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Abstract. Effective visualization is critical to developing, analyzing,
and optimizing distributed systems. We have developed OverView, a tool
for online/offline distributed systems visualization, that enables modular
layout mechanisms, so that different distributed system high-level pro-
gramming abstractions such as actors or processes can be visualized in
intuitive ways. OverView uses by default a hierarchical concentric layout
that distinguishes entities from containers allowing migration patterns
triggered by adaptive middleware to be visualized. In this paper, we de-
velop a force-directed layout strategy that connects entities according to
their communication patterns in order to directly exhibit the application
communication topologies. In force-directed visualization, entities’ loca-
tions are encoded with different colors to illustrate load balancing. We
compare these layouts using quantitative metrics including communica-
tion to entity ratio, applied on common distributed application topolo-
gies. We conclude that modular visualization is necessary to effectively
visualize distributed systems since no layout is best for all applications.

1 Introduction

Distributed systems promise increased computation power and capabilities for
organizations at relatively low prices, although at a cost of increased complexity.
This increased complexity rests on the shoulders of distributed application devel-
opers to be solved. Consider a scientist who would like to observe the interactions
between computers while they run a high performance parallel simulation. Con-
sider a middleware developer who would like to assess the locations of various
parts of a distributed program, to ensure that the program’s structure on the
network is conducive to efficient inter-process communication. Consider visualiz-
ing computational activity of BOINC infrastructures[1], such as SETI@Home[2]
or MilkyWay@Home [4]. Finally, consider visualizing the structure of a Bit-
Torrent[3] swarm as its activity spikes and dwindles over time. Visualizing dis-
tributed systems, whose reconfiguration is not intuitive or easy to keep track of,
is critical to assess the efficiency and performance of distributed applications.

The usual approach to distributed system understanding, involves attaching
a debugger to each of the locations in which the system is executing, forcing the
individual analysis of each of the locations of execution in the system. Progress
has been made in terms of the visualization of distributed systems, with the
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creation of tools like Pip, WiDS, Jinsight[9], Jive[11], Hy+[5] and OverView[6].
OverView provides a more complete insight to a distributed program’s execution,
given it’s capabilities for online/offline visualization and high level abstraction
representations, as noted by Desell et al.[6]. Accurate visualization of distributed
systems provides scientists and developers with tools for proper assessment of the
distributed system’s performance in a large scale, taking all the execution loca-
tions into account. More particularly a visualization should provide information
as to the proper co-location of actors on different locations.

Given the different network topologies that constitute different distributed
systems, it is the purpose of this paper to determine the suitability of a modu-
lar approach proposed for OverView[6] to achieve this broad perspective. Two
visualization modules are proposed, hierarchical concentric and force-directed,
which are evaluated to find their limitations and to stress the convenience of
OverView’s modular architecture to develop suitable visualizations for different
types of applications. OverView’s architecture is described, as well as it’s byte-
code instrumenting features and visualization module development examples.

The hierarchical concentric module proves effective in representing topolo-
gies resulting from structured overlay networks, such as Chord [10] because of
it’s ring-like appearance and effective conveyance of the logarithmic number of
references. This is further discussed in Section 3. When the network is deployed
in a manner that requires actors to send large amounts of messages to each
other, visualization becomes more difficult when using the hierarchical concentric
module, because the representation becomes cluttered and messages can not be
distinguished from each other. The force-directed module increases the amount
of actors that can be effectively visualized in some of these topologies with a
large communication to entity ratio since space is more efficiently distributed
by inferring attraction/repulsion laws from communication between entities as
discussed in Section 2. Analytical and experimental analysis of both modules
results in the determination of each model’s effectivity at conveying distributed
systems in theoretical and real scenarios, as discussed in Section 4.

OverView has been used to visualize various distributed environments, most
notably by instrumenting the SALSA programming language [12]3. The exami-
nation of the existing modules as they are plugged in to OverView, demonstrates
the simple nature of using OverView’s event processing approach to develop vi-
sualization modules, in order to convey the nature of a distributed application
as developers or scientists require.

Related work Frishman and Tal[8] have developed a visualization tool which
bears a number of similarities to our own. While it is limited to using mobile
objects (a single model of distributed systems, and thus is less generic), it takes
an interesting approach to scalability. It suggests providing the user a means to
select one or more points of focus; that is, parts of the visualization that are
of interest. Then, the software visualization will use an algorithm to determine
which mobile objects it can filter out as being uninteresting to the user. This

3 http://wcl.cs.rpi.edu/salsa/
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stands in contrast to its negative: the approach of selecting the objects one
wishes to filter out. Such a means might provide a better-scaling visualization;
ultimately, there will always be fewer entities one is interested in than entities
one is not.

Another software visualization framework which is similar to OverView is
EVolve[13], having the notion of events which describe the runtime behavior of
an application being translated into a graphical visualization. It focuses upon
object-oriented computations, supporting visualization of method invocations;
while it’s visualizations are less intuitive and generic, they are scalable and pro-
vide a large amount of information content, and may even be layered naturally
on top of each other to show the user different types of information at once.

2 OverView

OverView[6] is a toolkit which permits visualization of Java-based systems; in
particular, distributed systems such as those previously described.4 The toolkit
includes three programs, each of which performs a different task (see Figure 1):

– The OverView Instrumenter, or OVI, which allows the abstraction of a Java
program’s execution into a set of visualizable events by inserting unobtrusive
event-sending behavior into existing Java bytecode.

– The OverView Presenter, or OVP, which receives and interprets events into
a meaningful, interactive, graphical representation of the state of the dis-
tributed system. OVP has several visualization modules, each of which can
display the distributed system in a different layout.

– The OverView Daemon, or OVD, which acts as an event relay, collecting
events sent by event sources (that is, any active instrumented program), and
forwarding those events to event sinks (that is, any listening visualization
program).

Users add event-sending behavior to any existing Java program by writing an
Entity Specification Language (ESL) file, which uses a simple, declarative syntax
to map Java method invocations to OverView events. These events are sent, at
run-time, over a network to a listening OVD. ESL’s simple grammar definition
(see [6] for details) allows the instrumentation of existing Java bytecode.

OVP can listen for incoming events from multiple sources, both online net-
work connections and offline log files. It will multiplex these events and forward
them to a visualization module, in addition to time stamping and logging them,
so that they might be played back at a later date if desired. OverView visual-
ization modules are written using the Processing Development Environment5.

4 OverView versions 0.1 and 0.2 were developed as a plugin for the Eclipse IDE.
OverView’s current version (0.5) is stand-alone to better support future features
such as running the visualization from within a web browser as a Java applet.

5 http://www.processing.org/
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Fig. 1: The OverView framework, showing both compile-time operations and the layout
of the run-time architecture.

2.1 Events

OverView’s visualization model is based on two fundamental units, called entities
and containers. An entity embodies the concept of a discrete unit of computa-
tion, which could refer to an object, an actor, an ambient, a process, or even a
virtual machine. A container refers to the environment in which an entity ex-
ists. Every OverView visualization is composed of some aggregation of these two
basic elements.

– Position/1: Tells OverView to create a particular entity, or to move one if
it already exists, outside of any container.

– Position/2: Tells OverView to create a particular entity inside a particular
container. Again, if the entity already exists, it is moved instead of being
created. If the container does not yet exist, it is created and placed outside
any other container.

– Deletion/1: Tells OverView to delete a particular entity. If such an entity
does not exist, nothing happens.
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– Communication/2: Tells OverView that two entities have communicated
(for example, via method invocation or message passing).

2.2 Visualization Modules

A visualization module for OverView can be developed to suit the application to
be visualized, since every OVP allows the connection of new modules that render
information to the scientist or developer’s particular preferences. The approach
involves to implement the Renderer interface provided by OverView which will
allow to implement handle and unhandle methods, as well as processing’s draw
method. RingVisualization.java which can be found in OverView’s website6

is a good example for the creation of visualization modules.

Hierarchical Concentric The first module, called hierarchical concentric, is
a visualization in which all top level entities and containers are arranged in
a ring around the center of the screen, each scaling to fit if necessary. Those
which are containers are differentiated from entities by being drawn as a square,
rather than a circle; furthermore, any entities or containers it contains will be
arranged in a circle within it. Upon communication a line is drawn between two
communicating entities, disappearing momentarily. Following is a description of
the actions triggered by each of the received events:

– Entity Creation: After a check for its existence an entity will be created
only if it does not exist inside or outside a container.

– Entity Communication: A line is drawn between two entities that exist,
the origin located on the message emitter and the destination on the message
receiver.

– Entity Migration: Upon removal from its current location the entity will
be created in another location. To represent this transition, the interface
displays the entity as it moves along the interface from one location to its
destination, this is represented through the use of animation easing.

– Entity Deletion: The entity is removed from the interface.

Force-directed In force-directed visualization, entities and containers are dis-
tinguished through color-coding. While only entities are drawn, containers are
distinguished by the entity’s color. A color convention is provided on the screen.
Entities are not positionally constrained, they move depending on three external
forces.

– Entity Creation: After a check for its existence an entity will be drawn in
a color that depends on its container.

– Entity Communication: A line is drawn between two entities that exist,
the origin located on the message emitter and the destination on the message
receiver. This line represents the exertion of attraction force described in
detail later.

6 http://wcl.cs.rpi.edu/overview
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– Entity Migration: Upon removal from its current location the entity will
be created in another location. To represent this transition, the interface
displays the entity as it changes it’s color to that assigned randomly at
visualization initialization to its new container.

– Entity Deletion: The entity is removed from the interface along with it’s
connections to other entities.

Entity Dynamics: There is a force of repulsion between entities. They repel each
other following an inverse square rule, like Coulomb’s law for electrostatics, as
follows:

Fr = Kr

1

r2
(1)

where r represents the distance between two given entities and Kr represents
a repulsion coefficient. There is attraction between entities modeling communi-
cation as a force, rendering communicating entities as connected by a spring,
which follows Hooke’s Law:

Fa = −Kar (2)

where similarly, r represents the distance between two entities and Ka repre-
sents the attraction coefficient. The space through which they move provides a
constant friction which acts as a damper. This results in a particle system that
displays the entities in a co-location scheme influenced directly by communica-
tion between entities or lack thereof.

3 Visualizing Common Communication Patterns

A measure of efficient use of space can be proposed by setting a fixed commu-
nication/entity ratio and measure how many entities can be displayed without
communications giving out false information. (e.g., communications between A
and B passing through uninvolved entity C or a communication being crossed
at more than 2 points). These highly intolerant thresholds are set in order to
provide a general basis of comparison, a user could define his/her own clarity
thresholds.

r =
Communications

Entities
(3)

Cx represents the amount of points along a communication’s trajectory through
which it is crossed by another.

Cx < 3 (4)

Ex represents the amount of entities that are crossed over by a communica-
tion.

Ex = 0 (5)

Force-directed visualization is also evaluated by measuring the amount of
time it will take to reach a stable point, that is, when the velocity of the system is
below an arbitrary value that tends to zero referred to as stability threshold which
is determined in terms of (pixels/cycle). A cycle is measured to be 1, 781 · 10−2s



Modular Visualization of Distributed Systems 7

(using a 2000 cycle average measurement), the stability threshold was defined
at 1 ·10−5pixels/cycle which is considered a system velocity low enough to allow
for comprehensive reading of the visualization. This is done to measure the cost
of increased clarity in those representations where force-directed visualization
performs significantly better in terms of the clarity threshold.

Herein, we examine the performance of the hierarchic concentric and force-
directed visualizations based on their meeting of the clarity thresholds in different
communication/entity ratio settings, the latter provided by different topologies.

3.1 Linear and Grid-based Topologies:

Linear and grid-based topologies are characterized by having a number of nodes
set up in some n-dimensional lattice, with each node connected to and com-
municating with its neighbors. The most common class of programs that use
such a structure are physical simulation programs, such as heat distribution or
fluid dynamics applications, where each node represents an area in space (see
Figure 2.)

(a) Force-directed layout (b) Hierarchical concentric layout

Fig. 2: Snapshot of a grid simulation containing 100 entities using OverView.

Performance: Grids are better represented by force-directed visualizations
because they do not display cluttered entities and the communication links are
clear, the clarity threshold is met since there are no crossing lines or crossed en-
tities. Hierarchic visualizations, highly dependent on the order of entity creation
do not meet the clarity threshold. The stability threshold was reached by the
force-directed approach in an average 80.523 seconds.
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3.2 Ring-based Topologies

Ring-based topologies find a common application in peer-to-peer networks (see
e.g., Figure 3.) Chord[10] increases the number of neighbor links from a constant
number to a logarithmic number (based on the size of the network), which de-
creases the search time from linear to logarithmic as well; this makes it possible
to construct robust and high-performance peer-to-peer networks (see Figure 4.).

(a) Force-directed layout (b) Hierarchical concentric layout

Fig. 3: Flavius Josephus problem where each third man in the circle commits suicide,
the solution for the ”safe” position is visualized using OverView.

Performance: Both models fail to meet the clarity threshold, however once
the threshold is lowered, the first model to reach compliance of it, is the hierar-
chical concentric. The dense communication pattern for Chord is not efficiently
viewed using force-directed approaches. The stability threshold is reached at an
average 4.202 seconds.

3.3 Cube and Hypercube-based Topologies

Cubes, hypercubes, and other n-dimensional cubes have a number of notable
properties useful to distributed computation; among them is the upper bound
on hops between any two nodes on the network, while maintaining only a small
number of edges between nodes. Hypercubes are also notable for having a very
structured high-dimensional organization, which is difficult to map to 2 or 3
dimensions well (see Figure 5.)

Performance: This topology does not meet the clarity threshold on either
visualization, a less objective evaluation would imply that if the scale is small
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(a) A force-directed representation. (b) A hierarchical concentric representa-
tion.

Fig. 4: Chord networks visualized using OverView show that the clarity threshold in the
force-directed approach is violated by far, while the hierarchical concentric approach
provides an effective means of visualization.

enough, a Force Directed approach could be intelligible. This topology lies be-
yond the scope of both visualizations.

3.4 Recursive Topologies

Recursive computation is as important in distributed computing as it is in se-
quential computing; many divide-and-conquer recursive algorithms can be made
to run efficiently in a distributed setting (see Figure 6.)

Performance: When nodes are created with a particular ordering, the hierar-
chical concentric visualization meets the clarity threshold on binary trees which
are common in recursive algorithms. A force directed approach does not rely on
the order of creation to meet the clarity threshold, and allows to recognize the
fractal nature of the calculation. No entity crossing or communication crossing
occurs once the system is at a stable position. The stability threshold is reached
at average in 27.962 seconds.

4 Discussion on Visualization Models

Figure 7 shows a table containing the data obtained for each of the topologies
evaluated in Section 3.
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(a) A force-directed layout. (b) A hierarchical concentric layout.

Fig. 5: A Hypercube network is visualized with OverView.

(a) A force-directed layout. (b) A hierarchical concentric layout

Fig. 6: The fractal nature of the recursive calculation is observed using OverView.
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Grid Ring − based Hypercube Recursive

Entities 100 45 32 15

Communications 180 150 16 14

Communication/Entity ratio 1.8 3.3 2.0 0.93

Reached stability threshold 80.523 4.202 6.845 27.962

Clarity thresholds cleared (hierarchic) No No No Yes

Clarity thresholds (force-directed) Yes No No Yes

Fig. 7: Performance of visualization modules on different application classes.

4.1 Hierarchical Concentric Visualization

Hierarchical concentric places entities around a hierarchical series of rings. This
placement mechanism was selected for several reasons: firstly, it minimizes am-
biguous communications—that is, communication lines overlapping multiple en-
tities, so one cannot determine at a glance which entities are referred to; this is
a commonly-arising problem in grid-based visualizations, since many communi-
cations will either be purely horizontal or purely vertical and reach across entire
rows or columns. Secondly, it can display a hierarchy of elements intuitively,
even with näıve placement of new elements at the end of the list, allowing it to
support recursive computations with reasonable effectiveness. This hierarchical,
concentric structure is both intuitive and generic, mapping naturally both to
flat systems (such as actors within theaters) and nested systems (such as mobile
ambients).

Hierarchical concentric’s main drawback is in scalability. While it is effective
for small numbers of entities, it rapidly breaks down and becomes confusing
with as few as one hundred entities, with many communications filling the rings.
Furthermore, logically grouped entities may be placed far from each other by the
visualization, and since one cannot zoom in upon both sides of the ring at once,
it can become difficult or impossible to understand what is occurring in parts
of a system. However, despite these weaknesses, the visualization can be very
effective for some application topologies, such as linear and circular topologies,
as illustrated in Section 3.

4.2 Force-directed Visualization

Force-directed visualization was primarily developed to remedy some of the
shortcomings of hierarchical concentric. Unlike it, there is no hierarchical place-
ment; entities are only placed upon the primary visualization surface. The only
reference as to an entity’s belonging to a particular container is the color used
to draw it. Furthermore, if like colors are well clustered, it provides good in-
formation on whether entities that communicate frequently are near each other
physically, which is a very natural notion for the visualization to convey. An
outlier to this affirmation is the case of farmer-worker topologies, where such
information is not accurately conveyed since there is no communication between
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workers (see Figure 8a.) Given this scenario, a user can interact with the visu-
alization by click-n-drag actions, allowing for manual configuration of entities.
We note, however, that the force-directed layout provides a very intuitive visu-
alization in most cases, especially in reference to the application communication
topology.

(a) Farmer-worker (b) User Modification of farmer-worker

Fig. 8: A farmer-worker topology does not involve workers communicating with each
other, on these conditions force-directed approaches are not advisable for visualization,
on 8b the user interacts with the visualization by dragging one of the workers.

The force-directed layout lacks support for nesting which is one of its most
significant weaknesses, however it allows to visualize the appearance of clustering
between entities that are tightly coupled in terms of communication which is a
good indicator of proper application of load-balancing policies.

5 Conclusions

Our experiences with these visualizations indicate clearly and beyond a doubt
that a modular approach to OverView is the correct choice, since different appli-
cations have different visualization needs. Furthermore, our experience develop-
ing these modules for OverView leads us to believe that a developer or scientist
can better use a customized visualization module. This possibility of visualiza-
tion renders the subjective nature of visualization clarity and effectiveness to a
simple matter of instrumenting bytecode according to the events that are in-
tended to be visualized and if the existing modules do not convey information
in a satisfactory manner, the task of creating a visualization module is relatively
simple.
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OverView’s hierarchical concentric module provides a way to convey the nest-
ing of entities in a clear fashion, finding its boundaries when communication
patterns are dense. It approaches the issue by having the representation of a
communication event fade over time, which could lead to misrepresented persis-
tent links. The force-directed module focuses it’s attention on the communication
topology of an application at a given point, which allows to evaluate the load
balancing policies of adaptive middleware or the load balancing algorithms im-
plemented within the application. An approach to migration representation is
proposed within this module with the color coding of containers, however this
technique is not as effective since there are topologies which do not present
communication between co-located entities.

The powerful nature of OverView’s architecture is put to the test with the
development of the force-directed approach that looked to the problem that rises
from the hierarchical concentric module not conveying coupling. The combined
usage of these two visualization modules provides the means for comprehensive
evaluation of an application’s performance. Furthermore, it paves the way for
more visualization modules to be developed in order to gain perspective on other
particular characteristics of a distributed system.

5.1 Future Work

The most obvious next step to take in the direction of distributed systems visu-
alization using OverView is to produce modules that focus on other characteris-
tics of distributed systems whose visualization could prove useful. For instance,
a module that focuses on visualizing the different policies available in adaptive
middleware to distribute autonomous actors. Such visualizations would permit
users to fully comprehend the behavior induced by the policies selected for the
system at hand (e.g. energy management, high performance, task management,
etc.).

Extensive work on the matter has spawned a generation of middleware appli-
cations that specialize on load balancing[7] and the evaluation of such software
is critical. Upon deployment of middleware, the task of load balancing the sys-
tem becomes transparent to the developer, which in turn raises the question of
whether the middleware selected as well as its policies are optimal given the
application-level objectives.

Additional OverView visualization modules that can clearly separate physical-
layer network aspects such as inter-processor latencies and bandwidths for par-
ticular clusters, from application-layer aspects would enable a better assessment
of middleware resource management policies.
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