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Abstract

A naming service is in charge of locating a mobile agent in a distributed system given its name. Three
critical characteristics of a naming service are: fault tolerance, scalability, and efficient name resolution.
Most naming services provide support for efficient name resolution but do not address fault tolerance or
scalability issues. Conversely, distributed hash-table approaches to naming provide fault tolerance and
scalability albeit at a sacrificed name resolution performance. We introduce a Fault-Tolerant Home-Based
Naming Service (FHNS) that is robust and scalable yet enabling efficient name resolution.
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1 INTRODUCTION

A naming service maps a name for an entity to a set of labelled properties. The Domain Name System
(DNS) [11], for instance, is a network naming service that maps easy-to-remember names to hard-to-remember
network addresses. Similarly, name services can be put to use in distributed computing architectures to map
the identity of a mobile software agent to its current location on the network. The Fault-Tolerant Home-
Based Naming Service (FHNS) we introduce, is one such naming service.

The motivation to develop a new naming service comes from considering the under-utilization of the
Internet, which is predominately used for information retrieval, correspondence, commerce, and file sharing.
The Internet, which can be thought of as a super-computer consisting of over a million processors, offers
a vast amount of computing capability that has yet to be fully exercised. Substantial computations, such
as data mining, financial forecasting, and complex simulations, can be divided and distributed across the
Internet to be serviced by numerous machines concurrently. In order for these computations to be distributed,
a framework first needs to be structured and deployed. The framework is required to be efficient, robust,
scalable, and secure. The purpose of this research, however, is not to present a distributed computing
framework in its entirety but to present a naming service that enables such a framework to meet a measure
of the identified requirements.

The requirements for a naming service intended for a network like the Internet are equivalent to those
placed on a distributed computing framework. The naming service must be:

e Efficient: The messages associated with resolving the location of an agent should be many times less
than the number of nodes on the network. Not every node can be queried when an agent is being
located.

e Robust: Any one failure cannot result in the entire service failing. The naming service must be
resilient to node and link failures.

e Scalable: The service should allow nodes and agents to be located anywhere in the world and be able
to support a huge number of these entities.

e Secure: The service must ensure data integrity and thus protect the names it is entrusted with from
unauthorized modification or deletion.

And the names for the mobile agents must be:



e Unique: This is a requirement common to all naming services. In this case, the requirement for
uniqueness is even more extensive in that the names for the mobile agents are to be globally unique.

e Persistent: The names must not change unless the naming service is notified.

¢ Human Readable: This is a requirement we place upon ourselves with the notion that human
readable names are easier to remember and use. A human readable name can also indicate the pur-
pose the agent serves, as would be the case of naming a personal-calendar agent: JoeDoesCalendar.
Furthermore, people have the possibility to guess the agent name.

Mobile agents are best described as software processes that can migrate from one host to another while
executing their assigned tasks. In between migrations, a mobile agent may need to interact with other agents
to complete its jobs. Say for instance, a protein folding application decomposes the computations associated
with protein folding into sub-computations to be processed by mobile software agents. These software agents
are dispersed throughout the Internet to perform their distributed tasks. After performing a number of its
computations, software agent GYPSY needs software agent NOMAD'’s results in order to continue with its
computations. How does GYPSY locate the whereabouts of NOMAD given that it could be at any node
on the Internet? There are different possible strategies to address the problem of locating an agent for the
purpose of communicating directly with that agent [14, 17, 5]: for example, broadcast, search, tracking,
centralized dedicated name services, and distributed dedicated name services.

Structure of the Paper The remainder of the paper is organized as follows. Section 2 presents the model
of the Fault-Tolerant Home-Based Naming Service. Section 3 presents an FHNS implementation that was
tested. The results of these tests are presented and evaluated in Section 4. And lastly, Section 5 presents
some concluding remarks and contributions of this research.

2 FAULT-TOLERANT HOME-BASED NAMING SERVICE(FHNS)

2.1 Model

The Fault-Tolerant Home-Based Naming Service conforms to the home base naming service construct and as
such each mobile agent has a home base that keeps track of that agents location. The mobile agents can either
specify their home base directly or can opt to have a home base assigned. The naming service recognizes and
is capable of resolving two types of names: location-dependent names or location-independent names. Due to
this versatility, the service can effectively shift from a location-dependent service to a location-independent
service in the event of a node failure (i.e. home base failure).

FHNS is succinctly comprised of the following:

1. Unique Names: Mobile agents have unique names that are premised upon Uniform Resource Iden-
tifiers (URI) [3]. The URI can take the form of a URL [2], which is location-dependent and is how the
agent specifies its home base, or the URI can take the form of a URN [10], which is location-independent
and requires a home base to be assigned.

2. Home Bases: Nodes on the network that provide the naming service for the mobile agents.

3. Mapping Records: A record kept for a mobile agent that is kept current with the agent’s location
on the network. The record is stored at the agent’s respective home base.

Table 1 details the API for the Fault-Tolerant Home-Based Naming Service, which are the specific home
base services.
2.2 Names

The location-dependent naming is attractive for the obvious reason that the location of the home base is
given explicitly. Consequently, the agents themselves can be found quickly and efficiently simply by querying
the respective home base. The location-dependent names of an agent take the form of a URL where the
general syntax is:

<location-dependent name> ::= <scheme>:<scheme-specific-part>.



Function Description

put(name, location) Binds a name to an initial location.

get(name) Returns the location for the given name.

update(name, location) | Updates the location of the agent with the specified name.
delete(name) Remove the location record for the agent with the specified name.

Table 1: Fundamental API for FHNS

A URL contains the name of the scheme being used, which is an existing or experimental protocol. The
scheme is followed by a colon and then a string (the <scheme-specific-part>) whose interpretation depends
on the scheme. For Internet schemes the scheme specific part is written as follows:

//<user>:<password>@<host>:<port>/<url path>.

The optional elements are “<user>:<password>@Q”  “:<password>" and “:<port>". The scheme specific
data begins with a double slash “//” to indicate that it complies with the common Internet scheme syntax.
The host field corresponds to the domain name of the node, or home base for the purposes of FHNS. The url
path is not an optional element for FHNS and corresponds to the relative name of the agent. The names for
an agent are referred to as either relative or absolute. The absolute name refers to the name in its entirety.
The relative portion of the name refers to the name given to the agent that distinguishes it from other agents
using the same host as a home base.

Location-independent naming is appealing because it allows the home base to change for a given agent.
With location-independent naming, the names of an agent can take the form of a URN. The URN syntax is:

“urn:” <NID> “” <NSS>.

The NID is the Namespace Identifier, and NSS is the Namespace Specific String. A “” delineates the
three elements. The “urn” descriptor string is specified to be a required element; however, for the purposes of
FHNS this string will be replaced by another string corresponding to an existing or experimental protocol!.
This modification allows for the two types of names to share a common element. The FHNS modified URN
will be written as

<location-independent name> ::= <scheme> “:” <NID> “” <NSS>.

A URN differs from a URL in that its primary purpose is persistent labelling of a resource with an
identifier as opposed to serving as a locator. The location of agents are then resolved by using consistent
hashing [7] and a lookup service such as the Chord [16, 4] peer-to-peer lookup service. By using a peer-to-
peer lookup service, the home bases are required to keep a listing of other home bases so that when a lookup
is required a home base will be able to query other home bases for the information it needs, in this case
the location of an agent. A lookup is the process of a home base querying other home bases and could be
performed when servicing any of the naming service requests. A lookup is not synonymous with the get
service request.

2.3 Architecture

FHNS can be described as a layered architecture with DNS serving as an underlying naming service. DNS
is utilized by FHNS when resolving the domain name of a home base to an IP address.

Names in the Domain Name System are a part of a naming hierarchy, with the most significant part on
the right. The left-most portion of the name corresponds to the name given to the computer. Clients query
local DNS servers for IP addresses. If a mapping has not been locally cached, the server starts with the root
name server and recursively queries DNS servers until it finds a server that has the answer. In the case of a
client request regarding www.yahoo.com, the local server queries a root DNS server then a com DNS server,
and then finally the yahoo.com server for the web server IP address.

Fault tolerance is defined as the ability of a system to respond gracefully to an unexpected hardware
or software failure. Fault tolerance for DNS is achieved with the use of a designated primary server and a

! The names adhere to the rules specified in [3, 2, 10] with this exception being made to the names following the URN format.



secondary or “back-up” server (or servers). If the primary server fails, requests are directed to the secondary
server. With this approach, however, the notion of failover is always provided for the primary but not the
secondary. If the secondary server fails or the last “backup” server fails, there exists a fault in the system.
FHNS achieves fault tolerance with redundancy between home bases and provides for an iterative failover
capability. Each home base functions as both a primary and secondary server. And each home base has
a designated successor that is capable of servicing requests on behalf of that home base in the event of a
failure. Essentially, FHNS is capable of recovering from all home bases, except any arbitrary one, failing.

Returning our attention back to DNS, when an organization wants to participate in the Domain Name
System, the organization must apply for a name under one of the top-level domains (i.e. com, edu, gov, co,
fr, etc.). If the name is already in use, the organization will not be allowed to use the name and thereby
uniqueness is ensured among all the top-level domain names. If the name is not already in use and the
organization is allowed to use the name. They then assume the responsibility of ensuring that names are
unique with respect to their domain. Names are kept unique in FHNS in a similar manner. In the case
of location-dependent naming the first part of the name, that being the host, must be unique since it is
a name in the Domain Name System. The name of the agent must then be unique with respect to the
home base (i.e. host). The home bases reject a put request if the name requesting to be used is already in
use—thereby ensuring uniqueness. Ensuring unique naming with the location-independent names requires
that the combination of namespace identifier and namespace specific string be unique. Again the home bases
can reject a put request if the namespace specific string is not unique relative to the namespace identifier.
A single global namespace identifier will be used, which is thus trivially unique.

The namespace identifier corresponds to a logical ring with distinct points along the ring called identifiers.
A single home base is assigned to one of the identifiers by way of consistent hashing. Consistent hashing is a
distribution scheme that pertains to using a hash function to distribute strings to a number (i.e. identifier)
in the range [0,..., M], where M is determined by the selected hashing function. Home Bases are assigned
to an identifier by hashing the domain name or the IP address. The URN of an agent is also hashed and
mapped to an identifier. The agent is then assigned a home base by identifying the home base that has
been mapped to a number greater than or equal to the number the agent has been mapped to (0 is the first
number greater than M, when making assignments). All home bases belong to this single logical ring and
each home base keeps a routing table that lists other identifiers and the home bases associated with those
identifiers. The routing table contains log M entries?. Each home base has its mapping records replicated
at a number of home bases with identifiers greater than and nearest to the identifier of the respective home
base. The logical ring is not static, new home bases can join and the mapping records will be transferred
accordingly. Conversely, home bases can leave the logical ring and one of the replicating home bases will
assume responsibility for the departed home base’s mapping records. However, the hosts that will serve as
home bases should be chosen judiciously since it would not be desirable to have a home base that is only
powered on for short durations, as would be the case with mobile devices. Also, home bases are not restricted
to being dedicated name servers only. Home bases can be like other hosts in providing a platform for mobile
agents to execute their assigned tasks.

2.4 Protocol

As an example of how the naming service functions, we now present a description of agents using the service.
We begin with a 3-bit namespace, called drifters, and we will use SHA-1 % 8 [21] as our hashing function.
We identify 3 hosts to be our home bases and assign them each an identifier.

NAME IDENTIFIER

rome:3030 7
hongkong:4040 0
newyork:5050 5

Table 2: Example: Home Bases and the Assigned Identifiers

In practice we would use a hashing function bigger than 3-bits to avoid collisions and identifiers would
not be assigned but determined by hashing the domain name. Next we introduce 4 mobile agents, half

2Unless stated otherwise, all logarithms in this paper are of base 2.



will use location-dependent names and the other half of agents will use location-independent names. Our
experimental naming service scheme is called fhns.

RELATIVE NAME ABSOLUTE NAME IDENTIFIER
MIGRANT thns://rome:3030/MIGRANT 6
TUMBLEWEED fhns://hongkong:4040/ TUMBLEWEED 0
GYPSY fhns:drifters:GYPSY 4
NOMAD fhns:drifters:NOMAD 2

Table 3: Example: The Agents’ Names and the Determined Identifiers

The agents would need to be aware of at least one home base so that they could issue a request to that
home base to perform a put(<agent absolute name>, <agent location>). Agents TUMBLEWEED and
MIGRANT could issue the request to the host specified in their names, which would then become their
corresponding home base. GYPSY and NOMAD could issue their requests to any of the home bases. The
home base servicing the request first hashes the names of these agents, GYPSY and NOMAD, to determine
the proper home bases and then forwards the request to those identified home bases. Home bases are able
to forward requests by determining from their routing tables the host nearest the identifier they are seeking.

If GYPSY wanted to communicate with MIGRANT it could request that the rome host machine perform
a get(fhns://rome:3030/MIGRANT) operation. The location of MIGRANT would be provided with a single
message loop (i.e. request and reply), which is why we say that the location-dependent naming aspect of this
naming service is very efficient in resolving actor locations. But say GYPSY wanted to communicate with
NOMAD. GYPSY would direct a request to any of the home bases to perform a get(fhns:drifters:NOMAD)
operation. The home base, say hongkong, would first hash the string “NOMAD”, which is the agent’s relative
name, according to the SHA % 8 hashing function associated with the drifters namespace. The relative name
of NOMAD hashes to identifier 2. Hongkong would look into its routing table and see that newyork maps
to identifier 5, which is the node greater-than and closest to identifier 2. The get(fhns:drifters:NOMAD)
request would be handled by newyork and the results would be forwarded to hongkong and then provided to
GYPSY. Here it took more than a single message loop to find the location of NOMAD. Location-independent
naming does not give as good results in resolving the location of agents since it requires that the home base
for an agent first be discovered. Finding the location of a home base could take O(log n) messages when
using the Chord lookup strategy, where n is the number of nodes in the ring (i.e. home bases). When a home
base is requested to determine the location of an agent, it first checks the mapping records in its possession.
If a mapping record is found, it returns the location of the agent. If a mapping record is not found, then the
home base forwards the request to the home base that is closest to the identifier to which the name of the
agent is mapped. The request is forwarded until it is serviced by the authorized home base. To minimize
the number of hops between nodes, the searching home base can cache the location of an agent’s home base
so as to avoid having to perform another multi-message lookup for subsequent locate requests for the same
agent.

Some time has passed and NOMAD decides to move from a host machine called host! to host2. It
first requests a home base to perform an update(fhns:drifters:NOMAD, host2) operation and then NOMAD
moves to the new host. The agent framework is required to provide a mechanism to handle messages in
transit that were sent to the old location of the agent. One way of handling this is for the agent to leave
behind a forwarding agent at the old location storing messages while the agent is migrating and redirecting
them to the new location upon the agent’s request. The forwarding agent could be deleted by expiration or
from a request made by the originating agent.

When the agents are done performing their tasks, they are able to remove themselves from the system
by issuing a delete(<agent absolute name>) request.

When a home base crashes and is removed from the network, the agents using that home base still need
to have some way of being located. The agents are still on the network but the locating mechanism has
been disrupted, and not addressing this contingency would render these agents unreachable. Names that are
location-independent lend themselves nicely to fault tolerance since they are not bound to any home base
explicitly. Using Chord, we start with a logical ring and place home bases at distinct points along the ring
based upon their corresponding identifiers. Moving in a clockwise fashion, the subsequent home bases keep
copies of the mapping records belonging to the previous home bases. So in the event that a home base fails,



the subsequent home base will be able to service all the requests that would have been handled by the now
departed home base. Agents therefore do not become unreachable when their home base fails. The agents
using location-dependent names can still be found because the host portion of their names corresponds to
a home base and thus maps to an identifier. The subsequent identifier can easily be determined and the
replicating home base can thus be found. This does introduce a incongruity in that the location-dependent
name does not accurately give the location of the agent’s home base, but there is no way to solve this problem
since we wish names to be persistent even in the event of a failure. This incongruity can be avoided by using
location-independent names.

3 IMPLEMENTATION

An instance of the Fault-Tolerant Home-Based Naming Service has been prototyped using Chord as the
lookup service. The prototype was then analyzed using the World-Wide Computer (WWC) [20] as a testbed.
What follows are brief descriptions of the WWC and Chord. The architecture of the prototype is then
described.

3.1 Context: World-Wide Computer (WWC)

This framework recognizes the Internet’s vast computing capability with its very name: the World-Wide
Computer. The WWC enables tasks to be distributed among participating computers. The World-Wide
Computer has been introduced to make it possible to pool the computing ability of devices that can com-
municate over a wide-area network such as the Internet. The WWC consists of a set of virtual machines,
or theaters, hosting universal actors. The universal actors are reachable throughout the Internet by their
globally unique Universal Actor Names (UAN). The UAN identifiers persist over the lifetime of an actor and
are used to obtain the actor’s current theater. The Universal Actor Locator (UAL) represents the location
of this theater. Universal actors extend actors [1] in that they are able:

e to bind to a unique global name and to an initial theater,

e to obtain references to their peers from their names,

e to communicate through message passing in a location-independent manner, and
e to migrate from one theater to another.

In summation, the WWC is comprised of universal actors, theaters, and dedicated name servers.
An example of a UAN is

uan://wwec.publisher.com:3030/poemAgent.

The relative name of this actor is poemAgent, wwc.publisher.com is the name server or home base, and
uan is the naming service protocol. The UAN has an identical format to the location-dependent names of
FHNS. The naming server keeps track of where the agent is located by receiving information in the form of
UALs. In this example, say the actor’s UAL is

rmsp://wwc.editor.com:4040/poemAgent.

The naming server knows from this UAL that the poemAgent is located at the wwec.editor.com theater.
The rmsp refers to a Remote Message Sending Protocol that enables sending messages to remote actors.
The format for UANs has been augmented so as to support location-independent names for FHNS.

The default naming scheme for this framework uses a home-based strategy and location-dependent names.
The name servers do not include any fault tolerance features. So when a name server fails, the agents that
are bound to that name server become unreachable to collaborating agents holding only their names. FHNS
is used to eliminate this single point of failure.



3.2 Context: Chord

Chord is a distributed lookup protocol that addresses the problem of efficiently locating data in peer-to-peer
networks. The Chord protocol supports just one operation: given a key, it maps the key onto a node. The
key can be associated with a particular data item and together both the key and data are stored at the node
to which the key maps. The data is then located by a lookup(key) algorithm that yields the value associated
with that key, which could be the IP address for a given node on the Internet.

The consistent hash function assigns each node and key (such as the name of an agent) in the system
an m-bit identifier. The node identifiers can be established by hashing the IP address or domain name.
Likewise the identifiers for the keys, which are strings, are established by hashing the keys themselves. As
with any hash function, collisions can occur. Collisions between keys are unimportant since keys are allowed
to map to the same identifier and it is the keys themselves that must be unique. Collisions between nodes
must be avoided in order for Chord to work correctly. Chord does not prevent collisions.

Once the keys and nodes have been mapped to identifiers, the keys are then assigned to nodes. Any given
key is stored at the first node whose identifier is equal to or greater to the key’s identifier, where the last
identifier in the identifier space is less-than the first identifier to effectively give a logical ring or an identifier
circle.

Each node maintains a routing table with m entries, where m is the number of bits in the binary
representation of the key or node identifiers. The routing table is called the node’s finger table and the it"
entry in this table is given by n+ 2!, where n is the identifier of the node and 1 < i < m. The node storing
the identifier given by the i*" entry is listed in the finger table as the node to forward requests to when the
n + 2¢71 identifier is sought. Also listed in a node’s finger table is the node previous to it in the identifier
circle and is referred to as the predecessor.

If a node gets a lookup request for an identifier not listed in its finger table, it forwards the request to the
entry in its finger table that lists an identifier closest to, but less than or equal to, the requested identifier.

In a dynamic network, nodes can join and leave at anytime. When a node joins the ring it has to request
that an existing node provide the location of its nearest neighbors in the identifier space. Once the joining
node receives its finger table information, it then requests that the keys it is responsible for be transferred.
When a node leaves the network gracefully, it transfers its keys and has its neighbors update their finger
tables accordingly. Nodes leave and join the Chord identifier circle at a cost, with high probability, of
O(log? n) messages.

Each node’s nearest neighbor or neighbors keeps copies of the keys belonging to that node. So when a node
fails, the nearest neighbor of that node can service the lookup operation directed to the failed node. Chord
does not specify the number of neighbors that should provide redundancy but this number does correspond
to the amount of fault tolerance attainable. If ten neighbors provide redundancy, then the system can
conceptually recover without losing any of the keys in the event of ten simultaneous node failures.

The nodes perform stabilizing procedures in which they determine if their predecessor and immediate
successor information is correct. By performing stabilization, the immediate neighbors of a failed node will
see that it is not responding and will take the appropriate measures to recover from the failure by updating
their finger tables. Chord does not specify how often to perform stabilization; however, the Chord test-case
implementation performed stabilization at an average rate of 0.5 invocations per minute.

3.3 FHNS Prototype Developed for the WWC

The WWC already has a naming service in place that uses location-dependent names. This naming service
is first extended to use location-independent names. A UAN can take the traditional form, specifically

uan://<home base host>:<port>/<actor relative name>.
A UAN can also take the location-independent form,
uan:wwc:<actor relative name>.

The namespace identifier, for this prototype, is called wwc and the corresponding hashing function to be
used will be SHA-1 [21], which hashes the given inputs to a 160-bit identifier. The namespace will encompass
all identifiers 0 <= i < 2160,

A unique type of theater has been developed to serve as the home bases for FHNS and are called home
base theaters. The naming service has been incorporated into these theaters instead of using dedicated
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Figure 1: A Home Base Theater in the WWC.

naming servers. This is done to better ensure fault-tolerance. The alternative would be to have the actors
keep a listing of home bases that they could query. A Denial of Service (DoS) could result if the home bases
that an actor had a listing for had all failed. Having the actors direct all requests, with the exception of the
put request, to the theater where they are presently “performing” ensures that the naming service is always
available to the actors.

The test case consists of universal actors and home base theaters. These home base theaters host the
universal actors and also serve as the name servers. Figure 1 depicts the structure of the home base theaters
in the WWC. The figure also illustrates the other services provided by these theaters. In keeping with
the “Broadway” manner of speaking, the home base theaters have a single stage manager that listens on a
particular port for requests. Upon receiving a request, the stage manager delegates responsibility to servicing
the request to a stage hand that is chosen from a thread pool. As illustrated in Figure 1 a home base theater
can service a naming request using the Universal Actor Naming Protocol (UANP), a message directed to a
hosted actor using the Remote Message Sending Protocol (RMSP), a hosting request also using RMSP, or
a coordination request using the Home Base Coordination Protocol (HBCP).

The methods belonging to the Universal Actor Naming Protocol are identical to the methods in the
API for the Fault-Tolerant Home-Based Naming Service. The Fault-Tolerant Home-Based Naming Service
is thus capable of servicing all UANP requests. One modification to UANP that was needed was to change
it from being a strictly text-based protocol to being able to use Java objects. This was done to facilitate
communication in that all requests could come into the home base over the same port.

When a message is received via RMSP, the stage hand servicing the request obtains from the registry
a reference to the universal actor to whom the message is intended and places the message in the actor’s
mailbox. A migrating actor comes into the home base theater through the same port as the other types of
communications. The actor is registered with the home base and then is left to act upon the messages in its
mailbox.

The Home Base Coordination Protocol provides the methods necessary for home bases to transfer needed
information to participate in the namespace (logical ring). Table 3.3 details the different HBCP requests
and corresponding services.

The system is initialized by a single home base theater being started. The domain name of the machine
the home base theater is running on along with the port number is hashed according to the wwc namespace
hashing algorithm and an identifier is assigned. Notice that the domain names are being hashed and not
the IP addresses. This is not to say that the IP address cannot be used, they in fact can. However, for any
given node either the domain name needs to be used in all cases or the IP address since the IP address and
domain name will hash to different identifiers.

Other home base theaters can then join the system by contacting a home base theater that already belongs
to the system and retrieving the necessary routing table information. A joining home base theater, or node



Request and Service | Description

NODEJOIN Request made by a joining node where the servicing node
returns with the requesting node’s immediate successor
INITIALIZE A joining node obtains its predecessor and routing entries

from its successor
UPDATECOVERAGE | Joining or leaving node is inserted or removed and requests
its successor and predecessor to update their Namespace

coverage
GETKEYS A joining node is provided the keys it is responsible for by
its successor
REPLICATE A node requests its successor to replicate the specified
actor mapping
UPDATETABLE A node has either joined or left (failed) and other nodes
are informed to update their tables
GETNODE Gets the node covering the region where the given Namespace
identifier belongs
STABILIZE A node periodically confirms the presence of its successor

and predecessor

Table 4: Home Base Coordination Protocol

as it is referred in the proceeding explanations, first determines its identifier. It then issues a nodejoin
request to an existing node. The servicing node returns with the name of the joining nodes immediate
successor. The joining node then issues an initialize request to its immediate successor. The successor
then provides the name of the joining node’s predecessor and the nodes to list in its routing table and also
the nodes that need to be informed of this node joining. The joining node then requests its successor provide
the keys that it is responsible for with a getkeys request. Next the joining node issues updatetable requests
to those nodes identified that need to be informed of the node’s presence. Afterwards, the joining node tells
its predecessor and immediate successor to update their coverage with an updatecoverage request. Upon
completion of these requests, the joining node is now a part of the system and it begins its stabilization cycle.
The stabilization cycle involves a node issuing a stabilize request to both its predecessor and successor.
The predecessor returns with its predecessor and the successor returns with its successor. So in the event
of a successor or predecessor failure, the node will already know of that particular node that will assume
the role of the failed successor or predecessor. When the node, home base theater, receives a UANP put,
update, or delete naming request, it sends a HBCP replicate request to its successor so as to keep the
location maps and redundant location maps consistent.

Universal actors can enter the system at any point after the initial home base theater is up and listening
for requests. The universal actors become reachable to other universal actors by issuing a put(UAN, UAL)
request to one of the home base theaters.

4 PERFORMANCE ANALYSIS

The FHNS prototype has been put through different tests. The intent for these tests is to gather metrics that
will support the requirements specified in Section 1 regarding FHNS being efficient, scalable, and robust.
In the first test case, both location-independent and location-dependent names will be used. The results
obtained from this first test case will pertain to resilience of FHNS in the event of a home base failure and
is used to illustrate robustness. Messaging efficiency and scalability are evaluated in the next test case.
The processing time to service requests for location-independent names versus location-dependent names is
evaluated. Lastly, a scalability analysis pertaining to the load balancing capabilities is then detailed.

Before going further with the analysis, the reader should consider the specific implementation of the
prototype. The tests that have been outlined are intended to measure the performance of the FHNS model;
however, the tests predominately relate to the specific implementation of using Chord as the lookup service.
Bearing the impact of Chord upon these results, the analysis of FHNS continues with the first test case
regarding robustness.



Home
Base
Nodes
3

1
1 1
Max Messages per Lookup

Figure 2: Single and Sequential Home Base Failures

soing from a total of 8 Home Bases to 1. Figure 3: Message Count versus Number of Home

Bases.

4.1 Robustness

The primary objective with using a lookup service such as Chord is to incorporate its fault tolerance features
into FHNS. Since fault tolerance is the primary concern, this capability was tested to establish that the FHNS
model is sound. We begin with 8 home bases and fail the home bases one by one, effectively degrading the
distributed naming system to a centralized naming system. After each home base failure, get requests are
made for all the actors in the system to confirm that they are all still reachable. The maximum number of
messages it takes to have a request serviced is recorded. For this test, there are an equal number of actor
location-dependent names as there are actors with location-independent names.

When the home base of an actor with a location-dependent name fails, FHNS hashes the domain name
and port number for that failed home base and determines the immediate successor of the failed home base
using a getnode request. Once the successor is determined, the request is then forwarded. It is known that
the immediate successor of the failed home base has a redundant location map for the failed home base. The
immediate successor is thus capable of servicing requests that were intended for its predecessor, which is the
failed home base.

Figure 2 shows the number of messages it takes to find the back-up home base. The home bases refer
to both their immediate location map and their redundant location map when servicing a request and this
explains why only one message is needed when two home bases are present. The figure illustrates that FHNS
can recover from all home bases failing except for one.

Performance regarding multiple home bases concurrently failing is not evaluated since it is known that this
implementation has a single replication depth. Only a home base’s immediate successor provides redundancy.
If both the home base and its successor failed then there would be actors that would be rendered unreachable.
It follows that if the replication depth was doubled, FHNS could recover from two consecutive and concurrent
home bases failing. Increasing the replication depth, however, also has the disadvantage of increasing the
number of HBCP replication requests.

The failed nodes are identified by the home bases periodically performing a stabilization routine. Stabi-
lization involves a home base attempting to communicate with its predecessor and successor. If the home
base is not able to communicate it takes the appropriate measures to replace the failed node and transfers
and replicates the mapping records as needed.

4.2 Messaging Efficiency

Next we turn to the number of messages it takes for FHNS to service a request in a fault-free system.
By messaging we count only the requests and forwarded requests and not the responses. When location-
dependent names are used only a single message is needed. The messages needed for location-independent
names depend on the lookup service employed. Stoica et al [16] state that with high probability, Chord
resolves a lookup with O(log n) messages. This assertion was confirmed by testing. Figure 3 shows the log n
trend with line ¢ and line b is the average number of messages it took for FHNS, using Chord, to resolve a
lookup pertaining to location-independent names. When only two home bases are present, it can take two
messages to resolve a lookup; specifically the original request and the forwarded request. In the presence of
n home bases, where (n > 2), it takes on average less than O(log n) messages.

10
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4.3 Time Efficiency

FHNS is indeed highly efficient when location-dependent names are used. Its efficiency is put into question
with location-independent names. If we do not consider network communication, the Request Processing
Time (RPT) when using location-independent names is over 3 times that of the processing for location-
dependent names. FHNS takes on average 420us to process a location-independent request and 130us to
process a location-dependent request. This time corresponds to the time elapsed from a home base receiving
a request to the generation of a response.

If we consider communication over a local network, the total RPT is in the milliseconds range. It takes,
on average, 14ms for FHNS to service a put request that requires no hops be taken. Approximately half
this time is spent communicating with the requester and the other half communicating a replicate request.
When hops are necessitated, the latency is increased by the number of hops. Figure 4 shows the minimum
and maximum RPTs experienced by FHNS when servicing location-independent put requests. Due to these
latencies, the location-dependent names are the preferred format for actor names, since they provide fault-
tolerance without giving up on efficiency.

4.4 Load Balancing

To fully meet the efficiency and scalability requirements, the home bases can not be too overloaded, else
there is the potential for a bottleneck. By using Chord as the lookup service, FHNS is able to attain load
balancing. Ideally, load balancing entails that given K identifiers and H home bases, each home base is
responsible for K/H identifiers®. In practice, however, the number of identifiers and mapping records per
home base exhibits large variations. For instance, when the FHNS prototype consists of 2 home bases, one
of the home bases covers 53% of the namespace identifiers and the other home base covers the remaining
47%. In contrast when two additional home bases are added giving a total of 4, 2 of these home bases each
only cover 1% of the namespace identifiers, another covers 38%, and the last home base’s coverage increases
from 53% to 60%*.

Figure 5 illustrates the namespace identifier coverage and the mapping record coverage. It can be seen
from this figure that load balancing is not sufficiently achieved. It could be argued that load balancing is
achieved by half the nodes but it certainly cannot be said for them all. Also depicted in the figure is the
obvious correlation between namespace identifier coverage and mapping record coverage. The home bases
with larger namespace coverage also store more of the mapping records.

The region for a node begins at the node’s predecessor’s identifier and spans all identifiers up to the node’s
identifier. Stocia et al [16] propose that each node (home base) divide the namespace into (O(log n) + 1)
regions of coverage. In order to do this, the nodes would each have O(log n) virtual nodes. Applying this
proposal has the effect of “balancing” the coverage amongst the nodes. Figure 6 depicts how using virtual
nodes equalizes the coverage among the home bases. Although not necessarily ideal, a level of load balancing
is thus achieved when using Chord as a lookup service and having each home base cover (O(log n) + 1)
regions. A node’s total namespace coverage is the summation of the node’s “non-virtual” coverage and its
virtual coverage.

3 Assumes all keys are equally “popular” and the nodes are homogeneous.
4The imbalance is due to two nodes producing very similar hashing values.
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5 CONCLUSIONS

The Fault-Tolerant Home-Based Naming Service is a novel approach to locating mobile agents in a distributed

computing framework. FHNS builds upon DNS and a peer-to-peer lookup service. And as a result of this

meshing, this naming service is fault-tolerant as was shown by using a lookup service such as Chord. The

Fault-Tolerant Home-Based Naming Service is also very efficient in resolving the location of a mobile agent.
The specific contributions made in this paper are as follows:

1. A naming service specifically designed for use by mobile agents. From the research that has
been done, it was observed that efforts on the specific topic of naming services for mobile agents has not
received much attention, at least when compared to mobile agent security, mobility, and messaging.
Also from researching the naming services in current mobile agent platforms, it was observed that
efforts do need to be focused on this very topic. Most Java-based agent systems use RMI or Corba
which introduce single points of failure.

2. A naming service that is highly efficient, fault tolerant, and scalable. Location-dependent
naming services, such as the one found in RMI for instance, are efficient in resolving a name to a location
but introduce a single point of failure. FHNS is as efficient as these location-dependent naming services
and it is also fault tolerant. Furthermore, the fault tolerance extension does not degrade the efficiency
in resolving location-dependent names until a failure occurs.

3. A naming service with more extensive fault tolerance than the conventional redundancy
model. Fault tolerance is a critical requirement of a naming service. Traditional redundancy schemes
involve a designated primary server and an associated secondary server. The secondary server, however,
does not necessarily have a back up. So when the primary fails, the system can no longer be described
as being fault tolerant because the secondary, or the new primary, server can not fail. With FHNS,
each server has a backup and each server is a backup for another server. The servers can fail down to
a single remaining server and FHNS will still work as needed.

The FHNS implementation presented in this paper uses Chord, however other distributed hash table
lookup services (e.g.CAN [13], Tapestry [22], Pastry [15], SPRR [9]) could be used to obtain different
performance and reliability characteristics. [18] gives a detailed account of these alternatives.

There are numerous mobile agent systems currently in development (e.g, [6, 8, 12, 19]). Many of the
systems are Java-based and have agents that communicate directly with other agents. Direct communication
requires mobile agent naming and location mechanisms. The naming mechanisms currently employed by
these mobile agent systems are not as efficient as they could be and/or they are not robust. FHNS could be
incorporated by these mobile agent systems to realize an efficient and robust naming mechanism.
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