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We present a novel approach to formally verify data-driven models for state classification

in the domain of aerospace. Dynamic data-driven application systems (DDDAS) extend first-

principles models with dynamically sensed data enabling the diagnosis and healing of aircrafts

during flight. The intrinsic complexity of these systems makes them prone to spurious errors

caused by unseen conditions. Formal (software) verification is a technique that goes beyond

unit testing or statistical model checking, which can only guarantee system correctness over a

fraction of the system’s input space. Safety envelopes bound regions of the system’s input space

where a formal proof of correctness of state classification holds. We focus on two questions for

defining safety envelope boundaries: (i) does the data follow the model? and (ii) what is the most

likely state of the system given the data? We evaluate safety envelopes with data derived from

a wind tunnel experiment tackling the problem of stall detection given piezo-electric sensor

measurements over a wing’s skin. We define tailored metrics to show the quality of different

data-driven models. We encode safety envelopes in the proof assistant Agda, and illustrate

their applicability across a variety of input dimensions and Gaussian Process Regression Model

(GPRM)-generated data.

I. Introduction
Aerospace systems are increasingly being used in societal applications from urban air mobility, to bringing packages

to customers, to surveying fields of crops, to monitoring wildfires and disaster areas. Yet to be truly autonomous as

needed in many of these applications, they lack in terms of self-diagnosis, self-healing, and overall self-awareness.

One path forward for aerospace systems to strengthen their resilience is to make them capable of sensing, reasoning,

and reacting in real-time, which inevitably means optimal control and decision-making abilities [1]. This is to be

aided by access to an unprecedented amount of real-time data from onboard sensors, from which the aeroelastic state,

environmental conditions, and structural conditions of aerospace systems [2, 3] can be derived. Smart aerospace

systems will be capable of detecting aerodynamic conditions, e.g., stall or flutter, using data from a variety of sources
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including piezoelectric sensors, placed on the wings of an aircraft, satellite information, and accurate models of their

environment [1, 4]. Dynamic data-driven applications systems (DDDAS) [5] are meant to use this data to create accurate

aerodynamic models that can be updated in real-time and be used to determine the aerodynamic performance of flight

systems [6].

Since the failure of safety-critical aerospace systems can cause harm to human life, the environment, or property [7],

it is imperative to guarantee the correct and safe behaviour of every component in these systems. Statistical model

checking [8] has been used in the analysis of statistical systems such as aerospace systems, although it can only guarantee

correctness for a finite portion of the input space of the system. Krishnan and Lalithambika [9] present an example of

how to use bounded model checking for the analysis of onboard computer code in the Promela language. As models

grow and become more complex, the so-called state space explosion becomes a problem for model checking as the time

necessary to guarantee any property becomes intractable, thus the need to use statistical and bounded model checking,

which explore a portion of the state space. Formal verification goes a step forward and guarantees the correctness of

the system specified with it, but only if the system can be fully described. There has been recent work in the formal

verification community on complex statistical aerospace systems. The VeriDrone project [10] builds upon existing work

using differential dynamic logic [11] to formally verify properties of hybrid systems [12]. Abed et. al [13] formally

verify the continuous dynamics that govern the behaviour of uncrewed aerial vehicles (UAVs), for which they formalize

the differential equations and dynamics in higher-order logic (HOL). Cohen et. al [14] formally verify the Ellipsoid

method used for receding horizon control written in the C language. They modify the algorithm to prevent numerical

instability.

We introduce safety envelopes, as boundaries in the system’s input space where we can formally verify parameterized

probabilistic statements on the accuracy of state estimation and classification by data-driven models. In the same

manner, flight performance envelopes define a region where it is safe for an aircraft to operate, safety envelopes define

regions where a classification is correct according to 𝑧-predictability and 𝜏-confidence. 𝑧-predictability∗ captures the

statement “the data follows the model”, and 𝜏-confidence captures the statement “the state of the system can be accurately

determined from the data”. The goal of safety envelopes is to reduce Type I and Type II errors when estimating the

classification of a value by defining clear boundaries for the state of a system, thus defining safety regions where the

system should be constrained to operate. Safety envelopes can only guarantee behavior for stochastic systems that

follow the underlying statistical assumptions on the data, e.g., Gaussian distributions. Special runtime programs called

monitors [15] can analyze real-time data against a safety envelope and determine whether the system is in a distinctly

safe state or whether an action should be taken to steer the system away from an unsafe state.

∗𝑧 from the 𝑧-score in statistics.
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Fig. 1 The composite wing and the wind tunnel setup used to collect data under different flight states. Adapted
with permission from Kopsaftopoulos et al. [3]. Copyright 2017 Elsevier Ltda.

The contributions of this paper include:

• Definition of safety envelopes as system input regions where probabilistic statements have been formally verified

for a statistical data-driven model.

• Presentation of metrics for safety envelopes. Safety envelopes differ from binary classification in which the output

of classification is one of three values, not two: positive estimation, negative estimation, and not in the safety

envelope.

• Formalization, i.e., specification and proof, of four probabilistic properties, and monitor generation using the

Agda proof assistant [16] and the Haskell programming language.

• Application of safety envelopes to a safety-critical aviation problem, stall detection, using data from piezoelectric

sensors embedded on a wing’s skin. Three classes of Gaussian-based models are considered: univariate, bivariate,

and univariate extended with artificial data by GPRMs.

The rest of this paper is organized as follows. Section II introduces our data-driven flight model, including wing

piezoelectric sensor experiments, data collection, and preprocessing strategy. Section III defines safety envelopes and

presents quality metrics for choosing different parameters used in safety envelopes. Section IV presents proofs, an

example of how the proofs are formally verified in Agda, and the code generation of runnable code from the theory.

Section V contains the evaluation of safety envelopes under three different scenarios: univariate data, bivariate data, and

GPRM-generated data, for the problem of stall detection. Finally, Section VI discusses related work, and Section VII

concludes including potential future work.

II. The data-driven flight model
The complete experimental assessment and evaluation of this work is based on a prototype composite uncrewed

aerial vehicle (UAV) wing with embedded sensing capabilities. The prototype wing was designed, constructed, and

tested at Stanford University (Figure 1); for a detailed presentation of the wing, see [2, 3]). The wing design is based

on the cambered SG6043 high lift-to-drag ratio airfoil with a 0.86m span, 0.235m chord, and an aspect ratio of 7.32.

The wing was outfitted with 32 distributed piezoelectric lead zirconate titanate (PZT) sensors (disc PZT 3.175mm
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Fig. 2 Indicative signals obtained from a piezoelectric sensor under various angles of attack: (a) freestream
velocity𝑈∞ = 11 m/s (top subplot) and (b) freestream velocity𝑈∞ = 17 m/s (bottom subplot).

in diameter) and 24 strain gauges to measure its dynamic response. The prototype composite wing was tested in the

open-loop low-turbulence wind tunnel facility at Stanford University. A series of wind tunnel experiments was conducted

for various angles of attack (AoA) and freestream velocities𝑈∞. For each AoA, spanning the range from 0 degrees up

to 18 degrees with an incremental step of 1 degree, data was sequentially collected for all velocities within the range 9

m/s to 22 m/s (with a step of 1 m/s). The above procedure resulted in a grid of flight state data sets corresponding to 266

different experiments covering the complete range of the considered flight states. For each experiment the vibration

response was recorded at different locations on the wing via the embedded piezoelectric sensors (initial sampling

frequency 𝑓𝑠 = 1000 Hz, initial signal bandwidth 0.1 − 500 Hz). The signals were recorded via a National Instruments

X Series 6366 data acquisition module featuring eight 16-bit simultaneously sampled analog-to-digital channels. The

initial signals were low-pass filtered (Chebyshev Type II 12th order; cut-off frequency 80 Hz) and sub-sampled to a

resulting sampling frequency of 𝑓𝑠 = 200 Hz.

In order to investigate the response of the wing under varying AoA and airspeed and determine its flight state, a

statistical signal energy analysis was performed for the different sensors. The initial signal of 90 s (𝑁 = 91, 000 samples)

was split into signal windows of 1 s each. Figure 2 presents indicative piezoelectric signals under different airspeeds

and angles of attack. Then, for each signal window the mean value and the standard deviation of the signal energy

(time integration of the squared signal 𝑉2 within the time window) were estimated. The goal was to correlate the

signal energy in the time domain with the airflow characteristics and aeroelastic properties in order to identify and

track appropriate signal features that can be used for the subsequent stall detection of the wing under various flight

states. Based on the results of this study [2, 3], it was observed that the vibration data for all the considered states, under
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Fig. 3 Detection of stall (or its absence) using signal energy safety envelopes.

the aforementioned pre-processing, follow a normal distribution, and thus represent a single flight state with a normal

distribution N(𝜇𝜃 , 𝜎
2
𝜃
), where 𝜇𝜃 corresponds to the mean and 𝜎𝜃 corresponds to the standard deviation of the flight

state 𝜃. Therefore, it is possible to compute the multivariate joint normal distributions for the wing sensors under the

considered flight states.

Under certain flight states at higher angles of attack, the lift of the wing would decrease below its weight, therefore

leading to an aerodynamic stall. The ground truth for the different flight states, i.e., whether the wing exhibits stall or not,

was obtained from a series of computational fluid dynamics (CFD) simulations for the same wing design and considered

flight states, where the occurrence of stall or no stall was established (for details please see [2, 3]). In addition, during

the experiments, the wing base was mounted on a load cell to measure the three forces and three moments (6 degrees of

freedom) acting on the wing. The load cell results were in agreement with the CFD-based analysis in indicating the loss

of lift, thus the stall of the wing, for the different flight states.

III. Safety Envelopes
Suppose a sensor fails midflight and instead of sounding an alarm, the control system assumes that the sensor is

producing accurate data. A human operator or logically redundant system [17] could catch such a mistake and reverse

an undesirable action from the control system, but the risk of catastrophic failure is not out of the question—e.g.,

Air France 447, Tuninter 1153 and Boeing’s 737 Max 8 accidents were initiated by such sensor failures [18]. Safety

envelopes are dynamic regions of instrument measurements that can be considered correct. If a sensor failed and the

data that it produced did not match a model, then the data would be outside of its safety envelope. In case the sensor is

producing correct data, the question becomes whether this data should ring an alarm or be used passively by the control

system. These scenarios are captured by the following two interlinked questions: is the data predictable by the model?
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(𝑧-predictability), and what is the most probable state of the system given the data? (𝜏-confidence).

The goal of safety envelopes is to determine valid system input regions and their corresponding flight states, e.g., to

determine whether a measurement from piezoelectric sensors corresponds to a stall state and to nothing else with very

high probability. For this, the values are compared to what a model can sensibly generate (𝑧-predictability) and from

which state it is most likely produced (𝜏-confidence).

A. Univariate Safety Envelopes for Stall Detection

To exemplify safety envelopes, we present the case of stall detection using the signal energy of a single piezoelectric

sensor. The input to signal energy safety envelopes is a signal energy 𝑥 ∈ R and its output is one of three classes:

stall, no-stall or uncertain. Figure 3 shows how signal energy safety envelopes can be used to detect stall in a live

system. In the figure, 𝑧-predictability corresponds to the question “can [the signal] be predicted by the model?” and

it is represented by the green-colored region. 𝜏-confidence corresponds to the question “can [the signal] be reliably

classified?” and it is represented by the light blue and orange regions.

A signal energy model 𝑀 for stall detection consists of a triple
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
where: Θstates are the

possible states of the flight system (e.g., all states where angles of attack are natural numbers for an aircraft flying at

15𝑚/𝑠), {N (𝜇𝜃 , 𝜎
2
𝜃
)} are a family of Gaussian random variables for each state 𝜃 ∈ Θstates which encode the distributions

of signal energy for each state, and 𝐶stall : Θstates → {stall, no-stall} is a ground-truth tagging function which

determines whether a given flight state is in stall or not. We assume every state is equally likely.

𝑧-predictability determines whether a signal could be likely generated by a model. A signal energy that is not likely

to be generated by the model is said to be outside of the safety envelope. Assuming that the signal energy preprocessed

from a piezoelectric sensor follows a normal distribution, 𝑧-predictability is defined for a signal as:

Definition 1 Signal energy 𝑧-predictability: Given a signal energy model 𝑀 =
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
, an

energy signal 𝑥 is 𝑧-predictable iff there exists a flight state 𝜃 ∈ Θstates in the model 𝑀 such that

𝜇𝜃 − 𝑧𝜎𝜃 < 𝑥 < 𝜇𝜃 + 𝑧𝜎𝜃 ,

where 𝜇𝜃 and 𝜎𝜃 are the parameters of the normal distribution that describes the signal energy for the flight state 𝜃.

The green regions in the top row of each plot in Fig. 4 illustrate 𝑧-predictability given different airspeeds and 𝑧

parameters.

𝜏-confidence determines from which state (stall or no-stall) the signal energy was generated. If the state cannot

be determined with enough confidence (𝜏), then it is said that the signal energy is outside of the safety envelope (and

tagged with uncertain). For this, we first define† a classification function based on a threshold parameter 𝜏:
†A helper definition is meant to be used for scaffolding of important definitions (named simply “definition”).
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Helper definition 1 Signal energy classification function: Given a signal energy model

𝑀 =
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
, an energy signal 𝑥 can be classified in one of three categories as:

𝐾stall (𝑀, 𝜏, 𝑥) =



stall 𝑃(stall | 𝑋 = 𝑥) ≥ 𝜏

nostall 1 − 𝑃(stall | 𝑋 = 𝑥) ≥ 𝜏

uncertain otherwise.

where 𝑋 is the random variable for the energy signal, 𝜏 ∈ (0.5, 1], and 𝑃(stall | 𝑋 = 𝑥) is the conditional probability

of stall given 𝑋 = 𝑥.

The conditional probability of stall can be computed by the equation
∑

𝜃∈Θ 𝑝𝑑 𝑓𝜃 (𝑥 )𝑃 (stall=true | 𝜃 )∑
𝜃∈Θ 𝑝𝑑 𝑓𝜃 (𝑥 ) , where 𝑝𝑑𝑓𝜃 (𝑥)

is the probability density function for the distribution N(𝜇𝜃 , 𝜎𝜃 ), and the conditional probability 𝑃(stall | 𝜃) is

determined by the tagging function 𝐶stall as 1 if 𝐶stall (𝜃) = stall and 0 otherwise.

The signature of 𝐾stall is 𝑀 × (0.5, 1] × R→ {stall, nostall, uncertain}.

𝜏 is called the threshold of classification and indicates the level of confidence wanted from the classification, or,

alternatively, 1 − 𝜏 indicates the risk associated with miss-classification [19]. The conditional probability of stall is

derived from Bayes’ theorem. A step-by-step derivation can be found in Appendix A.

The solid, black curve in the middle row of each plot in Fig. 4 shows the probability of stall for each signal energy

value. The left blue regions correspond to the no stall class, whereas the right orange regions correspond to the stall

class, and the unshaded regions in between correspond to the uncertain class. Shaded regions are the places where

we are confident of the classification with 𝜏 certainty.

Definition 2 Signal energy 𝜏-confidence: Given a signal energy model 𝑀 , and a signal energy 𝑥 ∈ R, a classification

𝐾stall (𝑀, 𝜏, 𝑥) = 𝑘 is called 𝜏-confident iff 𝑘 ≠ uncertain.

Safety envelopes are the regions where a signal energy is both 𝑧-predictable and 𝜏-confident as exemplified in the

following definition.

Definition 3 Signal energy safety envelopes: Given a signal energy model 𝑀, 𝑧 ∈ R+, and 𝜏 ∈ (0.5, 1], a safety

envelope 𝑠𝑒(𝑀, 𝑧, 𝜏) for stall detection is the region 𝑋 ∈ P(R) where the following probabilistic statement holds: for

all 𝑥 ∈ 𝑋 , 𝑥 is 𝑧-predictable and 𝐾stall (𝑀, 𝜏, 𝑥) is 𝜏-confident.

The shaded regions on the bottom row of each plot in Fig. 4 are the safety envelopes (given 𝑧 and 𝜏 parameters) for

model derived by two different fixed airspeeds, and a third model derived from all airspeeds.

Notice that the selection of parameters 𝑧 and 𝜏 influences the size and range of the safety envelopes. A larger 𝑧

increases the range of 𝑧-predictability, and thus data from a larger region of the signal energy space are accepted. A very
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large 𝑧 allows us to accept extremely rare events (outlier data) which includes potentially unsafe data. A larger 𝜏 (closer

to 1) decreases the region defined by 𝜏-confidence. A 𝜏 equal to 1 makes the 𝜏-confident region vacuous. In general, the

larger the safety envelopes, the weaker the formal properties associated to them; whereas the smaller the safety envelopes,

the stronger the properties we can formally prove about them. The best parameters are application-specific and dependent

on the quality of the data and its ability to discriminate between flight classes. We present in subsection III.C several

metrics to determine the quality of data-driven models, and thus determine the best safety envelope parameters for a

given application.

B. Generalized Safety Envelopes

The concepts that make up signal energy safety envelopes, 𝑧-predictability, and 𝜏-confidence, can be easily

generalized to multiple input data dimensions. We present one such generalization as models on multivariate-Gaussian

distributions. This generalization allows us to use data from multiple correlated inputs such as the signal energy from

multiple piezoelectric sensors as shown in Fig. 13. But first, we present some supporting definitions that serve as

building blocks for a more rigorous definition of safety envelopes.

A collective-probability model contains all possible states a system can be in. Each state of the system is given by

experiment data or by theory and follows a distribution. Each state is assumed to be independent of the others and has

some non-zero probability of occurring. As in the case of stall detection, we are often not interested in determining the

state of the system (flight state) but rather a condition associated with it (stall). For this, a state is associated with a

condition via a tagging function.

Helper definition 2 Collective-Probability Model: A collective-probability model𝑀 is a tuple ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩

where:

• Θ is a finite set representing the possible states of the system,

• Ξ is an arbitrary set representing the space of measurements from the system,

• {𝑋𝜃 } is a family of random variables, where 𝑋𝜃 : Ξ → R for 𝜃 ∈ Θ, one per each possible state,

• 𝑝Θ is a probability density function, which represents the probability of the system being in a given state,

• 𝐿Θ is a set of labels, which correspond to the final output of the classification system, and

• 𝐶Θ : Θ → 𝐿Θ is the ground-truth tagging function.

The signal energy model from the previous subsection
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
can be extended into the

collective-probability model 𝑀stall =
〈
Θstates,R

+ ∪ {0}, {N (𝜇𝜃 , 𝜎
2
𝜃
)}, 𝑝states, {stall, no-stall}, 𝐶stall

〉
, where:

• Θ = Θstates is a set of flight states (e.g., the flight states for angle of attack of 1 degree and airspeeds between 6𝑚/𝑠

and 20𝑚/𝑠),

• Ξ = R+ ∪ {0} is the measurement space for the energy signal,
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• {𝑋𝜃 } = {N (𝜇𝜃 , 𝜎
2
𝜃
)} is the family of Gaussian random variables that determine how the signal energy behaves at

one given state,

• 𝑝Θ = 𝑝states =
1

|Θstates | is the uniform probability density function that encodes the probability of a state to occur,

• 𝐿Θ = {stall, no-stall} is the set of tags, and

• 𝐶Θ = 𝐶stall (𝜃) is the ground-truth tagging function.

Safety envelopes are regions defined by a probabilistic statement, but what precisely does probabilistic statement

mean?

Helper definition 3 Probabilistic Statement: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩,

and a parameter space Π, a probabilistic statement 𝑆 over 𝑀 is a predicate with parameters 𝜋 ∈ Π and 𝑥 ∈ Ξ, i.e.,

𝑆 : 𝑀 × Π × Ξ → {true, false}.

Given a signal energy model 𝑀stall, let us define an example probabilistic statement 𝑆distinct as: 𝑆distinct (𝑀stall, 𝜋, 𝑥) :=∨
𝜃∈Θ (𝑃(𝜃 | 𝑋 = 𝑥) ≥ 𝜋), where 𝑃(𝜃 | 𝑋 = 𝑥) is the probability that the aircraft is in the state 𝜃 given a signal energy

of 𝑥, and Π = [0, 1] is the confidence threshold. 𝑆distinct encodes the question of whether a signal energy 𝑥 can be used

to discriminate a unique flight state that generated it. For example, 𝑆distinct (𝑀stall, 0.99, 3.8) corresponds to the predicate

of “can the flight state that generated a signal of 3.8 be unequivocally determined with a certainty of 99%”.

Next, we define a “region of interest”, which is the space under Ξ where a probabilistic statement is true. For

example, the region where we can guarantee that the sensor produces adequate data (𝑧-confidence).

Helper definition 4 Region of interest: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, a

parameter space Π, and a probabilistic statement 𝑆 over 𝑀 , a region of interest is the region in Ξ under which 𝑆 holds

with parameters 𝜋, i.e., a region of interest is the region defined by 𝑅𝐼 (𝑀, 𝑆, 𝜋) = {𝑥 ∈ Ξ : 𝑆(𝑀, 𝜋, 𝑥) = true}, one

per tag.

The region of interest for 𝑆distinct with parameter 𝜋 = 0.99 is a subset of R for which 𝑆distinct (𝑀stall, 0.99, 𝑥) is true,

i.e., 𝑅𝐼 (𝑀stall, 𝑆distinct, 0.99) ∈ P(R).

Figure 5 presents two regions of interest for a collective-probability model with two states (Gaussian distributions).

The region on the left (blue line at the bottom) corresponds to the probabilistic statement: “the value falls in the interval

(−1.6, 1)”. The region on the right (red line) corresponds to: “the value falls in the interval (1.5, 4.6)”. Notice that

these example probabilistic statements lack any parameters.

With everything in place, let us define a multidimensional generalization for the signal energy model from the

previous subsection (III.A):

Helper definition 5 Collective-Gaussian Stall Model: A collective-Gaussian stall model is the collective-probability

model for stall classification 𝑀stall =
〈
Θstates,R, {N (𝝁𝜃 ,𝚺𝜃 )}, 𝑝states, {stall, no-stall}, 𝐶stall

〉
, where
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• Θ = Θstates is the set of air flight configurations for which there is data,

• Ξ = R is the energy signal space,

• 𝑋𝜃 = N(𝝁𝜃 ,𝚺𝜃 ) is a multivariate-normally distributed random variable for the air flight configuration 𝜃 ∈ Θstates,

• 𝑝Θ = 𝑝states is the probability density function that determines the probability 𝑝states (𝜃) for an air flight 𝜃 ∈ Θstates

to occur,

• 𝐿Θ = {stall, no-stall} is the set of labels, and

• 𝐶Θ = 𝐶stall : Θ → 𝐿 is a tag function for each flight state.

With these pieces together we can formally define 𝑧-predictability, which encodes how well the data being given

adjusts to the (flight) model.

Definition 4 𝑧-predictability: Given a collective-Gaussian stall model

𝑀stall =
〈
Θstates,R, {N (𝝁𝜃 ,𝚺𝜃 )}, 𝑝states, {stall, no-stall}, 𝐶stall

〉
, and a parameter 𝑧 ∈ Π = R+, 𝑧-predictability is

defined as the probabilistic statement:

𝑆𝑧-pred (𝑀stall, 𝑧, x) = ∃𝜃 ∈ Θstates : 𝐷𝑀 (𝝁𝜃 ,𝚺𝜃 , x) < 𝑧

where 𝐷𝑀 (𝝁𝜃 ,𝚺𝜃 , x) corresponds to the Mahalanobis distance, and it is equal to
√︃
(𝝁𝜃 − x)𝑇𝚺−1

𝜃 (𝝁𝜃 − x).

The Mahalanobis distance for univariate Gaussian distributions reduces to the 𝑧-score region of the distribution,

which is proven in theorem 1.

The soft green region on each plot in Fig. 4 shows the 𝑧-predictability region for three different models and two

values of 𝑧. The first two models contain all flight states corresponding to airspeeds 6 m/s and 20m/s, respectively, and

angles of attack in the range 𝛼 ∈ [1, 18] and 𝛼 ∈ [1, 12], respectively.

Now, we define a generalization for 𝜏-confidence using as input a collective-probability model. We introduce a 𝜏

(threshold) dependent classification function:

Helper definition 6 Conditional Classification Function w.r.t. a Model: Given a collective-probability model

𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, the conditional classification function is defined as:

𝐾cond (𝑀, 𝜏, 𝑥) =


tag 𝑃 (tag | 𝑋 = 𝑥) ≥ 𝜏

uncertain otherwise.

where 𝜏 ∈ (0.5, 1], 𝑥 ∈ Ξ, 𝑋 is the random variable for the values measured on Ξ, and 𝑃 (tag | 𝑋 = 𝑥) is the

conditional probability for class tag given 𝑥. The signature of 𝐾cond is 𝑀 × (0.5, 1] × Ξ → 𝐿Θ ∪ {uncertain}.
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Fig. 4 Safety envelopes (bottom row) as the intersection of 𝑧-predictability (top row) and 𝜏-confidence (middle
row) for airspeed of 6𝑚/𝑠, 20𝑚/𝑠 and all flight states. a) 𝑧 = 1, 𝜏 = 80% b) 𝑧 = 2, 𝜏 = 99%

The conditional probability 𝑃 (tag | 𝑋 = 𝑥) can be computed by the equation
∑

𝜃∈Θ 𝑝𝑑 𝑓𝜃 (𝑥 ) 𝑝Θ (𝜃 )𝑃 (tag | 𝜃 )∑
𝜃∈Θ 𝑝𝑑 𝑓𝜃 (𝑥 ) 𝑝Θ (𝜃 ) , where

𝑝𝑑𝑓𝜃 (𝑥) is the probability density function for the distribution 𝑋𝜃 , and the conditional probability 𝑃(tag | 𝜃) is

determined by the tagging function 𝐶Θ as 1 if 𝐶Θ (𝜃) = tag and 0 otherwise.

The probability of stall (for a univariate collective-Gaussian stall model) can be seen in the middle row of Fig. 4.

The black curve corresponds to the probability function 𝑃(stall | 𝑋 = 𝑥), which indicates the probability of the wing

being in a stall condition given a single measurement of the signal energy. A derivation of 𝑃(stall | 𝑋 = 𝑥) can be

found in Appendix A. The classification region can be seen at the bottom of the middle row in Fig. 4, for 𝜏 = 80% and

99%. The 𝜏-confident region is the union of both colored regions, light blue and orange, where light blue indicates

no-stall and orange stall.

We have gathered all that is needed for a multivariate signal-energy safety envelope definition.

Definition 5 Given a collective-probability model 𝑀, and a measurement 𝑥 ∈ Ξ, a classification 𝐾 (𝑀, 𝜏, 𝑥) = 𝑘 is

called 𝜏-confident iff 𝑘 ≠ uncertain.

Safety envelopes encode two properties at the same time: whether a value follows a model or can be predicted by it,
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and whether a point is likely correctly classified:

Definition 6 Safety Envelopes Given a collective-Gaussian stall model

𝑀stall =
〈
Θstates,R, {N (𝝁𝜃 ,𝚺𝜃 )}, 𝑝states, {stall, no-stall}, 𝐶stall

〉
and (𝑧, 𝜏) ∈ R+ × (0.5, 1], a safety envelope 𝑆𝐸

is the region of interest defined by the probabilistic statements:

• no-stall probabilistic statement: “a signal energy value 𝑥 is 𝑧-predictable and the no-stall classification is

𝜏-confident”

𝑆SE/no-stall (𝑀stall, (𝑧, 𝜏), 𝑥) = 𝑆𝑧-pred (𝑀stall, 𝑧, 𝑥) ∧ 𝐾 (𝑀stall, 𝜏, 𝑥) = no-stall

• stall probabilistic statement: “a signal energy value 𝑥 is 𝑧-predictable and the stall classification is

𝜏-confident”

𝑆SE/stall (𝑀stall, (𝑧, 𝜏), 𝑥) = 𝑆𝑧-pred (𝑀stall, 𝑧, 𝑥) ∧ 𝐾 (𝑀stall, 𝜏, 𝑥) = stall

The last row of Fig. 4 shows the safety envelopes derived from three different data-driven models with varying

𝑧-scores and 𝜏 thresholds. For easily separable stall/no-stall conditions, such as 6𝑚/𝑠, the safety envelope is the same as

the region defined by 𝑧-predictability; in other cases, the region defined by the 𝜏-confidence reduces the region described

by 𝑧-predictability or vice versa. Notice that when safety envelopes are applied to a model where all airspeeds and

AoAs have been taken into account, the safety envelopes become significantly smaller. This means that it is not possible

to assert with high confidence whether a signal energy value entails a stall condition. In the plot on the right of b), the

safety envelopes do not include any signal with values from around 1 until 12. In contrast, if we know the airspeed to be

6𝑚/𝑠, a signal of 1 corresponds likely to a stall, whereas, for an airspeed of 20𝑚/𝑠, a signal of 1 corresponds likely to

no stall.

Safety envelopes can be generalized along other dimensions such as: utilizing a sample of measurements instead of

a single measurement; allowing the probability of a state to occur (𝑝Θ) to change depending on the input (which can be

accomplished by defining a 𝑝Θ as a prior, and using 𝑃(Θ|𝑥) inside 𝜏-confidence instead); or, replacing the assumption

of normality by defining a custom 𝑧-confident process. It is left to the designer of the model to determine the best

𝑧-predictability and 𝜏-confidence definitions for their problem.

C. Metrics for Safety Envelopes

In this section, we explore a variety of metrics for safety envelopes that can be used to find the best parameters for

a given model and to determine their quality. Metrics allow us to determine the quality of different models and thus

compare them. A simple metric is to determine how many data points fall within a region of interest:

Definition 7 Coverage: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, a parameter space Π,
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and a probabilistic statement 𝑆 over 𝑀 , coverage is the cumulative probability that falls within the region of interest, i.e.,

coverage(𝑀, 𝑆, 𝜋) =
∑︁
𝜃∈Θ

𝑝Θ (𝜃)𝑃 (𝑥 ∈ 𝑅𝐼 (𝑀, 𝑆, 𝜋))

with parameters 𝜋 ∈ Π.

In Figure 5, an example model with two states and two tags is presented: 𝑀eg =
〈
{blue, red}, {𝑋blue, 𝑋red}, 𝑝eg,

{blue, red}, 𝐶eg
〉
, where 𝑋blue = N(0, 12), 𝑋red = N(3, 1.42), and 𝐶eg (𝑥) = 𝑥 the identity function. Two regions of

interest are presented for two probabilistic statements: 𝑆blue (𝑀, (𝑦1, 𝑦2), 𝑥) = 𝑦1 < 𝑥 < 𝑦2 and 𝑆red (𝑀, (𝑧1, 𝑧2), 𝑥) =

𝑧1 < 𝑥 < 𝑧2. Notice that we need four parameters to define the probabilstic statements and are independent of the data.

The example in Fig. 5, showcases the regions for 𝑅𝐼 (𝑀, 𝑆blue, (−1.6, 1)) and 𝑅𝐼 (𝑀, 𝑆red, (1.5, 4.6)). The coverage of

the combined regions (𝑅𝐼 (𝑀, 𝑆blue, (−1.6, 1)) ∪ 𝑅𝐼 (𝑀, 𝑆red, (1.5, 4.6))) is 83.04%.

−4 −2 0 2 4 6
0.0

0.1

0.2

0.3

0.4
75.90% accuracy - 7.14% error - 83.04% coverage

accuracy
error

Fig. 5 Representation of accuracy, error, and coverage where the regions of interest are given by the blue and
red intervals.

Coverage does not take into account the correct or incorrect classification of a data point. We want a metric that

can tell us the quality of the classification. For this, let us analyze from first principles what the possible metrics for

safety envelopes are. A metric, in the area of statistical classification, is a value that relates a classification procedure

to its performance given some data. A metric is the combination of four possible classification outcomes, namely:

false positives, false negatives, true positives, and true negatives‡. These outcomes come from the fact that there are

two possible classes and two possible estimations. Unfortunately, safety envelopes do not partition the space in only

two regions, positive and negative regions, but instead, they partition the space into three regions: positive, negative

and “not-inside-safety-envelope”. An extended confusion matrix§ showing all possible six classification outcomes is

presented in Table 1. TP stands for true positive, FN stands for false negative.

We would like to find a safety envelope that accepts as few mistakes as possible while covering the largest safe

region as possible. In other words, we expect that safety envelopes take:
‡A false positive is also known as a Type I error. A false negative is a Type II error.
§A confusion matrix is an 𝑛 × 𝑛 matrix that encodes all possible classification outcomes for a classification problem with 𝑛 classes. Predicted

values are assigned to rows and actual values correspond to columns.
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Table 1 Extended binary confusion matrix for safety envelopes.

Positive Negative
Positive estimation TP FP
Negative estimation FN TN
Not in SE Missed P Missed N

• As few unsafe points as possible: FN + FP / total, i.e., error.

• As many safe points as possible: TP + TN / total, i.e., accuracy.

• As many points as possible: TP + TP + FN + NP / total, i.e., coverage.

Notice that in contrast to machine learning practice, where metrics are computed given a dataset, we are interested

in computing the metrics from a model, a collective-probability model.

The expected proportion of safe points, (TN + TP) / total, is captured by:

Definition 8 Accuracy: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, a parameter space Π,

and a set of probabilistic statements {𝑆𝑙} over 𝑀 for each 𝑙 ∈ 𝐿Θ, accuracy is the cumulative probability that falls

within the region of interest and its correctly classified, i.e.,

accuracy(𝑀, {𝑆𝑙}, 𝜋) =
∑︁
𝑙∈𝐿Θ

©­«
∑︁

𝜃 ∈𝐶Θ(Θ)=𝑙
𝑝Θ (𝜃)𝑃 (𝑥 ∈ 𝑅𝐼 (𝑀, 𝑆𝑙 , 𝜋))

ª®¬
where 𝐶Θ (Θ) = 𝑙 corresponds to the set {𝜃 ∈ Θ : 𝐶Θ (𝜃) = 𝑙}, the set containing all states that are tagged with 𝑙.

In Fig. 5, we can see that accuracy corresponds only to the regions correctly classified, red with red and blue with

blue. Notice that we can have the same accuracy for different regions of interest (compare Fig. 5 with Fig. 7).

The expected proportion of unsafe points, (FN + FP) / total, is captured by:

Definition 9 Error: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, a parameter space Π, and a

set of probabilistic statements {𝑆𝑙} over 𝑀 for each 𝑙 ∈ 𝐿Θ, error is the cumulative probability that falls within the

region of interest and its incorrectly classified, i.e.,

error(𝑀, {𝑆𝑙}, 𝜋) =
∑︁
𝑙∈𝐿Θ

©­«
∑︁

𝜃 ∈𝐶Θ(Θ)≠𝑙
𝑝Θ (𝜃)𝑃 (𝑥 ∈ 𝑅𝐼 (𝑀, 𝑆𝑙 , 𝜋))ª®¬

where 𝐶Θ (Θ) ≠ 𝑙 corresponds to the set {𝜃 ∈ Θ : 𝐶Θ (𝜃) ≠ 𝑙}, the set containing all states that are not tagged with 𝑙.

In Figs. 5-7, error corresponds to the stripped areas. It is clear that 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑀, {𝑆𝑙}, 𝜋) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀, {𝑆𝑙}, 𝜋) +

𝑒𝑟𝑟𝑜𝑟 (𝑀, {𝑆𝑙}, 𝜋). This means that we can have two different regions of interest with the same accuracy but different

error, or different combinations of accuracy and error that give rise to the same coverage.
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Fig. 6 Representation of accuracy, error, and coverage as in Fig. 5. Larger intervals mean higher accuracy and
coverage, but also larger error.

Notice that high accuracy does not mean small error. It depends on how many points are being discarded by the

classification. For this reason, we have to define a metric that encodes our desire for small error and high accuracy,

namely:

Definition 10 Model quality: Given a collective-probability model 𝑀 = ⟨Θ,Ξ, {𝑋𝜃 }, 𝑝Θ, 𝐿Θ, 𝐶Θ⟩, a parameter space

Π, a set of probabilistic statements {𝑆𝑙} over 𝑀 for each 𝑙 ∈ 𝐿Θ, and a weight 𝑤 ∈ R, the combination of accuracy and

error is

quality(𝑀, {𝑆𝑙}, 𝜋, 𝑤, 𝑥) = accuracy(𝑀, {𝑆𝑙}, 𝜋, 𝑥) × (1 − error(𝑀, {𝑆𝑙}, 𝜋, 𝑥))𝑤

Model quality increases as accuracy do, and it decreases as error increases (1 − error). The 𝑤 parameter is the

weight given to the error. The larger the weight, the costlier error becomes. From observations that can be found in the

supplemental material, we have found that an error of 𝑤 = 10 discourages safety envelopes with “too much” error while

enforcing a good accuracy.

−4 −2 0 2 4 6
0.0

0.1

0.2

0.3

0.4
75.90% accuracy - 3.71% error - 79.61% coverage
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Fig. 7 Representation of accuracy, error, and coverage as in Fig. 5. Accuracy can be kept as in Fig. 5 while the
error is reduced, thanks to a careful tuning of the intervals.
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Fig. 8 Safety envelopes and monitors to check for the correct behaviour of a system. Adapted from [20].

IV. Theorems and Formal Proofs
Safety envelopes are to be deployed as an external module to a control system in order to guarantee safe input data.

This external module is called a monitor (in runtime verification [15]) and it is to be generated from the safety envelopes

in an automatic manner. It is of integral importance that safety envelopes are correctly implemented and guarantee what

they are designed for, thus formal proofs of their correct behaviour must accompany them. Figure 8 presents safety

envelopes and monitors placement within the production chain and control loop of a control system.

A. Theorems

The following are theorems that we proved mechanically in Agda¶ as to guarantee the expected behaviour of safety

envelopes. The first property to be mechanically proven corresponds to the relationship between 𝑧-predictability for

univariate normal distributions and the z-score:

Theorem 1 In the case of univariate normal distributions, the 𝑧-predictability condition 𝐷𝑀 (𝜇𝜃 , 𝜎
2
𝜃
, 𝑥) < 𝑧, where

𝐷𝑀 is the Mahalanobis distance, reduces to 𝜇𝜃 − 𝑧𝜎𝜃 < 𝑥 < 𝜇𝜃 + 𝑧𝜎𝜃 , the prediction interval with a z-score of 𝑧.

Given a signal energy safety envelope, we can determine the connection between 𝑧-predictability and signal input as:

Theorem 2 Given a signal energy model 𝑀stall =
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
, an energy signal 𝑥 ∈ R is 𝑧-predictable

iff there exist 𝜃 ∈ Θstates such that 𝑥 ∈ (𝜇𝜃 − 𝑧𝜎𝜃 , 𝜇𝜃 + 𝑧𝜎𝜃 ), i.e., 𝑥 falls within one of the prediction intervals.

We can prove that a (univariate) signal energy 𝜏-confidence is a special case of 𝜏-confidence:

Theorem 3 Given a signal energy model 𝑀stall =
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
, and 𝜏 ∈ (0.5, 1], a classification

𝐾stall (𝑀, 𝜏, 𝑥) = 𝑘 for an observation 𝑥 is 𝜏-confident iff 𝑃(𝑘 | 𝑥) ≥ 𝜏.

As a consequence of Theorems 2 and 3, we can guarantee that signal energy safety envelopes are in fact (general)

safety envelopes:
¶Full implementation and proofs can be found in the supplementary material to this paper and at http://wcl.cs.rpi.edu/pilots/fvdddas

(repository name: safety-envelopes-sentinels, version 0.1.2.0).
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Theorem 4 Given a signal energy model 𝑀stall =
〈
Θstates, {N (𝜇𝜃 , 𝜎

2
𝜃
)}, 𝐶stall

〉
, 𝜏 ∈ (0.5, 1], and 𝑧 ∈ R+, an energy

signal 𝑥 belongs to safety envelope 𝑅𝐼 (𝑀stall, 𝑆SE/no-stall ∧ 𝑆SE/stall, (𝑧, 𝜏)) iff 𝑥 is 𝑧-predictable and 𝜏-confident.

B. Formal Proofs and Monitor Generation

We have used the Agda proof assistant to guarantee that the implementation of safety envelopes follows its expected

behaviour and the theorems presented before. Additionally, from the Agda code, we can generate verified Haskell code

which can be compiled into binary and run separately. Thus we can show a plausible path to implement monitors (see

Fig. 8). The following is an excerpt of the formalization where signal energy 𝑧-predictability is defined (see definition 1):

Once safety envelopes have been formally implemented, we can prove properties on them. Such is the case of

Theorem 2, which is proven by the following Agda code.

From the Agda formalization, we have generated a monitor. A monitor is a computer program whose job is to

observe a stream of data to evaluate its consistency and correctness. The interested reader can check the supplemental

material, where the full proofs and an extended explanation of the code above can be found. The generated monitor

checks when a stream of signal energy measurement, encoded as a floating-point number, is 𝑧-predictable. The resulting

executable can process a continuous stream of floating-point numbers and outputs a stream of booleans determining the

𝑧-predictability of each value. Below a (frankly obscure) piece of Haskell code generated from z-predictable on Agda

can be seen.

name72 = "Avionics.SafetyEnvelopes.z-predictable"

d72 ::

T24 -> -- This corresponds to the Model M

MAlonzo.Code.Avionics.Real.T4 -> -- real number z
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MAlonzo.Code.Avionics.Real.T4 -> -- real number x

MAlonzo.Code.Agda.Builtin.Sigma.T14 -- a tuple <x, is x z-confident?>

d72 v0 v1 v2

= coe (d62 (coe (MAlonzo.Code.Data.List.Base.du20 (coe

(\ v3 -> MAlonzo.Code.Agda.Builtin.Sigma.d28

(coe (MAlonzo.Code.Agda.Builtin.Sigma.d30 (coe v3)))))

(coe (d46 (coe v0)))))

(coe v1) (coe v2))

With help of some wrapping functions and code, the function can be called like any other function in Haskell. The

implementation and proofs occupy a total of 980 lines in Agda and 130 lines of code in Haskell. From the Agda code, a

total of 1160 lines of Haskell code were generated.

V. Experimental Results

A. Signal Energy Safety Envelopes

As explained in subsection II, to evaluate safety envelopes we have constructed multiple models from wind tunnel

experiments. Each model is composed of different flight state distributions. We consider three test cases: an easily

separable case where only flight states for an airspeed of 6𝑚/𝑠 are considered, a slightly less separable case with an

airspeed of 20𝑚/𝑠, and a case where we assume no knowledge of airspeed (all airspeeds and AoA flight states are taken

into account). The exploration of the optimal 𝜏 and 𝑧 for each of the three cases can be seen in Fig. 9. Note that 𝑧 is

restricted to the range [0, 0.4], in Fig. c), in order to display a readable plot. In all cases, the value of the metrics plateau

as 𝑧 increases outside further out to the right.

As it can be seen in Fig. 9, increasing 𝜏 reduces accuracy and error, and thus coverage. The higher 𝑧 the higher

accuracy and error. A more nuanced behaviour can be seen for quality, where there is an optimum for 𝜏 but there is no

optimum for 𝑧, as can be seen in cases b) and c). Although, quality increases as 𝑧 does, there is an important reason not

to choose an arbitrarily large 𝑧: increasing 𝑧 allows safety envelopes to accept rare and unlikely values, and so are the

chances of accepting an erroneous and possibly unsafe value.

Choosing the parameters carelessly could lead us to unwanted “unsafe” regions. For example, make 𝜏 = 0.5001

and 𝑧 = 9. In this case, we would accept a classification that is consistent with both stall and no-stall but that could be

generated by either with a high probability. This might not be a big problem if the distributions are many 𝜎s apart, but it

is a big problem if the model is not highly separable. It makes sense to evade very low values of 𝜏 (smaller than 0.65) as

well as very small and big values for 𝑧.

In Fig. 10, we can see the safety envelopes defined with the optimum 𝑧 and 𝜏 obtained from the exploration shown

in Fig. 9. Notice that the error for the large model with all airspeeds is relatively high. This shows that the quality of the

signal energy safety envelopes for stall detection decreases when no airspeed information is given. As mentioned before,

𝑤 forces similar 𝜏s for similarly separable data. Even in the case of the model that contains all possible flight states at
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Fig. 9 Optimizing model quality. Exploration of 𝑧 and 𝜏 for the airspeed of a) 6𝑚/𝑠, b) 20𝑚/𝑠 and c) all
airspeeds, with 𝑤 = 10.

once, the optimal 𝜏 stays close to 0.9. What this means is that setting a value for 𝜏 on similar models will carry over to,

in practice, the same 𝑤, or a value close to it. One can just set 𝜏 after verifying that the data is separable and one will

not need to care much about finding the optimum, which is computationally expensive.

B. GPRMs Applied to Safety Envelopes

GPRMs excel at generalizing a reduced number of observed points into an infinite number of interlinked Gaussian

distributions. They are heavily used in aerospace applications as demonstrated by Ahmed et al. [21]. Ahmed et al. made
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use of variational heteroscedastic GPRMs, to extend the wind tunnel data, and thus create a larger more refined model.

We sample from these variational heteroscedastic GPRMs (VHGPRMs) a hundred Gaussian distributions increasing

with artificial data the size of the collective-Gaussian model used to define a safety envelope.

In Figs. 11 and 12, we show a comparison between safety envelopes defined using the distributions computed

from wind tunnel experiments and safety envelopes from artificially generated data from GPRMs. With a sufficiently

high sample resolution, the 𝑧-predictability region becomes a single interval with no gaps even with small values of 𝑧.

This means that 𝑧 takes a step back in its influence on the metrics while 𝜏 takes full control. There is a significant

improvement in the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 of the GPRM extended safety envelopes. For a speed of 14𝑚/𝑠, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

improved from 65.513 to 81.520 and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 improved from 63.997 to 77.181, see Fig. 11. A similar improvement

can be seen for an airspeed of 17𝑚/𝑠, see Fig. 11. Preliminary results for other airspeeds, including 6𝑚/𝑠 and 20𝑚/𝑠

indicated the same trend of improvements for the metrics. The lack of figures for other airspeeds is due to the nature of

GPRM training and the ease with which they overfit, thus producing unnaturalistic results.

The biggest drawback of VHGPRMs is their expensive computing nature and the time-consuming task of finding

solid hyperparameters. Even with these disadvantages, VHGPRMs results are hard to match with other techniques.

Assuming that VHGPRMs generate artificial distributions as if they were produced by a wind tunnel, any sample we

take from them will define a well-behaved safety envelope. With this assumption in place, theorems 1, 2, and 4 apply

equally to GPRM synthetic data, where the mean and standard deviation in those expressions can be replaced by the

predictive moments of a GPRM. Thus, VHGPRMs add some flexibility in defining safety envelopes, where the moments

used for defining them can either come from experimental data, or from properly-trained data-driven VHGPRMs.

In a similar framework, Gaussian Process Classification Models (GPCMs, see [22]), which produce predictive

probabilities instead of predictive moments, can be used to “interpolate” the conditional probability for stall in order

to allow for “higher resolution” probabilities across the different angles of attack. This approach elegantly allows for

the application of theorem 3 onto GPCMs. Thus, with properly-trained GP models (for regression and classification),

the concept of safety envelopes can be expanded beyond experimental data using data-driven model-based predictive

moments and probabilities.

C. Multivariate Safety Envelopes

The advantage of safety envelopes is their generalizability to multiple dimensions of input data. From the eight

available sensors, we chose two sensors with low correlation between them, sensors 1 and 7. We proceeded to compute

the mean and covariance matrix for each flight state given the sensors’ data. Choosing lowly correlated sensors allows

us to show more clearly safety envelopes, as highly correlated sensors show up as lines on the plots. Additional tests

revealed no significant difference in the particular selection of sensors concerning the metrics.

Figure 13 shows the safety envelope defined for a bivariate normal distribution-based model. Computing error and
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Fig. 10 Safety envelopes with optimal parameters 𝑧 and 𝜏 that maximize 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 with 𝑤 = 10.
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Fig. 12 Safety Envelopes at 17𝑚/𝑠 with parameters 𝑧 = 0.3 and 𝜏 = 0.9. a) original data, b) GPRM generated
data.
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accuracy for multivariate-normal distributions required the use of a Monte Carlo simulation as opposed to straightforward

computing of the regions from the cumulative distribution function (CDF) as in the univariate models.

Error and quality improve in the multivariate case comparing it to the univariate case, with 𝑒𝑟𝑟𝑜𝑟 = 0.047% and

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 91.361% (see Fig. 13 b)), than for the univariate case with 𝑒𝑟𝑟𝑜𝑟 = 0.877% and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 85.064% (see

Fig. 10). Safety envelopes perform better—with less error, and higher model quality—for the case of 20𝑚/𝑠, even

at non-optimized values of 𝑧 and 𝜏. The difference is heightened when all flight states are considered, where all

metrics improve: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 78.959%, 𝑒𝑟𝑟𝑜𝑟 = 0.994 and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 71.449% for the multivariate case against

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 70.216%, 𝑒𝑟𝑟𝑜𝑟 = 3.339 and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 49.995% for the univariate case.
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VI. Related Work
Jackson et. al [23] define a novel concept to determine when a Markov process is safe. From a dataset, they construct

a Markov process which they restrict given a parameter 𝜖 . 𝜖 is used similarly to safety envelopes 𝑧, namely, it restricts

safe behaviour to a region where the behaviour is likely to occur and discards anything else outside this region as

possibly problematic. Specifically, they check whether the current state of a Markov model is within the range of the

possible things the model should do, parameterized by 𝜖 . Safety envelopes take a step further and include a classification

step, 𝜏-confidence, which is firmly grounded on Bayes’ rule.

HOL and Isabelle are interactive proof assistants with a rich history of proofs from discrete and continuous probability

theory [24–27]. These libraries implement measure theory, discrete, continuous and normal random variables, and many

other fundamental theorems on probability theory like the central limit theorem, all of them built from the bottom-up

in a robust verifiable environment. In our work, we followed a top-down methodology where we assume the correct

formalization of well-known real number theory, and probability theory. In this way, we differ from previous work by

implementing more complex structures than what could be done in a limited time with a bottom-up approach. Agda, as

opposed to HOL and Isabelle, is a programming language and proof assistant built on top of a constructive theory [28].

It is possible to write code and create an executable with very little extra work in Agda as opposed to HOL and Isabelle.

We were able to produce a monitor from the formalization on about 90 lines of Haskell code and additional 130 lines of

Agda. Copilot [29] and PILOTS [17, 30] have presented strategies to detect and recover from faulty data streams due to:

hardware errors in airplane systems, and dynamic data-driven applications systems (DDDAS), respectively. Those

systems do not yet incorporate formal verification and depend therefore on the quality of the software implementation,

testing environment, and robustness of the programming language.

Veridrone [31], and other Coq initiatives (e.g., [32]) have incorporated formal verification into working systems to

formally prove properties like maximum speed restrictions and correct behaviour according to a specification. These

approaches follow a similar framework to ours, namely, the use of software verification techniques for the creation

of verified pieces of code, but are different in their end goal, the implementation of verified control systems. Safety

envelopes do not steer a system in a specific direction, rather they are meant as a warning system and input for the

control system. Another approach for the verification of control systems is DryVR [33], in which a system, defined as a

labeled, directed acyclic graph, is determined to behave safely (or not) with the help of simulation trajectories and a

blacklist of unsafe states. Although safety envelopes are not an approach to building control systems, they can be used

to find unsafe states, which can be later used as blacklists in systems like DryVR.

The concept of a region restricted by parameters where an aircraft can operate safely appears in the literature time

and time again. Such is the case of Jeannin et al. [34], who define “safe regions” for an aircraft to operate where no

collisions are expected assuming correct behaviour, or Paul et al. [35] with the concept of “correctness envelopes”,

which determine the conditions for a system to follow some rigid properties. Safety envelopes can be used on their own,
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but they can shine when incorporated into larger frameworks of control systems such as the simplex architecture [36].

The simplex architecture’s goal is to allow for safe control upgrades of complex control systems. A “safety region” in

the simplex architecture delimits the region where a system can be controlled. If the experimental controller gets close

to the boundary of the safe region, a robust simpler controller takes over. Safety envelopes could be used to define a

tighter region within the hand-written safety region of simplex architecture or as a replacement.

Breese et. al [20] presented the idea of formal safety envelopes from which this work sprung into life. They propose

a first-order logic-based definition for safety envelopes in which only one parameter is necessary, 𝑧, not two, 𝑧 and 𝜏.

Cruz-Camacho et. al [37] extended safety envelopes to encompass both predictability and classification, which results

in higher tunability, thanks to the extra parameter 𝜏. Based on the work of Breese et. al, Paul et. al [35] proposed a

metric for safety envelopes using preprocessed data as an input. This paper combines and extends all of these prior

works with a detailed, justified, and generalized definition of safety envelopes, in particular, we extended Cruz-Camacho

et. al’s safety envelopes to multivariate distributions and GPRM-generated data from Ahmed et. al [21].

VII. Conclusions
We presented a novel, formally verified concept for classification given a statistical model for one or multiple real

numbered data inputs. Safety envelopes encode two conditions a safe classification must have: 𝑧-predictability, whether

an input value is consistent with a model; and, 𝜏-confidence to quantify confidence in a classification. Four metrics to

compare different models and parameters of safety envelopes were given: coverage, accuracy, error, and quality. Metrics

are fundamental to finding the proper parameters a safety envelope should have. A formalization of safety envelopes

in Agda was presented, and with it, four formal proofs that tie 𝑧-predictability and 𝜏-confidence with any input value.

Formally verified Haskell code was generated from the Agda formalization, and from it, an executable was produced to

process a stream of data. We explored how to integrate GPRMs into safety envelopes and their results showcase the

extensibility of safety envelopes to use synthetic data. Safety envelopes were shown to work seamlessly with one as well

as two input value dimensions, i.e., with models constructed out of univariate or bivariate normal distributions.

Future work includes: extending safety envelopes to correct faulty inputs where physical redundancy is available as

in the case of multiple sensor inputs; finding the minimum number of flight states needed to construct a good model

to reduce the number of physical experiments necessary to perform; studying the impact of better-informed priors in

the quality of the models; and, finding all possible sources of numerical instability which would make floating-point

numbers a bad fit as approximations for real numbers.
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A. Conditional probability deduction
In this appendix, we present a derivation for the equation to compute the conditional probability 𝑃 (tag | 𝑋 = 𝑥),

which was given as:

𝑃 (tag | 𝑋 = 𝑥) =
∑

𝜃∈Θ 𝑝𝑑𝑓𝜃 (𝑥)𝑝Θ (𝜃)𝑃(tag | 𝜃)∑
𝜃∈Θ 𝑝𝑑𝑓𝜃 (𝑥)𝑝Θ (𝜃)

(1)

This is possible thanks to Bayes’ rule for classification. Namely, we can rewrite the expression as:

𝑃(tag | 𝑋 = 𝑥) =
𝑓𝑋 |tag (𝑥)𝑃(tag)

𝑓𝑋 (𝑥)
(2)

The marginal probability 𝑓𝑋 (𝑥) can be computed as

𝑓𝑋 (𝑥) =
∑︁
𝜃∈Θ

𝑓𝑋,𝜃 (𝑥) =
∑︁
𝜃∈Θ

𝑓𝑋 |Θ=𝜃 (𝑥)𝑝Θ (𝜃) (3)

where 𝑓𝑋 |Θ=𝜃 (𝑥) is the probability density function for the state 𝜃, i.e., 𝑓𝑋 |Θ=𝜃 (𝑥) = 𝑝𝑑𝑓𝜃 (𝑥) with parameters from

𝑋𝜃 . Note: 𝑋 is the same as the space Ξ, where 𝑥 lies, while 𝑋𝜃 is the random variable associated with the state 𝜃.

The conditional probability 𝑓𝑋 |tag (𝑥) is computed in a similar manner as the marginal probability. First, we apply

the law of total probability and then Bayes’ rule again:

𝑓𝑋 |tag (𝑥) =
∑︁
𝜃∈Θ

𝑝𝑑𝑓𝜃 (𝑥)𝑃(Θ = 𝜃 | tag) =
∑︁
𝜃∈Θ

𝑝𝑑𝑓𝜃 (𝑥)
𝑝Θ (𝜃)𝑃(tag | Θ = 𝜃)

𝑃(tag) (4)

where 𝑃(tag | Θ = 𝜃) is the probability that a specific configuration (flight state) to be tagged with tag (e.g., to

produce stall). This probability is either 0 or 1 and it is given by expert judgment.

With the marginal 3 and conditional probabilities 4 in place, we can rewrite equation 2 as:

𝑃(stall | 𝑋 = 𝑥) =
∑

𝜃∈Θ 𝑝𝑑𝑓𝜃 (𝑥)𝑝Θ (𝜃)𝑃(stall | 𝜃)∑
𝜃∈Θ 𝑝𝑑𝑓𝜃 (𝑥)𝑝Θ (𝜃)

(5)

which is the expression shown previously in Equation 1.
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Supplementary Material - Formal Safety Envelopes for Provably Accurate
State Classification by Data-Driven Flight Models

This document contains supplementary material that could not be fitted in the main article and it is presented for the interested
reader on the code aspects of the work or some developments adjacent to the work. Section 1 presents the Bayes theorem as it used in
the appendix of the paper. Section 2 is a an introduction to VHGPRMs which are used to generate artificial data for safety envelopes.
Section 3 contains some observations relating the weight 𝑤 and its impact on the metrics. Section 4 contains the Agda code containing
all the proofs and supporting libraries. Section 5 contains all the code written in Haskell used to interface with the Agda code and create
an actual executable.
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1 Bayes Theorem Application for Classification
Given a sample space 𝑋 from which data can be sampled, a set of 𝐾 labels or classes that are assigned to each value in the space, and
assuming that each class is associated with a probability distribution, we can determine the probability of a value belonging to one of
the classes by applying Bayes’ rule [1, pp. 53, eq. 3.5]:

𝑃 (𝐶 = 𝐶𝑖 ∣ 𝑋 = 𝑥) =
𝑓𝑋∣𝐶=𝐶𝑖

(𝑥)𝑃 (𝐶 = 𝐶𝑖)
𝑓(𝑥)

=
𝑓𝑋∣𝐶=𝐶𝑖

(𝑥)𝑃 (𝐶 = 𝐶𝑖)
∑𝐾

𝑘=1 𝑓𝑋∣𝐶=𝐶𝑘
(𝑥)𝑃 (𝐶 = 𝐶𝑘)

(1)

where 𝐶𝑖 is the class 𝑖 (out of 𝐾 classes), 𝑓𝑋∣𝐶=𝐶𝑖
(𝑥) is the conditional probability of 𝑋 = 𝑥 given the class 𝐶𝑖 (also called class

likelihood), and 𝑃 (𝐶 = 𝐶𝑖) is the probability for the class 𝐶𝑖 to occur (thus ∑𝐾
𝑖=1 𝑃 (𝐶 = 𝐶𝑖) = 1). Because a value must belong to only

one class, the summation of all probabilities for a single value must be one, i.e., ∑𝑖=1 𝑃 (𝐶 = 𝐶𝑖 ∣ 𝑋 = 𝑥) = 1.
The procedure to classify a value 𝑥 consists on finding argmax1≤𝑖≤𝐾 𝑃 (𝐶 = 𝐶𝑖 ∣ 𝑋 = 𝑥).
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2 Variational Heteroscedastic GPRMs
Gaussian process regression models (GPRMs) [2] are standard tools in data-driven applications such as in fly-by-feel with the purpose
of generating and extending finite observations of a phenomenon into a family of infinite and interlinked normal distributions.

Given a training data set 𝒟 containing 𝑛 inputs-observation pairs {x𝑖 ∈ ℝ𝐷, 𝑦𝑖 ∈ ℝ, 𝑖 = 1, 2, 3, … , 𝑛}, a standard (homoscedastic)
GPRM can be formulated as follows:

𝑦 = 𝑓(x) + 𝜖 (2)

where a GP prior with mean 𝑚(x) and covariance 𝑘(x, x′) is placed on the latent function 𝑓(x), and an independent, identically-distributed
(iid), zero-mean Gaussian prior with variance 𝜎2

𝑛 is placed on the noise term 𝜖, that is:

𝑓(x) ∼ 𝒢 𝒫 (𝑚(x), 𝑘(x, x′)), 𝜖 ∼ 𝑖𝑖𝑑 𝒩 (0, 𝜎2
𝑛) (3)

As is common in the GPRM literature, 𝑚(x) is set to zero, and the squared exponential covariance function (kernel) is used for the
latent function GP, owing to its ability to monotonically decrease as input values go farther from each other, which allows for similar
latent function values for close input points, and vice versa:

𝑘(x, x′) = 𝜎2
0 exp(−1

2
(x − x′)𝑇Λ−1(x − x′)) (4)

In equation 4, 𝜎2
0 is the output variance, and Λ−1 is the inverse of a diagonal matrix of the characteristic input length scales corre-

sponding to each dimension (𝐷 i.e each covariate) in the input data. For a single-input dimension (i.e. 𝐷 = 1), the entries along the
diagonal of Λ−1 will be identical; otherwise, there will be a separate input length scale for every covariate in the training input data.

Training. Training of the GPRM involves optimizing the hyperparameters (𝜃 ≡ 𝜎2
0 , Λ, 𝜎2

𝑛), which is typically done via Type II Maximum
Likelihood [2, Chapter 5, pp. 109], whereas the marginal likelihood (evidence) of the training observations is maximized (or its negative
log is minimized for reasons related to computational stability). That is, the following expression is minimized with respect to 𝜃:

− log 𝑝(y|𝑋, 𝜃) = − log𝒩 (y|0, 𝐾𝑋𝑋 + 𝜎2
𝑛𝕀) (5a)

= −1
2
y𝑇(𝐾𝑋𝑋 + 𝜎2

𝑛𝕀)−1y − 1
2
log |𝐾𝑋𝑋 + 𝜎2

𝑛𝕀| − 𝑛
2
log 2𝜋 (5b)

In the expression above, 𝐾𝐴𝐵 denotes 𝐾(𝐴, 𝐵) (covariance matrix), and 𝕀 the identity matrix

Prediction. Prediction can be done by assuming joint Gaussian distribution between the training observations (y), and a test observation
(𝑦∗ - to be predicted) at the set of test inputs (x∗) as follows:

[
y
𝑦∗ ] = 𝒩 [0,

𝐾𝑋𝑋 + 𝜎2
𝑛𝕀 k𝑋x∗

kx∗𝑋 𝑘x∗x∗
+ 𝜎2

𝑛𝕀 ] (6)

where k𝑋x∗
is the vector of covariances between 𝑋 and x∗. By invoking the properties of multivariate Gaussian distributions [3], the

predictive distribution over 𝑦∗ can be defined as follows:

𝑝(𝑦∗|x∗, 𝑋, y) = 𝒩 (𝔼{𝑦∗}, 𝕍 {𝑦∗}) (7a)
𝔼{𝑦∗} = kx∗𝑋(𝐾𝑋𝑋 + 𝜎2

𝑛𝕀)−1y (7b)

𝕍 {𝑦∗} = 𝑘x∗x∗
− kx∗𝑋(𝐾𝑋𝑋 + 𝜎2

𝑛𝕀)−1k𝑋x∗
+ 𝜎2

𝑛 (7c)

such that 𝔼{𝑦∗} and 𝕍 {𝑦∗} are the predictive mean and variance, respectively, at the set of test inputs.

Variational Heteroscedastic Gaussian Process Regression Models (VHGPRMs)
One of the inherent drawbacks of using standard (homoscedastic) GPRMs is the assumption of a fixed noise variance throughout

the input space, which, in many real-life applications, is impractical. Thus, several modifications have been put forward to allow for the
noise variance to vary with the input (that is, an input-dependent noise variance) [4, 3]. This is to say that the GPRM formulation in
Equation 2 would become:

𝑦 = 𝑓(x) + 𝜖(x) (8)

with the noise prior defined as
𝜖 ∼ 𝒩 (0, 𝑟(x)) (9)
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This new formulation takes the name of variational heteroscedastic GPRMs (VHGPRMs) and has many advantages over GPRMs,
such as the variance of the test observation can be predicted along with the test observation itself analytically as noted by Rogers et al.
[3]. Although, VHGPRMs allow more flexibility they are also harder to train as no analytical form exists for the integral at the prediction
stage.

One of the most common strategies is to treat the input-dependent noise as a GP itself, which was first put forward by Goldberg et
al. [5], that is

𝑟(x) = exp(𝑔(x)) (10a)
𝑔(x) ∼ 𝒢 𝒫 (𝜇0, 𝑘𝑔(x, x′)) (10b)

such that 𝜇0 and 𝑘𝑔(x, x′) are the mean and covariance for the GP prior on the noise variance function, respectively, where an exponential
function is used in order to ensure that the noise variance stays positive [6]. It is worth noting that the subscript 𝑔 was introduced to
differentiate between the covariance function of the noise GP and that of the noise-free process. At this point, it is useful to introduce
shorthand notations for the covariance functions as follows:

𝐾𝑗(𝑋, 𝑋) ≡ 𝐾𝑗

𝐾𝑗(x∗𝑋) ≡ 𝐾𝑗∗

𝐾𝑗(x∗x∗) ≡ 𝐾𝑗∗∗

Such that 𝑗 can be 𝑓 or 𝑔. Although the formulation in equation 10a provides a better treatment of data with hetersocedastic noise, the
added complexity results in making the marginal likelihood and the predictive distribution over unknown observations not analytically-
tractable. One of the proposed approaches to approximate them was put forward by Lazaro-Gredilla and Titsias [6], which is based
on variational approximations. Briefly, their approach is based on approximating 𝑝(𝑓 , 𝑔|𝐷) by 𝑞(𝑓)𝑞(𝑔) via the minimization of the
Kullback-Leibler divergence between them, where the 𝑞(𝑓) and 𝑞(𝑔) are the variational probability densities (arbitrary density functions)
over sets of 𝑓 and 𝑔, respectively. The resulting marginal variational (MV) bound (𝑀) becomes:

𝑀(, Σ) = log𝒩 (y|0, 𝐾𝑓 + 𝑅) − 1
4
tr(Σ) − KL(𝒩 (𝑔|, Σ)||𝒩 (𝑔|𝜇01, 𝐾𝑔)) (11)

In equation 11, the mean and covariance Σ come from the restricting 𝑞(𝑔) to be 𝒩 (𝑔|, Σ), the KL(⋅) term is the Kullback Leibler
divergence between the GP prior on 𝑔 and the aforementioned restriction on 𝑞(𝑔), tr(⋅) denotes the trace of the enclosed matrix, 1 indicates
a vector of ones, and 𝑅 is a diagonal matrix with elements:

𝑅𝑖𝑖 = exp(𝑖 −
Σ𝑖𝑖
2

) (12)

where 𝑖 is as defined before.
Training. In equation 11, the number of free parameters to be determined becomes n+n(n+1)/2, which would make the training process
much more computationally exhaustive. Thus, Lazaro-Gredilla and Titsias [6] proposed a reparametrization of and Σ at the maxima of
the marginal variational bound into the following:

= 𝐾𝑔 (Λ − 1
2

𝕀) 1 + 𝜇01, Σ−1 = 𝐾−1
𝑔 + Λ (13)

such that Λ is a positive semi-definite diagonal matrix of the variational parameters (to be determined through optimization).
Prediction. Based on the formulation presented by Lazaro-Gredilla and Titsias [6], the predictive distribution for a new test point 𝑦∗ can
be simplified to:

𝑞(𝑦∗) = 𝑖𝑛𝑡𝑖𝑛𝑡𝑝(𝑦∗|𝑓∗, 𝑔∗)𝑞(𝑓∗)𝑞(𝑔∗)𝑑𝑓∗𝑑𝑔∗

= 𝑖𝑛𝑡𝒩 (𝑦∗|𝑎∗, 𝑐2
∗ + exp(𝑔∗))𝒩 (𝑔∗|𝜇∗, 𝜎2

∗)𝑑𝑔∗ (14)

with:

𝑎∗ = k𝑓∗(𝐾𝑓 + 𝑅)−1y (15a)

𝑐2
∗ = 𝑘𝑓∗∗ − k𝑇

𝑓∗(𝐾𝑓 + 𝑅)−1k𝑓∗ (15b)

𝜇∗ = k𝑇
𝑔∗(Λ − 1

2
𝕀)1 + 𝜇0 (15c)

𝜎2
∗ = 𝑘𝑔∗∗ − k𝑇

𝑔∗(𝐾𝑔 + Λ−1)−1k𝑔∗ (15d)
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Although the integration above does not have an analytical solution, the first two moments of the predictive distribution can be
calculated analytically as follows:

𝔼{𝑦∗|x∗, 𝒟} = 𝑎∗ (16a)

𝕍 {𝑦∗|x∗, 𝒟} = 𝑐2
∗ + exp(𝜇∗ +

𝜎2
∗

2
) (16b)

Thus, under the assumption of a Gaussian predictive distribution over the unknown test observation 𝑦∗, which is not necessarily true, the
variance of the test observation can be predicted along with the test observation itself, which allows for a more flexible model compared
to standard GPRMs [3].

𝑝(𝑦∗|𝑋, y, x∗) = 𝑝(𝑓∗|𝑋, y, x∗) = 𝑖𝑛𝑡𝑝(𝑓∗|𝑋, x∗, f)𝑝(f|𝑋, y) (17a)

𝑝(f|𝑋, y) =
𝑝(y|f)𝑝(f|𝑋)

𝑝(y|𝑋)
(17b)

𝜎(𝑓(x)) = 𝑝(𝑦 = +1|x) = 1
1 + exp(−𝑓(x))

(17c)

3 Observations on 𝑤
We present a series of observations regarding the connection of 𝜏 and 𝑧 with coverage, error, accuracy and quality as metrics.

Observation 1 Relation between coverage and 𝑧. Given a collective-Gaussian stall model
𝑀stall = ⟨Θstates, {𝒩 (𝜇𝜃, 𝜎2

𝜃 )}, 𝑃states, 𝐿stall, 𝐶stall⟩, where 𝒩 (𝜇𝜃, 𝜎2
𝜃 ) are univariate normal distributions, and 𝜏 = 0.5, the area

covered by the prediction interval defined by a z-score of 𝑧 is smaller than or equal to the coverage of 𝑀stall with the
same 𝑧. Equivalently, 𝑝𝑟𝑒𝑑(𝒩 (𝜇, 𝜎2), 𝑧) ≤ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑀stall, 𝑆SE/no-stall, 𝑆SE/stall, (𝑧, 0.5), 𝑥) for any 𝑀stall, where
𝑝𝑟𝑒𝑑(𝒩 (𝜇, 𝜎2), 𝑧) = 𝑐𝑑𝑓𝑍(𝑧) − 𝑐𝑑𝑓𝑍(−𝑧) with 𝑐𝑑𝑓𝑍 as the cumulative distribution function for the standard normal distribution.

This relation comes from the fact that the region defined by 𝑧-predictability is the union of multiple prediction intervals and thus
the 𝑧-predictability region covers a bigger region for each distribution. The inequality is strict unless all distributions have the same
parameters 𝜇 and 𝜎2.

Notice that for very large values of 𝑧, the difference between coverage and the prediction interval defined by 𝑧 shrinks to a negligible
value. Assuming a very large 𝑧, we can analyze the effect that 𝜏 has on the safety envelope and the metrics as if 𝑧 played no role. This
leads us to:

Observation 2 Connection between 𝜏 and 𝑤 for model quality. Given a model 𝑀stall and a weight error of 𝑤, 𝑤 determines a unique
optimum 𝜏 which maximizes the model quality metric. As the value of 𝑤 increases so will the optimal 𝜏. Conversely, a value of 𝜏 will
force a weight 𝑤 for which 𝜏 is the optimum. The higher the 𝜏, the more the error will be weighted and thus the more we will care about
the error.

To show some evidence for the observation, we analyze a simple 𝑀stall model. Let us assume a model composed of only two
normal distributions, each tagged with blue and red, and parameters 𝜎2

red = 𝜎2
blue = 1 and 𝜇red = −𝜇blue, respectively. Under these

conditions, a 𝜇 of 1 means that the two identical distributions are separated by 2𝜎. We can analytically compute all the metrics as:
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑐𝑑𝑓blue(𝑥blue), 𝑒𝑟𝑟𝑜𝑟 = 𝑐𝑑𝑓red(𝑥blue) and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × (1 − 𝑒𝑟𝑟𝑜𝑟)𝑤.

where 𝑤 is the weight parameter for the error, and 𝑥blue is the point to the right of the blue distribution where the probability of blue
given the input is blue with probability 𝜏. It can be found that 𝑥blue = 1

2𝜇 (𝑙𝑛(1 − 𝜏) − 𝑙𝑛(𝜏)). The objective is to find the optimal 𝜏 for a
given 𝑤, which means computing the derivative of 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 and finding its roots:

𝑑
𝑑𝜏

𝑐𝑑𝑓blue(𝑥blue)(1 − 𝑐𝑑𝑓red(𝑥blue))𝑤 = 0

𝑝𝑑𝑓blue(𝑥blue)(1 − 𝑐𝑑𝑓red(𝑥blue))𝑤 = 𝑐𝑑𝑓blue(𝑥blue)𝑤(1 − 𝑐𝑑𝑓red(𝑥blue))𝑤−1𝑝𝑑𝑓red(𝑥blue)

It is impossible to compute analytically the roots of this expression. We have computed it numerically for a range of different 𝑤.
Figure 1 shows the correlation between a value of 𝑤 and the optimal 𝜏 that it forces for different separations. Notice that a 𝜇 of 0.1 means
that the red distribution is a normal distribution centered in 0.1 and the blue distribution is centered in −0.1 (a 0.2𝜎 separation), i.e., it
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Figure 1: 𝜏, accuracy, error, and coverage as functions of 𝑤(1 ≤ 𝑤) for models with differing data separation. 𝜎 = 0.2 means a separation
of 0.2𝜎 between guassian distributions.

is very difficult to discern where a point could come from any of the two distributions. The accuracy and error are in the same order of
magnitude and close to 50% when 𝜏 = 0.5.

Notice that 𝑤 does not force a specific error (with the same 𝑤, we can arrive at different error values depending on the model). The
behaviour of 𝜏 for 𝜎 = 2 and 𝜎 = 6 is very similar, but the error is considerably different. What 𝑤 does is to define a 𝜏 where the models
are somewhat separable or clearly separable.

With 𝜏 = 0.5, accuracy and error are the highest, which leads us to:

Observation 3 The error when 𝜏 = 0.5 and 𝑧 is large gives a good estimation of the inherent quality of a model. When 𝜏 = 0.5, we
obtain the best classical Bayesian classifier possible (nothing lies outside the safety envelope region). After computing the error we are
in two possible conditions: if the error is large, i.e., close to 0.5, the model is not good, and it is difficult to have a good safety envelope;
and, if the error is small the model is a good model and has safety envelopes of quality.

Figure 2 shows how the error can give a fair evaluation of how separable the data is. For distributions that are close to each other,
thus not highly separable, the error is high. The error almost fades away with highly separable distributions, thus good models.

0.0 2.5 5.0 7.5
𝜎

0.0

0.5

1.0

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑒𝑟𝑟𝑜𝑟
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Figure 2: Error and accuracy as functions of 𝜎 (separation between identical gaussian distribution) when 𝜏 = 0.5.

As a rule of thumb, after setting 𝜏 = 0.5 and computing the error, we can make the following judgment in the quality of a model: if
the error is small, close to 0, then the data is separable; if on the contrary, it is close to 0.5, it is highly non-separable, a bad data-driven
model.

4 Agda Code
Agda allows for Unicode characters to be part of the names of functions and expressions. This flexibility means that Agda source code
looks quite pretty in the console, but it might make it difficult for someone to type it out. Some care must be taken if one wants to copy the
code present in this section into a plain text document. The code is presented for those wishing to have some guidance on each module
and its purpose.
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4.1 Avionics/SafetyEnvelopes/Properties.agda

This document contains the four proofs presented in the main article on safety envelopes. This file depends on all the others under
Avionics/ except for ExtInterface.agda.

module Avionics.SafetyEnvelopes.Properties where

open import Data.Bool using (Bool; true; false; _∧_; T)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List as List using (List; []; _∶∶_; any)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there; satisfied)
open import Data.Maybe using (Maybe; just; nothing; is-just; _»=_)
open import Data.Product as Prod using (∃-syntax; _×_; proj1; proj2) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_∪_; inj1; inj2)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong; cong2; inspect; [_]; sym; trans)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡˘⟨_⟩_; _≡⟨_⟩_; _�)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (toWitness; fromWitness)
open import Relation.Unary using (_∈_)

open import Avionics.Bool using (≡→T; T∧→×; ×→T∧; lem∧)
open import Avionics.List using (≡→any; any-map; any-map-rev; any→≡)
open import Avionics.Real

using (ℝ; _+_; _-_; -_; _*_; _÷_; _^_; _<b_; _≤_; _<_; _<?_; _≤?_; _≢0;
0ℝ; 1ℝ; 2ℝ; 1/2; abs; 1/_; _^2; √_; fromℕ;
double-neg;
⟨0,∞⟩; [0,∞⟩;
<-transl; 2>0; ⟨0,∞⟩→0<; 0<→⟨0,∞⟩; >0→≢0; >0→≥0;
0≟0≡yes0≡0;
abs<x→<x∧-x<; neg-involutive; neg-distrib-+; neg-mono-<->; neg-def; m-m≡0;
+-comm; +-assoc; *-comm; *-assoc; +-monol-<; m÷n<o≡m<o*n; m<o÷n≡m*n<o; neg-distribl-*;
√x^2≡absx; x*x≡x^2; x^2*y^2≡⟨xy⟩^2; 1/x^2≡⟨1/x⟩^2)

open import Avionics.Probability using (NormalDist; Dist)
open import Avionics.SafetyEnvelopes

using (inside; inside’; mahalanobis1; z-predictable’; P[_|X=_]_; classify”; classify; M→pbs;
StallClasses; Stall; NoStall; Uncertain;
no-uncertain;
safety-envelope; z-predictable; Model; 𝜏-confident;
Stall≡1-NoStall; NoStall≡1-Stall; ≤p→¬≤1-p; ≤1-p→¬≤p
)

open NormalDist using (𝜎; 𝜇)

--<b→< : ∀ {x y} → T (x <b y) → x < y
--<b→< = toWitness

-- Preliminary defitinions

-- `pi` is the prediction interval for the z score, i.e.,
-- pi(N (𝜇, 𝜎), z) = [𝜇 − z𝜎, 𝜇 + z𝜎]
pi : NormalDist → ℝ → ℝ → Set
pi nd z x = (𝜇 nd) - z * (𝜎 nd) < x

× x < (𝜇 nd) + z * (𝜎 nd)

extractDists : Model → List NormalDist
extractDists M = List.map (proj1 ∘ proj2) (Model.fM M)
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------------------------------ Starting point - Theorem 1 ------------------------------
-- Theorem 1 says:
-- In the case of univariate normal distributions, the z-predictability condition
-- > mahalanobis(𝜇, x, 𝜎²-¹) < z
-- reduces to
-- > 𝜇 - z𝜎 < x <b (𝜇 + z𝜎)
-- the prediction interval with a z-score of z
z-pred-interval≡mahalanobis<z : ∀ (nd z x)

→ inside nd z x ≡ inside’ nd z x
z-pred-interval≡mahalanobis<z nd z x =
begin
inside nd z x

≡⟨⟩
(u - z * s <b x) ∧ (x <b (u + z * s))

≡⟨ cong (𝜆 e → ((u - z * s) <b x) ∧ (x <b e)) (
begin

u + z * s
≡˘⟨ cong2 (_+_) (neg-involutive _) (neg-involutive _) ⟩

-(- u) + -(-(z * s))
≡˘⟨ neg-distrib-+ _ _ ⟩

-((- u) + (- (z * s)))
≡⟨⟩

-(- u - z * s)
�

) ⟩
(u - z * s <b x) ∧ (x <b -(- u - z * s))

≡⟨ cong (𝜆 e → (e <b x) ∧ (x <b -(- u - z * s))) (
begin

u - z * s
≡˘⟨ cong (_+ (- (z * s))) (neg-involutive _) ⟩

-(- u) + (- (z * s))
≡˘⟨ neg-distrib-+ _ _ ⟩

-(- u + z * s)
�

) ⟩
(-(- u + z * s) <b x) ∧ (x <b -(- u - z * s))

≡˘⟨ cong (𝜆 e → (-(- u + z * s) <b e) ∧ (e <b -(- u - z * s))) (neg-involutive _) ⟩
(-(- u + z * s) <b -(- x)) ∧ (-(- x) <b -(- u - z * s))

≡˘⟨ cong ((-(- u + z * s) <b -(- x)) ∧_) (neg-mono-<-> _ _) ⟩
(-(- u + z * s) <b -(- x)) ∧ (- u - z * s <b - x)

≡˘⟨ cong (_∧ (- u - z * s <b - x)) (neg-mono-<-> _ _) ⟩
(- x <b - u + z * s) ∧ (- u - z * s <b - x)

≡⟨ cong (_∧ (- u - z * s <b - x)) (
begin

- x <b - u + z * s
≡˘⟨ cong (_<b - u + z * s) (neg-def _) ⟩

0ℝ - x <b - u + z * s
≡˘⟨ cong (𝜆 e → e - x <b - u + z * s) (trans (+-comm _ _) (m-m≡0 _)) ⟩

(- u + u) - x <b - u + z * s
≡˘⟨ cong (_<b - u + z * s) (+-assoc _ _ _) ⟩

(- u) + (u - x) <b - u + z * s
≡˘⟨ +-monol-< _ _ _ ⟩
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u - x <b z * s
�

) ⟩
(u - x <b z * s) ∧ (- u - z * s <b - x)

≡⟨ cong ((u - x <b z * s) ∧_) (
begin

- u - z * s <b - x
≡˘⟨ cong (- u - z * s <b_) (neg-def _) ⟩

- u - z * s <b 0ℝ - x
≡˘⟨ cong (𝜆 e → - u - z * s <b e - x) (trans (+-comm _ _) (m-m≡0 _)) ⟩

- u - z * s <b (- u + u) - x
≡˘⟨ cong (- u - z * s <b_) (+-assoc _ _ _) ⟩

- u - z * s <b - u + (u - x)
≡˘⟨ +-monol-< _ _ _ ⟩

- (z * s) <b u - x
�

) ⟩
(u - x <b z * s) ∧ (- (z * s) <b u - x)

≡˘⟨ cong ((u - x <b z * s) ∧_) (
begin

- z <b (u - x) ÷ s
≡⟨ m<o÷n≡m*n<o _ _ _ ⟩

(- z) * s <b (u - x)
≡˘⟨ cong (_<b (u - x)) (neg-distribl-* _ _) ⟩

- (z * s) <b u - x
�

) ⟩
(u - x <b z * s) ∧ (- z <b (u - x) ÷ s)

≡˘⟨ cong (_∧ (- z <b (u - x) ÷ s)) (m÷n<o≡m<o*n _ _ _) ⟩
((u - x) ÷ s <b z) ∧ (- z <b (u - x) ÷ s)

≡˘⟨ abs<x→<x∧-x< ⟩
abs ((u - x) ÷ s) <b z

≡˘⟨ cong (_<b z) (√x^2≡absx _) ⟩
√(((u - x) ÷ s)^2) <b z

≡⟨⟩
√(((u - x) * (1/ s))^2) <b z

≡˘⟨ cong (𝜆 e → √ e <b z) (
begin

(u - x) * (1/ (s * s)) * (u - x)
≡⟨ *-comm _ _ ⟩

(u - x) * ((u - x) * (1/ (s * s)))
≡⟨ *-assoc _ _ _ ⟩

(u - x) * (u - x) * (1/ (s * s))
≡⟨ cong (𝜆 e → (u - x) * (u - x) * (1/ e)) (x*x≡x^2 _) ⟩

(u - x) * (u - x) * (1/ (s ^2))
≡⟨ cong ((u - x) * (u - x) *_) (1/x^2≡⟨1/x⟩^2 _) ⟩

(u - x) * (u - x) * (1/ s) ^2
≡⟨ cong (_* (1/ s) ^2) (x*x≡x^2 _) ⟩

(u - x)^2 * (1/ s) ^2
≡⟨ x^2*y^2≡⟨xy⟩^2 _ _ ⟩

((u - x) * (1/ s))^2
�
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)⟩
√((u - x) * (1/ (s * s)) * (u - x)) <b z

≡⟨⟩
mahalanobis1 u x (1/ (s * s)) <b z

≡⟨⟩
inside’ nd z x

�
where u = 𝜇 nd

s = 𝜎 nd
---- ############ Theorem 1 END ############

------------------------------ Starting point - Theorem 2 ------------------------------
-- Proof of Theorem 2 (paper)
--
-- In words, it says that:
-- The energy signal x is z-predictable iff there exist ⟨𝛼, v⟩ s.t.
-- M(⟨𝛼, v⟩)1 = di and x ∈ pi(di , z).
--
-- Notice that `Any (𝜆 nd → x ∈ pi nd z) nds` translates to:
-- there exists nd such that `nd ∈ nds` and `x ∈ pi(nd, z)`
follows-def←’ : ∀ (nds z x)

→ z-predictable’ nds z x ≡ ⟨ x , true ⟩
→ Any (𝜆 nd → x ∈ pi nd z) nds

follows-def←’ nds z x res≡x,true = Any-x∈pi
where
res≡true = cong proj2 res≡x,true

-- the first `toWitness` takes a result `(𝜇 nd - z * 𝜎 nd) <b x` (a
-- boolean) and produces a proof of the type `(𝜇 nd) - z * (𝜎 nd) < x`
-- assuming we have provided an operator `<?`
toWitness’ = 𝜆 nd → Prod.map (toWitness {Q = (𝜇 nd - z * 𝜎 nd) <? x})

(toWitness {Q = x <? (𝜇 nd + z * 𝜎 nd)})

-- We find the value for which `inside z x` becomes true in the list `nds`
Any-bool = ≡→any (𝜆 nd → inside nd z x) nds res≡true
-- Converting the boolean proof into a proof at the type level
Any-x∈pi = Any.map (𝜆 {nd} → toWitness’ nd ∘ T∧→×) Any-bool

-- forward proof
follows-def→’ : ∀ (nds z x)

→ Any (𝜆 nd → x ∈ pi nd z) nds
→ z-predictable’ nds z x ≡ ⟨ x , true ⟩

follows-def→’ nds z x any[x∈pi-z]nds = let
-- converts a tuple of `(𝜇 nd) - z * (𝜎 nd) < x , x < (𝜇 nd + z * 𝜎 nd)`
-- (a proof) into a boolean
fromWitness’ nd = 𝜆{⟨ 𝜇-z𝜎<x , x<𝜇+z𝜎 ⟩ →
×→T∧ ⟨ (fromWitness {Q = (𝜇 nd - z * 𝜎 nd) <? x} 𝜇-z𝜎<x)

, (fromWitness {Q = x <? (𝜇 nd + z * 𝜎 nd)} x<𝜇+z𝜎)
⟩}

-- Converting from a proof on `_<_` to a proof on `_<b_`
any[inside]nds = (Any.map (𝜆 {nd} → fromWitness’ nd) any[x∈pi-z]nds)

-- Transforming the prove from Any into equality (_≡_)
z-pred-x≡⟨x,true⟩ = any→≡ (𝜆 nd → inside nd z x) nds any[inside]nds

-- Extending the result from a single Bool value to a pair `ℝ × Bool`
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in cong (⟨ x ,_⟩) z-pred-x≡⟨x,true⟩

-- From the prove above we can obtain the value `nd` and its prove `x ∈ pi nd z`
-- Note: An element of ∃[ nd ] (x ∈ pi nd z) is a tuple of the form ⟨ nd , proof ⟩
--prop2← : ∀ (nds z x)
-- → z-predictable' nds z x ≡ ⟨ x , true ⟩
-- → ∃[ nd ] (x ∈ pi nd z)
--prop2← nds z x res≡x,true = satisfied (follows-def←' nds z x res≡x,true)

-- This proofs is telling us that `z-predictable` follows from the definition
follows-def← : ∀ (M z x)

→ z-predictable M z x ≡ ⟨ x , true ⟩
→ Any (𝜆 nd → x ∈ pi nd z) (extractDists M)

follows-def← M z x res≡x,true = follows-def←’ (extractDists M) z x res≡x,true

follows-def→ : ∀ (M z x)
→ Any (𝜆 nd → x ∈ pi nd z) (extractDists M)
→ z-predictable M z x ≡ ⟨ x , true ⟩

follows-def→ M z x Any[x∈pi-nd-z]M = follows-def→’ (extractDists M) z x Any[x∈pi-nd-z]M

-- ############ FINAL RESULT - Theorem 2 ############

-- In words: Given a Model `M` and parameter `z`, if `x` is z-predictable, then
-- there exists 𝜃 (a flight state) such that they are associated to a `nd`
-- (Normal Distribution) and `x` falls withing the Predictable Interval
theorem2← : ∀ (M z x)

→ z-predictable M z x ≡ ⟨ x , true ⟩
→ Any (𝜆{⟨ 𝜃 , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)

theorem2← M z x res≡x,true = any-map (proj1 ∘ proj2) (follows-def← M z x res≡x,true)

-- The reverse of theorem2←
theorem2→ : ∀ (M z x)

→ Any (𝜆{⟨ 𝜃 , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)
→ z-predictable M z x ≡ ⟨ x , true ⟩

theorem2→ M z x Any[𝜃→x∈pi-nd-z]M = follows-def→ M z x (any-map-rev (proj1 ∘ proj2) Any[𝜃→x∈pi-nd-z]M)

-- ################# Theorem 2 END ##################

------------------------------ Starting point - Theorem 3 ------------------------------
lem← : ∀ (pbs 𝜏 x k)

→ classify” pbs 𝜏 x ≡ k
→ k ≡ Uncertain ∪ ∃[ p ] ((P[ k |X= x ] pbs ≡ just p) × (𝜏 ≤ p))

lem← pbs 𝜏 x k _ with P[ Stall |X= x ] pbs | inspect (P[ Stall |X=_] pbs) x
lem← _ _ _ Uncertain _ | nothing | [ P[k|X=x]≡nothing ] = inj1 refl
lem← _ 𝜏 _ _ _ | just p | [ _ ] with 𝜏 ≤? p | 𝜏 ≤? (1ℝ - p)
lem← _ _ _ Stall _ | just p | [ P[k|X=x]≡justp ] | yes 𝜏≤p | no ¬𝜏≤1-p = inj2 ⟨ p , ⟨ P[k|X=x]≡justp , 𝜏≤p ⟩ ⟩
lem← _ _ _ NoStall _ | just p | [ P[k|X=x]≡justp ] | no ¬𝜏≤p | yes 𝜏≤1-p =
let P[NoStall|X=x]≡just1-p = Stall≡1-NoStall P[k|X=x]≡justp
in inj2 ⟨ 1ℝ - p , ⟨ P[NoStall|X=x]≡just1-p , 𝜏≤1-p ⟩ ⟩

lem← _ _ _ Uncertain _ | _ | _ | _ | _ = inj1 refl

lem→’ : ∀ (pbs 𝜏 x p)
-- This line is asking for the main assumptions for the code to work properly:
-- * 0.5 < 𝜏 ≤ 1
-- * 0 ≤ p ≤ 1
→ (1/2 < 𝜏 × 𝜏 ≤ 1ℝ) × (0ℝ ≤ p × p ≤ 1ℝ)
→ (P[ Stall |X= x ] pbs) ≡ just p
→ 𝜏 ≤ (1ℝ - p)
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→ classify” pbs 𝜏 x ≡ NoStall
lem→’ pbs _ x _ _ _ _ with P[ Stall |X= x ] pbs
lem→’ _ 𝜏 _ _ _ _ _ | just p with 𝜏 ≤? p | 𝜏 ≤? (1ℝ - p)
lem→’ _ _ _ _ _ _ _ | just p | no _ | yes _ = refl
lem→’ _ _ _ _ _ refl 𝜏≤1-p | just p | _ | no ¬𝜏≤1-p = ⊥-elim (¬𝜏≤1-p 𝜏≤1-p)
lem→’ _ _ _ _ assumpts refl 𝜏≤1-p | just p | yes 𝜏≤p | yes _ = ⊥-elim (¬𝜏≤p 𝜏≤p)
where
1/2<𝜏 = proj1 (proj1 assumpts)
𝜏≤1 = proj2 (proj1 assumpts)
0≤p = proj1 (proj2 assumpts)
p≤1 = proj2 (proj2 assumpts)
¬𝜏≤p = ≤1-p→¬≤p 1/2<𝜏 𝜏≤1 0≤p p≤1 𝜏≤1-p

𝜏≤p→𝜏≤1-⟨1-p⟩ : ∀ 𝜏 p → 𝜏 ≤ p → 𝜏 ≤ 1ℝ - (1ℝ - p)
𝜏≤p→𝜏≤1-⟨1-p⟩ 𝜏 p 𝜏≤p rewrite double-neg p 1ℝ = 𝜏≤p

lem→ : ∀ (pbs 𝜏 x k)
→ (1/2 < 𝜏 × 𝜏 ≤ 1ℝ)
→ ∃[ p ] (((P[ k |X= x ] pbs) ≡ just p) × (𝜏 ≤ p))
→ classify” pbs 𝜏 x ≡ k

lem→ pbs _ x Stall _ _ with P[ Stall |X= x ] pbs
lem→ _ 𝜏 _ _ _ _ | just p with 𝜏 ≤? p | 𝜏 ≤? (1ℝ - p)
lem→ _ _ _ _ _ _ | just p | yes _ | no _ = refl
lem→ _ _ _ _ _ ⟨ _ , ⟨ refl , 𝜏≤p ⟩ ⟩ | just p | no ¬𝜏≤p | _ = ⊥-elim (¬𝜏≤p 𝜏≤p)
lem→ _ _ _ _ 1/2<𝜏≤1 ⟨ _ , ⟨ refl , 𝜏≤p ⟩ ⟩ | just p | yes _ | yes 𝜏≤1-p = ⊥-elim (¬𝜏≤1-p 𝜏≤1-p)
where 1/2<𝜏 = proj1 1/2<𝜏≤1

𝜏≤1 = proj2 1/2<𝜏≤1
postulate 0≤p : 0ℝ ≤ p

p≤1 : p ≤ 1ℝ
¬𝜏≤1-p = ≤p→¬≤1-p 1/2<𝜏 𝜏≤1 0≤p p≤1 𝜏≤p

lem→ pbs 𝜏 x NoStall 1/2<𝜏≤1 ⟨ p , ⟨ P[k|X=x]≡justp , 𝜏≤p ⟩ ⟩ = let
P[S|X=x]≡just1-p = NoStall≡1-Stall P[k|X=x]≡justp
𝜏≤1-⟨1-p⟩ = 𝜏≤p→𝜏≤1-⟨1-p⟩ 𝜏 p 𝜏≤p
assumptions = ⟨ 1/2<𝜏≤1 , 0≤p≤1 ⟩

in lem→’ pbs 𝜏 x (1ℝ - p) assumptions P[S|X=x]≡just1-p 𝜏≤1-⟨1-p⟩
where postulate 0≤p≤1 : (0ℝ ≤ 1ℝ - p × 1ℝ - p ≤ 1ℝ)

prop3M-prior← : ∀ (M 𝜏 x k)
→ classify M 𝜏 x ≡ k
→ k ≡ Uncertain ∪ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p))

prop3M-prior← M = lem← (M→pbs M)

prop3M-prior←’ : ∀ (M 𝜏 x k)
→ k ≡ Stall ∪ k ≡ NoStall
→ classify M 𝜏 x ≡ k
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p))

prop3M-prior←’ M 𝜏 x k _ cM𝜏x≡k with prop3M-prior← M 𝜏 x k cM𝜏x≡k
prop3M-prior←’ _ _ _ Stall (inj1 _) _ | inj2 P[k|X=x]≥𝜏 = P[k|X=x]≥𝜏
prop3M-prior←’ _ _ _ NoStall _ _ | inj2 P[k|X=x]≥𝜏 = P[k|X=x]≥𝜏

prop3M-prior→ : ∀ (M 𝜏 x k)
→ (1/2 < 𝜏 × 𝜏 ≤ 1ℝ)
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p))
→ classify M 𝜏 x ≡ k

prop3M-prior→ M 𝜏 x k 1/2<𝜏≤1 = lem→ (M→pbs M) 𝜏 x k 1/2<𝜏≤1

prop3M← : ∀ (M 𝜏 x)
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→ 𝜏-confident M 𝜏 x ≡ true
→ ∃[ k ] ((classify M 𝜏 x ≡ k) × (k ≡ Stall ∪ k ≡ NoStall))

prop3M← M 𝜏 x 𝜏conf≡true with classify M 𝜏 x
... | Stall = ⟨ Stall , ⟨ refl , inj1 refl ⟩ ⟩
... | NoStall = ⟨ NoStall , ⟨ refl , inj2 refl ⟩ ⟩

prop3M→ : ∀ (M 𝜏 x k)
→ k ≡ Stall ∪ k ≡ NoStall
→ classify M 𝜏 x ≡ k
→ 𝜏-confident M 𝜏 x ≡ true

prop3M→ M 𝜏 x Stall (inj1 k≡Stall) cM𝜏x≡k = cong no-uncertain cM𝜏x≡k
prop3M→ M 𝜏 x NoStall (inj2 k≡NoStall) cM𝜏x≡k = cong no-uncertain cM𝜏x≡k

---- ############ FINAL RESULT - Theorem 3 ############
-- Theorem 3 says:
-- a classification k is 𝜏-confident iff 𝜏 ≤ P[ k | X = x ]
theorem3← : ∀ (M 𝜏 x)

→ 𝜏-confident M 𝜏 x ≡ true
→ ∃[ k ] (∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p))) -- which means: 𝜏 ≤ P[ k | X = x ]

theorem3← M 𝜏 x 𝜏conf≡true = let -- prop3M-prior← M 𝜏 x k (prop3M← M 𝜏 x k 𝜏conf≡true)
⟨ k , ⟨ cM𝜏x≡k , k≢Uncertain ⟩ ⟩ = prop3M← M 𝜏 x 𝜏conf≡true
in ⟨ k , prop3M-prior←’ M 𝜏 x k k≢Uncertain cM𝜏x≡k ⟩

theorem3→ : ∀ (M 𝜏 x k)
→ (1/2 < 𝜏 × 𝜏 ≤ 1ℝ)
→ k ≡ Stall ∪ k ≡ NoStall
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p)) -- which means: 𝜏 ≤ P[ k | X = x ]
→ 𝜏-confident M 𝜏 x ≡ true

theorem3→ M 𝜏 x k 1/2<𝜏≤1 k≢Uncertain ⟨p,⟩ =
prop3M→ M 𝜏 x k k≢Uncertain (prop3M-prior→ M 𝜏 x k 1/2<𝜏≤1 ⟨p,⟩)

---- ############ Theorem 3 END ############

------------------------------ Starting point - Theorem 4 ------------------------------
-- The final theorem is more a corolary. It follows from Theorem 2 and 3
prop4M← : ∀ (M z 𝜏 x)

→ safety-envelope M z 𝜏 x ≡ true
→ (Any (𝜆{⟨ 𝜃 , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M))

× ∃[ k ] (∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p)))
prop4M← M z 𝜏 x seM≡true = let

-- Taking from the safety-envelope definition its components
⟨ left , 𝜏-conf ⟩ =

lem∧ {a = proj2 (z-predictable M z x)}
{b = 𝜏-confident M 𝜏 x}
seM≡true

z-pred-x≡⟨x,true⟩ = cong (⟨ x ,_⟩) left
in ⟨ theorem1← M z x z-pred-x≡⟨x,true⟩ , theorem2← M 𝜏 x 𝜏-conf ⟩

prop4M→ : ∀ (M z 𝜏 x k)
→ (1/2 < 𝜏 × 𝜏 ≤ 1ℝ)
→ k ≡ Stall ∪ k ≡ NoStall
→ (Any (𝜆{⟨ 𝜃 , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M))

× ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (𝜏 ≤ p))
→ safety-envelope M z 𝜏 x ≡ true

prop4M→ M z 𝜏 x k 1/2<𝜏≤1 k≢Uncertain ⟨ Any[𝜃→x∈pi-nd-z]M , ⟨p,⟩ ⟩ = let
z-pred≡⟨x,true⟩ = theorem1→ M z x Any[𝜃→x∈pi-nd-z]M
𝜏-conf = theorem2→ M 𝜏 x k 1/2<𝜏≤1 k≢Uncertain ⟨p,⟩
in cong2 (_∧_) (cong proj2 z-pred≡⟨x,true⟩) 𝜏-conf

---- ############ Theorem 4 END ############
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4.2 Avionics/SafetyEnvelopes/ExtInterface.agda

This file makes two functions available to Haskell zPredictable and sampleZPredictable, which implement 𝑧-predictability for
one measurement (presented in the paper) and 𝑧-predictability for a sample of measurements, respectively.

module Avionics.SafetyEnvelopes.ExtInterface where

open import Data.Bool using (Bool)
open import Data.Float using (Float)
open import Data.List using (List; map)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Product using (_×_; _,_)

open import Avionics.Probability using (Dist; NormalDist; ND)
open import Avionics.Real renaming (fromFloat to ff; toFloat to tf)
open import Avionics.SafetyEnvelopes using (z-predictable’; sample-z-predictable)

open import ExtInterface.Data.Maybe using (just; nothing) renaming (Maybe to ExtMaybe)
open import ExtInterface.Data.Product as Ext using (⟨_,_⟩)

fromFloats-z-predictable : List (Float Ext.× Float) → Float → Float → ExtMaybe (Float Ext.× Bool)
fromFloats-z-predictable means×stds z x =

let
ndists = map (𝜆{⟨ mean , std ⟩ → ND (ff mean) (ff std)}) means×stds
(m , b) = z-predictable’ ndists (ff z) (ff x)

in
just ⟨ tf m , b ⟩

{-# COMPILE GHC fromFloats-z-predictable as zPredictable #-}

fromFloats-sample-z-predictable :
List (Float Ext.× Float)
→ Float → Float → List Float → ExtMaybe (Float Ext.× Float Ext.× Bool)

fromFloats-sample-z-predictable means×stds z𝜇 z𝜎 xs =
let
ndists = map (𝜆{⟨ mean , std ⟩ → ND (ff mean) (ff std)}) means×stds

in
return (sample-z-predictable ndists (ff z𝜇) (ff z𝜎) (map ff xs))

where
return : Maybe (ℝ × ℝ × Bool) → ExtMaybe (Float Ext.× Float Ext.× Bool)
return nothing = nothing
return (just (m’ , v’ , b)) = just ⟨ tf m’ , ⟨ tf v’ , b ⟩ ⟩

{-# COMPILE GHC fromFloats-sample-z-predictable as sampleZPredictable #-}

4.3 Avionics/Bool.agda

This file contains some basic tools/functions and properties for booleans and their operations. They are used to “operate” with booleans
at the type level.

module Avionics.Bool where

open import Data.Bool using (Bool; true; false; _∧_; T)
open import Data.Unit using (⊤; tt)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; inspect; [_])

--open import Avionics.Product using (_×_; ⟨_,_⟩)

--TODO: Replace with T⟺≡ from standard library
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≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T refl = tt

T→≡ : ∀ {b : Bool} → T b → b ≡ true
T→≡ {true} tt = refl

T∧→× : ∀ {x y} → T (x ∧ y) → (T x) × (T y)
T∧→× {true} {true} tt = tt , tt
--TODO: Find a way to extract the function below from `T-∧` (standard library)
--T∧→× {x} {y} = ? -- Equivalence.to (T-∧ {x} {y})

×→T∧ : ∀ {x y} → (T x) × (T y) → T (x ∧ y)
×→T∧ {true} {true} (tt , tt) = tt

lem∧ : {a b : Bool} → a ∧ b ≡ true → a ≡ true × b ≡ true
lem∧ {true} {true} refl = refl , refl

∧≡true→×≡ : ∀ {A B : Set} {f : A → Bool} {g : B → Bool}
(n : A) (m : B)

→ f n ∧ g m ≡ true
→ f n ≡ true × g m ≡ true

∧≡true→×≡ {f = f} {g = g} n m fn∧gm≡true = lem∧ {f n} {g m} fn∧gm≡true

4.4 Avionics/List.agda

This file contains basic properties of lists not present in the official library and might be used by any other library.

module Avionics.List where

open import Data.Bool using (Bool; true; false; T)
open import Data.List as List using (List; []; _∶∶_; any)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_; inspect; [_]; refl)

open import Avionics.Bool using (≡→T)

≡→any : ∀ {a} {A : Set a} (f) (ns : List A)
→ any f ns ≡ true
→ Any (T ∘ f) ns
--→ Any (𝜆 x → T (f x)) ns

≡→any f [] ()
≡→any f (n ∶∶ ns) any-f-⟨n∶∶ns⟩≡true with f n | inspect f n
... | true | [ fn≡t ] = here (≡→T fn≡t)
... | false | _ = there (≡→any f ns any-f-⟨n∶∶ns⟩≡true)

any→≡ : ∀ {a} {A : Set a} (f) (ns : List A)
→ Any (T ∘ f) ns
→ any f ns ≡ true

any→≡ f (n ∶∶ _) (here _) with f n
... | true = refl -- or: T→≡ [*proof*from*here*]
any→≡ f (n ∶∶ ns) (there Any[T∘f]ns) with f n
... | true = refl
... | false = any→≡ f ns Any[T∘f]ns

any-map : ∀ {A B : Set} {p : B → Set} {ls : List A}
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(f : A → B)
→ Any p (List.map f ls)
→ Any (p ∘ f) ls

--any-map {ls = []} _ ()
any-map {ls = l ∶∶ ls} f (here pb) = here pb
any-map {ls = l ∶∶ ls} f (there pb) = there (any-map f pb)

any-map-rev : ∀ {A B : Set} {p : B → Set} {ls : List A}
(f : A → B)

→ Any (p ∘ f) ls
→ Any p (List.map f ls)

any-map-rev {ls = l ∶∶ ls} f (here pb) = here pb
any-map-rev {ls = l ∶∶ ls} f (there pb) = there (any-map-rev f pb)

4.5 Avionics/Probability.agda

This file contains a skeleton of the required probability theory needed for safety envelopes to work. The symbol ? indicates the holes
missing in the formalization.

{-# OPTIONS --allow-unsolved-metas #-}

module Avionics.Probability where

--open import Data.Fin using (Fin; fromℕ<)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (_×_; _,_)
open import Data.Vec using (Vec; lookup)
open import Relation.Binary.PropositionalEquality using (refl)
open import Relation.Unary using (_∈_)

open import Avionics.Real using (
ℝ; _+_; _-_; _*_; _÷_; _^_; √_; 1/_; _^2;
-1/2; 𝜋; e; 2ℝ; 1ℝ; 0ℝ;
⟨0,∞⟩; [0,∞⟩; [0,1])

record Dist (Input : Set) : Set where
field
pdf : Input → ℝ
cdf : Input → ℝ
pdf→[0,∞⟩ : ∀ x → pdf x ∈ [0,∞⟩
cdf→[0,1] : ∀ x → cdf x ∈ [0,1]
--𝑖𝑛𝑡pdf≡cdf : 𝑖𝑛𝑡 pdf ≡ cdf
--𝑖𝑛𝑡pdf[-∞,∞]≡1ℝ : 𝑖𝑛𝑡 pdf [ -∞ , ∞ ] ≡ 1ℝ

record NormalDist : Set where
constructor ND
field

𝜇 : ℝ
𝜎 : ℝ
--.0<𝜎 : 0ℝ <? 𝜎

dist : Dist ℝ
dist = record
{
pdf = pdf

; cdf = ?
; pdf→[0,∞⟩ = ?
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; cdf→[0,1] = ?
}
where
√2𝜋 = (√ (2ℝ * 𝜋))
1/⟨𝜎√2𝜋⟩ = (1/ (𝜎 * √2𝜋))

pdf : ℝ → ℝ
pdf x = 1/⟨𝜎√2𝜋⟩ * e ^ (-1/2 * (⟨x-𝜇⟩÷𝜎 ^2))

where
⟨x-𝜇⟩÷𝜎 = ((x - 𝜇) ÷ 𝜎)

-- Bivariate Normal Distribution
-- Representation taken from: https://upload.wikimedia.org/wikipedia/commons/a/a2/

Cumulative_function_n_dimensional_Gaussians_12.2013.pdf
record BiNormalDist : Set where
constructor ND
field

𝜇1 : ℝ
𝜇2 : ℝ
𝜎1 : ℝ
𝜎2 : ℝ
𝜌 : ℝ

𝜇 : ℝ × ℝ
𝜇 = 𝜇1 , 𝜇2

Σ : ℝ × ℝ × ℝ × ℝ
Σ = 𝜎1 , (𝜌 * 𝜎1 * 𝜎2) , (𝜌 * 𝜎1 * 𝜎2) , 𝜎2

Σ-¹ : ℝ × ℝ × ℝ × ℝ
Σ-¹ = ( 1/1-𝜌² * (1ℝ ÷ 𝜎1)

, 1/1-𝜌² * -𝜌/𝜎1𝜎2
, 1/1-𝜌² * -𝜌/𝜎1𝜎2
, 1/1-𝜌² * (1ℝ ÷ 𝜎2))

where 1/1-𝜌² = 1ℝ ÷ (1ℝ - 𝜌 * 𝜌)
-𝜌/𝜎1𝜎2 = (0ℝ - 𝜌) ÷ (𝜎1 * 𝜎2)

dist : Dist ℝ
dist = record
{
pdf = ?

; cdf = ?
; pdf→[0,∞⟩ = ?
; cdf→[0,1] = ?
}

Mat : ℕ → Set
Mat n = Vec (Vec ℝ n) n

-- Multivariate Normal Distribution
record MultiNormal : Set where
constructor MultiND
field
n : ℕ
𝜇 : Vec ℝ n
Σ : Mat n

dist : Dist (Vec ℝ n)
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dist = record
{
pdf = ?

; cdf = ?
; pdf→[0,∞⟩ = ?
; cdf→[0,1] = ?
}

--num : Vec ℕ 2 → ℕ
--num vec = lookup vec (fromℕ< {0} _)

--num2 : MultiNormal → ℝ
--num2 mn = lookup 𝜇 (fromℕ< {0} _)
-- where open MultiNormal mn using (n; 𝜇; Σ) --; dist)
-- --open Dist dist using (pdf)

4.6 Avionics/Real.agda

This file presents all the real number theory necessary to build up to safety envelopes. Each postulate is an axiom, and it’s taken as a true
statement but they cannot be executed. We approximate real numbers with floating-point numbers and for this, each operation in real
numbers is implemented as its floating-point representation.

module Avionics.Real where

open import Algebra.Definitions using (LeftIdentity; RightIdentity; Commutative)
open import Data.Bool using (Bool; _∧_)
open import Data.Float using (Float)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat using (ℕ)
open import Level using (0𝑙; _∪_) renaming (suc to lsuc)
open import Relation.Binary using (Decidable; _Preserves_→_)
open import Relation.Binary.Definitions using (Transitive; Trans)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (False; ⌊_⌋)
open import Relation.Unary using (Pred; _∈_)

infix 4 _<_ _≤_ _<b_ _≤b_
infixl 6 _+_ _-_
infixl 7 _*_

infix 4 _≟_

postulate
ℝ : Set
-- TODO: `fromFloat` should return `Maybe ℝ`
fromFloat : Float → ℝ
toFloat : ℝ → Float
fromℕ : ℕ → ℝ

_+_ _*_ _^_ : ℝ → ℝ → ℝ
-_ abs _^2 : ℝ → ℝ
e 𝜋 0ℝ 1ℝ -1/2 1/2 2ℝ : ℝ

-- This was inspired on how the standard library handles things.
-- See: https://plfa.github.io/Decidable/
_<_ _≤_ : ℝ → ℝ → Set
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_≟_ : Decidable {A = ℝ} _≡_
_≤?_ : (m n : ℝ) → Dec (m ≤ n)
_<?_ : (m n : ℝ) → Dec (m < n)

_<b_ _≤b_ _≡b_ : ℝ → ℝ → Bool
p <b q = ⌊ p <? q ⌋
p ≤b q = ⌊ p ≤? q ⌋
p ≡b q = ⌊ p ≟ q ⌋

_≢0 : ℝ → Set
p ≢0 = False (p ≟ 0ℝ)

Subset : Set → Set _
Subset A = Pred A 0𝑙

-- Dangerous definitions, but necessary!
postulate

⟨0,∞⟩ [0,∞⟩ [0,1] : Subset ℝ

1/_ : (p : ℝ) → ℝ
√_ : (x : ℝ) → ℝ

_÷_ : (p q : ℝ) → ℝ
(p ÷ q) = p * (1/ q)

-- Dangerous definitions, but necessary!
postulate
m÷n<o≡m<o*n : ∀ m n o → (m ÷ n <b o) ≡ (m <b o * n)
m<o÷n≡m*n<o : ∀ m n o → (m <b o ÷ n) ≡ (m * n <b o)

_-_ : ℝ → ℝ → ℝ
p - q = p + (- q)

postulate
double-neg : ∀ (x y : ℝ) → y - (y - x) ≡ x
neg-involutive : ∀ x → -(- x) ≡ x
neg-distrib-+ : ∀ m n → - (m + n) ≡ (- m) + (- n)
neg-def : ∀ m → 0ℝ - m ≡ - m
m-m≡0 : ∀ m → m - m ≡ 0ℝ
neg-distribl-* : ∀ x y → - (x * y) ≡ (- x) * y
√x^2≡absx : ∀ x → √ (x ^2) ≡ abs x

>0→≢0 : ∀ {x : ℝ} → x ∈ ⟨0,∞⟩ → x ≢0
>0→≥0 : ∀ {x : ℝ} → x ∈ ⟨0,∞⟩ → x ∈ [0,∞⟩
>0*>0→>0 : ∀ {p q : ℝ} → p ∈ ⟨0,∞⟩ → q ∈ ⟨0,∞⟩ → (p * q) ∈ ⟨0,∞⟩
≢0*≢0→≢0 : ∀ {p q : ℝ} → p ≢0 → q ≢0 → (p * q) ≢0

2>0 : 2ℝ ∈ ⟨0,∞⟩
𝜋>0 : 𝜋 ∈ ⟨0,∞⟩

e^x>0 : (x : ℝ) → (e ^ x) ∈ ⟨0,∞⟩
x*x≡x^2 : ∀ x → x * x ≡ x ^2
x^2*y^2≡⟨xy⟩^2 : ∀ x y → (x ^2) * (y ^2) ≡ (x * y)^2
1/x^2≡⟨1/x⟩^2 : ∀ x → 1/ (x ^2) ≡ (1/ x)^2
--√q≥0 : (q : ℝ) → (0≤q : q ∈ [0,∞⟩) → (√ q) {0≤q} ∈ [0,∞⟩
--q>0→√q>0 : {q : ℝ} → (0<q : q ∈ ⟨0,∞⟩) → (√ q) {>0→≥0 0<q} ∈ ⟨0,∞⟩
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0≤→[0,∞⟩ : {n : ℝ} → 0ℝ ≤ n → n ∈ [0,∞⟩
0<→⟨0,∞⟩ : {n : ℝ} → 0ℝ < n → n ∈ ⟨0,∞⟩
[0,∞⟩→0≤ : {n : ℝ} → n ∈ [0,∞⟩ → 0ℝ ≤ n
⟨0,∞⟩→0< : {n : ℝ} → n ∈ ⟨0,∞⟩ → 0ℝ < n

m≤n→m-p≤n-p : {m n p : ℝ} → m ≤ n → m - p ≤ n - p
m<n→m-p<n-p : {m n p : ℝ} → m < n → m - p < n - p

-- trans-≤ reduces to: {i j k : ℝ} → i ≤ j → j ≤ k → i ≤ k
trans-≤ : Transitive _≤_
<-transl : Trans _<_ _≤_ _<_

--+-identityl : LeftIdentity 0ℝ _+_
--+-identityr : RightIdentity 0ℝ _+_
+-identityl : ∀ x → 0ℝ + x ≡ x
+-identityr : ∀ x → x + 0ℝ ≡ x
--+-comm : Commutative _+_
+-comm : ∀ m n → m + n ≡ n + m
--+-assoc : Associative _+_
+-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o

*-comm : ∀ m n → m * n ≡ n * m
*-assoc : ∀ m n o → m * (n * o) ≡ (m * n) * o

--0ℝ ≟_
0≟0≡yes0≡0 : (0ℝ ≟ 0ℝ) ≡ yes refl

-- TODO: These properties should be written for _<_ instead of _<b_
abs<x→<x∧-x< : ∀ {u x} → (abs u <b x) ≡ ((u <b x) ∧ (- x <b u))
--neg-mono-<-> : -_ Preserves _<_ → (𝜆 a b -> b < a)
neg-mono-<-> : ∀ m n → (m <b n) ≡ (- n <b - m)
--+-monol-< : ∀ n → (_+ n) Preserves _<_ → _<_
+-monol-< : ∀ n o p → (o <b p) ≡ (n + o <b n + p)

-- One of the weakest points in the whole library architecture!!!
-- This is wrong, really wrong, but useful
{-# COMPILE GHC ℝ = type Double #-}
{-# COMPILE GHC fromFloat = \x -> x #-}
{-# COMPILE GHC toFloat = \x -> x #-}
{-# COMPILE GHC fromℕ = fromIntegral #-}

{-# COMPILE GHC _<b_ = (<) #-}
{-# COMPILE GHC _≤b_ = (<=) #-}
{-# COMPILE GHC _≡b_ = (==) #-}

{-# COMPILE GHC _+_ = (+) #-}
{-# COMPILE GHC _-_ = (-) #-}
{-# COMPILE GHC _*_ = (*) #-}
{-# COMPILE GHC _^_ = (**) #-}

{-# COMPILE GHC _^2 = (**2) #-}

{-# COMPILE GHC e = 2.71828182845904523536 #-}
{-# COMPILE GHC 𝜋 = 3.14159265358979323846 #-}
{-# COMPILE GHC 0ℝ = 0 #-}
{-# COMPILE GHC 1ℝ = 1 #-}
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{-# COMPILE GHC 2ℝ = 2 #-}
{-# COMPILE GHC -1/2 = -1/2 #-}

-- REAAALY CAREFUL WITH THIS!
-- TODO: Add some runtime checking to this. Fail hard if divisor is zero
{-# COMPILE GHC 1/_ = \x -> (1/x) #-}
{-# COMPILE GHC _÷_ = \x y -> (x/y) #-}
{-# COMPILE GHC √_ = \x -> sqrt x #-}

4.7 Avionics/SafetyEnvelopes.agda

This file implements signal energy safety envelopes and the Mahalanobis operation for one and two variable dimensions.

module Avionics.SafetyEnvelopes where

open import Data.Bool using (Bool; true; false; _∧_; _∨_)
open import Data.List using (List; []; _∶∶_; any; map; foldl; length)
open import Data.List.Relation.Unary.Any as Any using (Any)
open import Data.List.Relation.Unary.All as All using (All)
open import Data.Maybe using (Maybe; just; nothing; is-just; _»=_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (_×_; proj1; proj2) renaming (_,_ to ⟨_,_⟩)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality

using (_≡_; _≢_; refl; cong; subst; sym)
open import Relation.Unary using (_∈_)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Nullary.Decidable using (fromWitnessFalse)

open import Avionics.Real
using (ℝ; _+_; _-_; _*_; _÷_; _^_; _<b_; _≤b_; _≤_; _<_; _<?_; _≤?_; _≟_;

1/_;
0ℝ; 1ℝ; 2ℝ; 1/2; _^2; √_; fromℕ)

--open import Avionics.Product using (_×_; ⟨_,_⟩; proj1; proj2)
open import Avionics.Probability using (Dist; NormalDist; ND; BiNormalDist)

sum : List ℝ → ℝ
sum = foldl _+_ 0ℝ

inside : NormalDist → ℝ → ℝ → Bool
inside nd z x = ((𝜇 - z * 𝜎) <b x) ∧ (x <b (𝜇 + z * 𝜎))
where open NormalDist nd using (𝜇; 𝜎)

mahalanobis1 : ℝ → ℝ → ℝ → ℝ
mahalanobis1 u v IV = √((u - v) * IV * (u - v))

inside’ : NormalDist → ℝ → ℝ → Bool
inside’ nd z x = mahalanobis1 𝜇 x 𝜎²-¹ <b z
where open NormalDist nd using (𝜇; 𝜎)

𝜎²-¹ = 1/ (𝜎 * 𝜎)

mahalanobis2 : (ℝ × ℝ) → (ℝ × ℝ) → (ℝ × ℝ × ℝ × ℝ) → ℝ
--mahalanobis2 u v VI = ...
mahalanobis2 ⟨ u1 , u2 ⟩ ⟨ v1 , v2 ⟩

⟨ iv11 , ⟨ iv12 , ⟨ iv21 , iv22 ⟩ ⟩ ⟩ = √ ⟨u-v⟩IV⟨u-v⟩’
where x1 = u1 - v1
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x2 = u2 - v2
⟨u-v⟩IV⟨u-v⟩’ = (x1 * x1 * iv11 + x1 * x2 * iv12

+ x1 * x2 * iv21 + x2 * x2 * iv22)

insideBiv : BiNormalDist → ℝ → (ℝ × ℝ) → Bool
insideBiv bnd z x = mahalanobis2 𝜇 x Σ-¹ <b z
where open BiNormalDist bnd using (𝜇; Σ-¹)

FlightState = (ℝ × ℝ)

record Model : Set where
field
-- Flight states
SM : List FlightState
-- Map from flight states to Normal Distributions
fM : List (FlightState × (NormalDist × ℝ))
-- Every flight state must be represented in the map fM
.fMisMap1 : All (𝜆 𝜃 → Any (𝜆 𝜃,ND → proj1 𝜃,ND ≡ 𝜃) fM ) SM
.fMisMap2 : All (𝜆 𝜃,ND → Any (𝜆 𝜃 → proj1 𝜃,ND ≡ 𝜃) SM ) fM
.lenSM>0 : length SM ≢ 0
--.lenfM>0 : length fM ≢ 0 -- this is the result of the bijection above and .lenSM>0

z-predictable’ : List NormalDist → ℝ → ℝ → ℝ × Bool
z-predictable’ nds z x = ⟨ x , any (𝜆 nd → inside nd z x) nds ⟩

z-predictable : Model → ℝ → ℝ → ℝ × Bool
z-predictable M z x = z-predictable’ (map (proj1 ∘ proj2) (Model.fM M)) z x

--

sample-z-predictable : List NormalDist → ℝ → ℝ → List ℝ → Maybe (ℝ × ℝ × Bool)
sample-z-predictable nds z𝜇 z𝜎 [] = nothing
sample-z-predictable nds z𝜇 z𝜎 (_ ∶∶ []) = nothing
sample-z-predictable nds z𝜇 z𝜎 xs@(_ ∶∶ _ ∶∶ _) = just ⟨ mean , ⟨ var_est , any inside” nds ⟩ ⟩
where
n = fromℕ (length xs)

mean = (sum xs ÷ n)
var_est = (sum (map (𝜆{x →(x - mean)^2}) xs) ÷ (n - 1ℝ))

inside” : NormalDist → Bool
inside” nd = ((𝜇 - z𝜇 * 𝜎) <b mean) ∧ (mean <b (𝜇 + z𝜇 * 𝜎))

∧ (𝜎^2 - z𝜎 * std[𝜎^2] <b var) ∧ (var <b 𝜎^2 + z𝜎 * std[𝜎^2])
where open NormalDist nd using (𝜇; 𝜎)

𝜎^2 = 𝜎 ^2
--Var[𝜎^2] = 2 * (𝜎^2)^2 / n
std[𝜎^2] = (√ 2ℝ) * (𝜎^2 ÷ (√ n))

-- Notice that the estimated variance here is computed assuming `𝜇`
-- it's the mean of the distribution. This is so that Cramer-Rao
-- lower bound can be applied to it
var = (sum (map (𝜆{x →(x - 𝜇)^2}) xs) ÷ n)

nonneg-cf : ℝ → ℝ × Bool
nonneg-cf x = ⟨ x , 0ℝ ≤b x ⟩

data StallClasses : Set where
Stall NoStall Uncertain : StallClasses
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P[stall]f⟨_|stall⟩_ : ℝ → List (ℝ × ℝ × Dist ℝ) → ℝ
P[stall]f⟨ x |stall⟩ pbs = sum (map unpack pbs)
where
unpack : ℝ × ℝ × Dist ℝ → ℝ
unpack ⟨ P[𝜃] , ⟨ P[stall|𝜃] , dist ⟩ ⟩ = pdf x * P[𝜃] * P[stall|𝜃]
where open Dist dist using (pdf)

f⟨_⟩_ : ℝ → List (ℝ × ℝ × Dist ℝ) → ℝ
f⟨ x ⟩ pbs = sum (map unpack pbs)
where
unpack : ℝ × ℝ × Dist ℝ → ℝ
unpack ⟨ P[𝜃] , ⟨ _ , dist ⟩ ⟩ = pdf x * P[𝜃]
where open Dist dist using (pdf)

-- There should be a proof showing that the resulting value will always be in the interval [0,1]
P[_|X=_]_ : StallClasses → ℝ → List (ℝ × ℝ × Dist ℝ) → Maybe ℝ
P[ Stall |X= x ] pbs with f⟨ x ⟩ pbs ≟ 0ℝ
... | yes _ = nothing
... | no _ = just (((P[stall]f⟨ x |stall⟩ pbs) ÷ (f⟨ x ⟩ pbs)))
P[ NoStall |X= x ] pbs with f⟨ x ⟩ pbs ≟ 0ℝ
... | yes _ = nothing
... | no _ = just (1ℝ - ((P[stall]f⟨ x |stall⟩ pbs) ÷ (f⟨ x ⟩ pbs)))
P[ Uncertain |X= _ ] _ = nothing

postulate
-- TODO: Find out how to prove this!
-- It probably requires to prove that P[Stall|X=x] + P[NoStall|X=x] ≡ 1
Stall≡1-NoStall : ∀ {x pbs p}

→ P[ Stall |X= x ] pbs ≡ just p
→ P[ NoStall |X= x ] pbs ≡ just (1ℝ - p)

NoStall≡1-Stall : ∀ {x pbs p}
→ P[ NoStall |X= x ] pbs ≡ just p
→ P[ Stall |X= x ] pbs ≡ just (1ℝ - p)

-- Main assumptions
-- * 0.5 < 𝜏 ≤ 1
-- * 0 ≤ p ≤ 1
-- Of course, these assumptions are never explicit in the code. But note
-- that, only the first assumption can be broken by an user bad input. The
-- second assumption stems for probability theory, yet not proven but
-- should be true
≤p→¬≤1-p : ∀ {𝜏 p}

-- This first line are the assumptions. From them, the rest should follow
→ 1/2 < 𝜏 → 𝜏 ≤ 1ℝ -- 0.5 < 𝜏 ≤ 1
→ 0ℝ ≤ p → p ≤ 1ℝ -- 0 ≤ p ≤ 1
→ 𝜏 ≤ p
→ ¬ 𝜏 ≤ (1ℝ - p)

≤1-p→¬≤p : ∀ {𝜏 p}
→ 1/2 < 𝜏 → 𝜏 ≤ 1ℝ -- 0.5 < 𝜏 ≤ 1
→ 0ℝ ≤ p → p ≤ 1ℝ -- 0 ≤ p ≤ 1
→ 𝜏 ≤ (1ℝ - p)
→ ¬ 𝜏 ≤ p

classify” : List (ℝ × ℝ × Dist ℝ) → ℝ → ℝ → StallClasses
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classify” pbs 𝜏 x with P[ Stall |X= x ] pbs
... | nothing = Uncertain
... | just p with 𝜏 ≤? p | 𝜏 ≤? (1ℝ - p)
... | yes _ | no _ = Stall
... | no _ | yes _ = NoStall
... | _ | _ = Uncertain -- the only missing case is `no _ | no _`,

`yes _ | yes _` is not possible

M→pbs : Model → List (ℝ × ℝ × Dist ℝ)
M→pbs M = map convert (Model.fM M)
where
n = fromℕ (length (Model.fM M))

convert : (ℝ × ℝ) × (NormalDist × ℝ) → ℝ × ℝ × Dist ℝ
convert ⟨ _ , ⟨ nd , P[stall|c] ⟩ ⟩ = ⟨ 1/ n , ⟨ P[stall|c] , dist ⟩ ⟩
where open NormalDist nd using (dist)

classify : Model → ℝ → ℝ → StallClasses
classify M = classify” (M→pbs M)

no-uncertain : StallClasses → Bool
no-uncertain Uncertain = false
no-uncertain _ = true

𝜏-confident : Model → ℝ → ℝ → Bool
𝜏-confident M 𝜏 = no-uncertain ∘ classify M 𝜏

safety-envelope : Model → ℝ → ℝ → ℝ → Bool
safety-envelope M z 𝜏 x = proj2 (z-predictable M z x)

∧ 𝜏-confident M 𝜏 x

4.8 ExtInterface/Data/Maybe.agda

This file implements the datatype Maybe which mirrors Haskell’s datatype by the same name.

module ExtInterface.Data.Maybe where

open import Function using (_∘_)
open import Level using (Level)

private
variable
a b c : Level
A : Set a
B : Set b
C : Set c

data Maybe (A : Set) : Set where
nothing : Maybe A
just : (x : A) → Maybe A

maybe : ∀ {A : Set} {B : Maybe A → Set} →
((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x

maybe j n (just x) = j x
maybe j n nothing = n

map : (A → B) → Maybe A → Maybe B
map f = maybe (just ∘ f) nothing
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-- Monad: bind

infixl 1 _»=_
_»=_ : Maybe A → (A → Maybe B) → Maybe B
nothing »= f = nothing
just a »= f = f a

{-# COMPILE GHCMaybe = data Maybe (Nothing | Just) #-}

4.9 ExtInterface/Data/Product.agda

This file is used instead of the official “product” library in Agda because the official cannot be converted into the “tuple” datatype in
Haskell. This file allows for a cleaner interface between Agda and Haskell.

module ExtInterface.Data.Product where

infixr 4 ⟨_,_⟩
infixr 2 _×_

data _×_ (A B : Set) : Set where
⟨_,_⟩ : A → B → A × B

{-# COMPILE GHC _×_ = data (,) ((,)) #-} -- Yeah, kinda abstract

proj1 : ∀ {A B : Set} → A × B → A
proj1 ⟨ x , y ⟩ = x

proj2 : ∀ {A B : Set} → A × B → B
proj2 ⟨ x , y ⟩ = y

map : ∀ {A B C D : Set}
→ (A → C) → (B → D) → A × B → C × D

map f g ⟨ x , y ⟩ = ⟨ f x , g y ⟩

map1 : ∀ {A B C : Set}
→ (A → C) → A × B → C × B

map1 f = map f (𝜆 x → x)

map2 : ∀ {A B D : Set}
→ (B → D) → A × B → A × D

map2 g = map (𝜆 x → x) g

5 Haskell Code
The Haskell code needed for running the sentinel/monitor is minimal. It loads the functionality implemented in Agda and uses it as a
simple function.

5.1 src/Main.hs

This file showcases how the (already loaded with the data) 𝑧-predictability function can be used within Haskell. For the univariate case,
single dimension, the program can take a stream of input floating-point numbers from the input command line and outputs immediately
the result to the screen (is the value 𝑧-predictable).

24



module Main where

import Pipes
import qualified Pipes.Prelude as P
import Data.List (tails)
import Control.Monad (forM)
import System.IO.Error (catchIOError)
import System.Environment (getArgs)

import SafetyEnvelopes (checkZPredictable, checkSampleZPredictable)

main :: IO ()
main = do

args <- getArgs
case args of

["single"] -> main_single
["sample"] -> main_sample
_ -> putStrLn "You need to supply a parameter to check data. Either `single` or `sample`"

main_single :: IO ()
main_single = do

let z = 4.0
airspeed_i = 1
c = checkZPredictable airspeed_i z

runEffect $ P.stdinLn
>-> P.map (\x-> show . c $ read x)
>-> P.stdoutLn

main_sample :: IO ()
main_sample = do

let z = 4.0
mul_var = 4.0
airspeed_i = 2
sample_n = 10

lines <- readLines
let samples = takeWhile ((==sample_n) . length) $ (take sample_n) <$> tails (map read lines)
forM samples $ \sample-> do

print $ checkSampleZPredictable airspeed_i z mul_var sample
return ()

readLines :: IO [String]
readLines = do

line <- catchIOError (Just <$> getLine) (\e -> return Nothing)
case line of

Just l -> (l:) <$> readLines
Nothing -> return []

5.2 app/SafetyEnvelopes.hs

This file defines functions that wrap around the Agda exported definitions. The models parameters are contained on the variables means
and stds.

module SafetyEnvelopes
( checkZPredictable
, checkSampleZPredictable
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) where

import Data.Maybe (fromMaybe)

import MAlonzo.Code.Avionics.SafetyEnvelopes.ExtInterface (zPredictable, sampleZPredictable)

checkZPredictable :: Int -> Double -> Double -> (Double, Bool)
checkZPredictable n mul x = fromMaybe (-1, False) $ check_mean_cf n mul x

checkSampleZPredictable :: Int -> Double -> Double -> [Double] -> (Double, (Double, Bool))
checkSampleZPredictable n m_mean m_var = fromMaybe (-1, (-1, False)) . check_sample_cf n m_mean m_var

check_all :: Double -> Double -> Maybe (Double, Bool)
check_all mul = zPredictable (zip (concat means) (concat stds)) mul

check_mean_cf :: Int -> Double -> Double -> Maybe (Double, Bool)
check_mean_cf n mul x = do

means_ <- means `at` n
stds_ <- stds `at` n
zPredictable (zip means_ stds_) mul x

check_sample_cf :: Int -> Double -> Double -> [Double] -> Maybe (Double, (Double, Bool))
check_sample_cf n mul_mean mul_var xs = do

means_ <- means `at` n
stds_ <- stds `at` n
sampleZPredictable (zip means_ stds_) mul_mean mul_var xs

at :: [a] -> Int -> Maybe a
xs `at` i

| i < 0 = Nothing
| otherwise = helper xs i

where helper :: [a] -> Int -> Maybe a
helper (x:_) 0 = Just x
helper (_:xs) i = helper xs (i-1)
helper [] i = Nothing

--- Many lines for each, `means` and `stds`, with data for Gaussian distributions
means = [[...], ...]

stds = [[...], ...]
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