99–104.
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