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Abstract

Different coordination models exist for managing concurrency in complex distributed systems, for example,
direct interaction, tuple spaces, hierarchical structures, and publish-and-subscribe mechanisms. Online auc-
tions are complex distributed systems, where the choice of coordination model can significantly impact the
performance of multiple software agents, acting on behalf of human buyers and sellers. In this paper, we
evaluate analytically and experimentally different auction types and coordination models in an electronic
marketplace. Three important metrics are: the number of software agents, the number of messages ex-
changed between these agents, and the number of migrations performed by the agents. We conclude that
dynamically choosing the number of agents and the coordination model can improve quality of service in
electronic commerce applications. Furthermore, in online auctions where there is a lot of interaction between
software agents, migration of agents to virtual stores and local bidding is more fair and efficient than using
remote interaction. This observation has the potential to significantly improve and redefine existing online
auction systems such as eBay.
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1 INTRODUCTION

The World-Wide Web [4] has fueled a plethora of electronic services that have either matched or surpassed
previously existing services since their inception only a decade ago. For example, electronic newspapers
today are widely read, conceivably as much as or even more than physical newspapers. They reach faster
a larger worldwide audience. They introduce significant and challenging new problems, for example: on-
screen formatting and navigation, advertisement methodologies, back issue indexing and search procedures,
and online interaction fora such as blogs. Ultimately, electronic newspapers are an invaluable complement
to their (much older) physical newspaper counterparts, in terms of bridging the gap between information
provision and use.

Electronic commerce has also seen just the tip of the iceberg in terms of potential services to customers
and companies alike. Only a few years ago, very few people dared enter their credit card information in an
online web form. Today, it is common to use the web as an electronic purchasing medium, for example, to
buy airline tickets on specialized electronic travel agencies on the web, to offer company stocks on trading
sites, or to participate in online auctions, just to name a few.

As the sophistication of web services grows, as information becomes both human and machine-readable [9],
and as multi-agent systems become pervasive in the electronic information age, it becomes imperative to
re-think traditional processes in understanding how to tackle the significant and challenging new problems
introduced by the new electronic commerce medium.



In this paper, we consider a futuristic electronic marketplace consisting of software agents representing
human buyers, sellers, and auctioneers. We study and analyze different types of auctions in terms of their
potential to satisfy users, and in terms of their electronic complexity, that is, number of software agents,
cost and patterns of communication, and likelihood of inducing commercial transactions. We also study
and analyze different multi-agent coordination models in terms of computational complexity, and electronic
commerce metrics, such as user satisfaction. Finally, we envision a system that requires minimal human
intervention and that dynamically adapts the electronic commerce strategy from the perspective of the
sellers and auctioneers (e.g., type of auction) and from the perspective of the buyers (e.g., the inter-agent
coordination model) to optimize electronic customer satisfaction. Ultimately, we aim to create an adaptive
electronic marketplace that can successfully complement today’s commercial activities and bring in a new
perspective to the fair and efficient exchange of goods.

Structure of Paper Section 2 surveys existing auction types and coordination models. Section 3 in-
troduces the electronic marketplace architecture and the dynamic coordination model selection approach.
Section 4 presents analytical models for different auction types and coordination models in terms of metrics
such as number of agents, messages and migrations. This section also shows experimental results obtained
through a software prototype. Section 5 concludes with a discussion of contributions and potential future
work.

2 RELATED WORK

2.1 Auction Types

Online auctions mimic auctions in the physical world and differ according to many parameters like the role
of the sellers or buyers and the sort of pricing or bargaining. In this section, we introduce different types of
auctions as they might be used in the cyber world.

Software agents participate in an auction on behalf of their owner, who can be a seller or a buyer.
Considering the roles of the agents, auctions are classified as seller auctions and buyer auctions. Seller
auctions are the classical form of auctions. Bidders place offers on one or more items. On the other hand,
buyer auctions, which are also known as reverse auctions, work the other way around. Sellers compete with
each other to satisfy the buyer. There are also double auctions, which are a combination of buyer and seller
auctions.

Depending on the pricing and the bargaining schemas, auctions are categorized into iterative auctions
and sealed-bid auctions. English auctions and Dutch auctions belong to the first group, where the price
ascends iteratively. First-price-sealed-bid auctions and Vickrey auctions are the major examples of auctions
in the second group. Following, we are going to describe these different types in more detail.

English auction: This is the most frequently used and common method and is known also as the open-
outery auction or the ascending-price auction [13]. The auctioneer begins here with the lowest acceptable
price, which is not secret, and proceeds to solicit successively higher bids from the buyer agents, and ends
with a timeout. The item is sold to the highest bidder agent at the price of her last bid [11]. In an English
auction, the buyer agents may bid several times or react to the bids of others arbitrarily. The information
flow of English auctions can be seen in the sequence diagram in Figure 1la.

One variation of the English auction is the open-exit auction [15]. Here the prices rise continuously,
and bidders must publicly announce that they are dropping out when the price is too high. Once a bidder
has dropped out, she may not reenter. In another variation, an auctioneer calls out each asking price and
bidders lift a paddle in the online version, send an accept message, to indicate a willingness to pay that
amount. Then the auctioneer calls out another price, etc. Yankee auctions [19] are another type of English
auction, where multiple items of the same kind are negotiated in one auction. The items are allocated after
the auction is finished, depending on different criteria like desired amount of items and maximum budget of
the agent.

Dutch auction: This auction is also known as the descending-price auction [14]. It has an iterative
format. Bidding starts at a relatively high price and is progressively lowered [24]. The agent that accepts
the lowered price gets the item. All of the buyers have the same chance to get the item, but the ones that
hesitate too long miss it. When the goods are exhausted, the bidding is over.

The message flow of the Dutch auctions are very similar to the message flow in English auctions. The
only difference is that it does not end with time over but with price acceptance of a buyer agent. In order



seller
agent

buyer
agent 1

buyer
agent 2

auctioneer|
agent

seller
agent a,

seller
agent? [ """

\ [ it

seller
agent 1

auctioneer
agent

buyer
" | agent o,

buyer
agent 1

buyer
agent 2

buyer
agent o,

[ request order profeesing »

il = i | proposal f
a inforfnation [j i :
D
(I i
[Je i
| L infotm 1+ phast auction results
< [_L=
7 e
e
fF——»
propose
< e [Je—
< propose

i L

<7J—|a eedeal 15 agree deal
i

agres deal
| saree deal
agree deal

a) English auction b) double auction

vy

vy

Figure 1: Sequence diagram for English and double auctions

to protect the seller from dis-profit a lower bound can be optionally predefined.

When multiple units are auctioned, normally more buyers are present. The first winner takes one of the
items and pays her price and later winners pay less [24]. Once again, when the goods are exhausted, the
bidding is over.

It is believed that the English system may be inferior to the Dutch in one area. From the seller’s point
of view, the key to any successful auction is the effect of competition on the potential buyers, and in an
English auction, the under-bidder usually forces the bid up by one small step [14]. The winner may end up
paying well according to her point of view but the seller does still not receive the maximum price.

Reverse auction: In reverse auctions, the successful bidder is determined by the lowest price submitted
to the auctioneer at the conclusion of the auction [12]. While potential suppliers are underbidding each
other, the buyer does not do anything but only observes the negotiation.

Reverse auctions have the following flow [10]: The buyer submits a list of items to the auctioneer. The
auctioneer invites sellers to participate, with a specified start and closing time. All bidder’s identities are
kept confidential during the auction. Bidders submit prices that are ranked and disseminated to all bidders
as new bids are made. An extension of the auction closing time may be triggered for a pre-determined
period of time if one of the top bid rankings changes. The auction closes once no new bids are placed and
the original or extended closing time expires. All bidders are immediately notified of the final bid rankings,
and the auctioneer notifies the buyer of the bidding results.

Sealed-bid auction: In sealed-bid auctions, each bidder submits one bid without knowledge of all other
bids [24]. That is what being sealed denotes, as opposite to open-outery like the English or Dutch varieties.
Each agent can bid only once and the other agents do not know the buying strategy or the budget of their
competitors. In first-price-sealed-bid auctions [16] after all bids are executed they are co-instantaneously
declared and the highest bidder gets the item for the price she bid. That is where the term ”first-price”
comes from. In the case of a buyer auction the supplier with the lowest bargain sells the item.

When multiple units are being auctioned, it is called discriminatory auction. In that case, the bids are
sorted from high to low and the units are sold to the bidders, starting with the highest, until the supply is
exhausted. Each bidder has to pay the amount she bid. This results in different prices for different winners.
This is where the term ”discriminatory” comes from [16].

Vickrey auction: Like the first-price sealed bid auction, there is also a uniform second-price auction,
known with its finder’s name: Vickrey [25]. This auction works also with sealed bids [24]. The difference is
that in the Vickrey auction the bidder who made the highest bid gets the good at the price of the highest
non-winning bid. If multiple units are being auctioned, all winners pay the price of the highest non-winning
bid.

Double auction: Double auctions have been the principal trading format in U.S. financial institutions
for over a hundred years [8]. In double auctions, as can be seen from the sequence diagram in Figure 1b,



both sellers and buyers submit bids which are then ranked highest to lowest to generate demand and supply
profiles [23]. From the profiles, the maximum quantity exchanged can be determined by matching the selling
offers (starting with lowest price and moving up) with demand bids (starting with highest price and moving
down) [7]. This format allows both buyers and sellers to negotiate at any particular moment.

One interesting variation of double auction is the Double-Dutch auction [8], where a buyer price clock
starts at a very high price and goes downward. At some point the buyer stops the clock and bids on the
unit at a price complimentary to her. At this point a seller clock starts upward from a very low price and
continues upwards until a seller stops it and offers a unit at that price. Then the buyer clock resumes once
again downwards, etc. When the two prices cross, the auction is over. The double auction has many variants
and is evolving rapidly. Economists believe that the double auction will have many applications as auctions
become computerized [17].

2.2 Coordination Models

Actors: The actor model of computation [1] provides a good starting point for building multi-agent systems
because of its asynchronous nature of communication, distributed memory, and dynamic reconfiguration
properties. Actors coordinate activities by exchanging messages sent asynchronously. In response to a
message, an actor may: (1) change its otherwise completely encapsulated state, (2) send messages to other
known actors, (3) create new actors, or (4) migrate to a new location.

Due to asynchronous communication and state encapsulation, actor migration is much simpler than
object migration, since no execution stacks are present due to nested method invocations and no more than
one logical thread is ever accessing the internal state of an actor. As long as a universal naming scheme
exists to refer to mobile actors, communication between actors is location transparent [20].

While asynchronous message passing is a sufficient primitive for reasoning about open distributed systems
(see e.g., [2]), higher-level coordination mechanisms are needed to effectively build complex multi-agent
systems. Actor programming languages, such as SALSA [22], provide additional coordination constructs
built over message passing, that facilitate building complex communication protocols, without breaking
the dynamic reconfiguration aspects of the model. Coordination constructs include futures, token-passing
continuations, join blocks, and first-class continuations.

Tuple Spaces: Linda [6] introduced a powerful coordination paradigm consisting of processes commu-
nicating through a shared tuple space. Processes may: (1) write a tuple to the space, (2) read a tuple from
the space leaving it in the space, or (3) read and remove a tuple from the space.

An advantage of the tuple space model is that it enables coordination to trascend space and time bound-
aries since: (a) processes can be in different computers when communicating with a tuple space, and (b) a
tuple can outlive its writing process and therefore it can be read by a process that did not exist at the time
the tuple was created.

While tuple spaces go a long way in providing a natural shared memory abstraction for inter-process
coordination, their main limitation lies in the difficulty of scaling up coordination to a very large number
of processes due to the bottleneck introduced at the tuple space. The logical centralization of a tuple space
also imposes a significant overhead in terms of remote message passing in an open distributed system.

Publish and Subscribe: Publish and subscribe models have been proposed in the literature (e.g., [3, 5])
to enable what can be regarded as active tuple spaces. Rather than expecting processes to continuously poll
for a given tuple in a tuple space, publish and subscribe strategies enable processes to subscribe to specific
patterns of messages or tuples, and to publish tuples with the expectation that all currently subscribed
processes will receive a copy of the tuple.

An advantage of publish and subscribe is that multiple subscribers which are co-located can be serviced
more efficiently by creating an overlay tree structure and multicasting (rather than broadcasting) new in-
formation as it becomes available. For example, if web customers are watching the Soccer World Cup 2006
originating in Germany, the video stream packets need only travel once from Europe to the American con-
tinent, then be forwarded to intermediate nodes representing North and South America, and so on, which
is obviously much more efficient than broadcasting the video streams, which would imply many one-to-one
connections from America to Europe.

Several major complexities arise when considering a publish and subscribe mechanism including how to
express subscription constraints, and how to dynamically maintain an efficient multicasting overlay network,
in the presence of multiple information sources and stringent reliability requirements.



Hierarchical Coordination: The hierarchical model for coordination of concurrent activities [21] ad-
vocates the creation of groups of actors, or casts, to serve as units of coordination among related processes.
An actor group is coordinated by a director, a special actor in charge of intra-cast coordination. Directors
may themselves belong to coordination casts, thereby creating a coordination hierarchy.

The hierarchical model is based on the observation that intra-cast communication is orders of magnitude
more frequent that inter-cast communication. This so-called near-decomposability property of hierarchic
systems [18] allows for their natural evolution and scalability. Simon illustrates this argument with examples
drawn from systems such as multi-cellular organisms, social organizations, and astronomical systems.

In the context of electronic commerce, multiple software agents representing a buyer form natural hierar-
chies with directors coordinating purchases of specific items and item categories. The highest-level director
within a group of software agents representing a buyer may enforce user constraints such as the maximum
budget to use on acquiring a specific shopping list.

The main advantage of hierarchical coordination over other models is its scalability. The major drawback
is that in simple electronic commerce scenarios, it can induce more messaging overhead than it would be
necessary with a flat coordination structure.

3 APPROACH: AN ELECTRONIC MARKETPLACE

In order to evaluate different coordination models and auction types, we have created an online marketplace,
where many buyer and seller agents come together and negotiate. In this section, we describe the architecture
of this marketplace, and the criteria we used to indirectly measure user satisfaction.

The electronic marketplace is a system that enables dynamically choosing the number of agents, agent
migrations, and the number of messages sent, for a given buyer. The goal is to increase the possibility of the
agents to get all the products desired by the buyer within the given budget, and to accomplish this task in
the given time period. Furthermore, from the perspective of the sellers and auctioneers, the system enables
to dynamically choose the most suitable auction type, with the goal of optimizing their satisfaction.

The marketplace consists of four main components (see Figure 2): Coordination Model Manager (CMM),
Seller Manager (SM), Stores and the Transaction Manager (TM). CMM is an interface between the buyer
agents and the stores. It is responsible for choosing the most suitable coordination model by analyzing the
items each buyer wants to buy and the items sold in different stores. SM is the interface between the seller
agents and the stores. It is responsible for associating seller agents to stores. Stores model physical stores in
the real world. They are in charge of spawning auctions, where agents negotiate for selling or buying items.
In each store there are many auctions going on simultaneously. The seller and buyer agents come together
in auctions. Every auction is managed by an auctioneer agent, which is responsible for deciding the type
of auction and reporting the transactions to the TM. TM is the storing unit of the marketplace. All of the
transaction results flow to its database.

When a customer enters the marketplace, it gives the items in its item list to the CMM. CMM chooses
the coordination model and according to the model creates and sends agents to stores. At the same time,
sellers of the real world, represented by seller agents, enter the marketplace and give the specifications of
their items to the SM. SM contacts the stores, and either sends a seller agent for each new item to the store
or creates a new store for this seller.

The main criterion that auctioneers take into consideration is the number of buyer and seller agents that
supplies or demands an item. Since the seller /buyer wants to sell/buy the items in a predefined time period,
time is the next important criterion. CMM decides on the coordination model, creates buyer agents and
their itinerary, and sends them to stores. The number of messages sent and the number of agent migrations,
is strongly affected by the coordination model, and strongly affects user satisfaction.

The indicator of success for our approach is user satisfaction. Satisfaction is measured for buyers by the
percentage of items bought and the average price paid for each item as compared to the market price—the
average price paid for that item by all the agents in the system. For the seller, user satisfaction is measured
by the percentage of the items sold and total revenue. Finally, for the auctioneers, satisfaction is measured
by the number of transactions.

The agents representing the same sellers/buyers are responsible for buying/selling all of the items in their
item lists, in a limited time, and with a limited budget. If there are communication delays or failures, agents
may end up buying more items than desired or getting back with empty hands. The number of remote
messages sent between the agents, which are bidding at the same time in different auctions, are more critical
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Figure 2: Architecture of the marketplace

than the internal messages, because they require more time. The number of agent migrations depends also
very strongly on the chosen coordination model. Since the number of messages sent between the agents
increases proportionally to the number of agents, the coordination model should help the agent owner to
buy or sell the items with a minimal number of agents.

4 ANALYSIS AND SIMULATION RESULTS

In this section, we are first going to concentrate on the analytical models for the major auction types and
coordination models. Later, we will move on to the simulations and results of our electronic marketplace
prototype.

The analysis of the auction type and the coordination model are orthogonal to each other. Considering
different types of auctions, there are two main variables affecting the success of an auction system. These
are number of agents and number of messages. The coordination model affects the success of an auction
environment through three variables. These are the number of agents, the number of messages and the
number of migrations. The number of agents and number of messages affect each other directly. Since
agents communicate with each other through messages, the number of messages increases geometrically with
the increasing number of agents.

In an auction environment, time plays a very important role. Being able to migrate where the auction is
taking place makes the bidding process less expensive and more fair. In an actor-based auction system the
latency and bandwidth differences become less relevant than in a remote-bidding auction system like eBay.
In remote-bidding auction systems, users complain about fairness of the bidding process, mostly in the last
minute bid. The significance of migration versus remote communication will be detailed in the simulation
section.

4.1 Comparison of the Auction Types

In this subsection we are going to compare the number of messages and the number of agents for the most
significant auction types. This will help us decide under which conditions which auction type is the most
efficient.

The variables of our mathematical approach are as following: «;, symbolizes the number of buyer agents,
«s, the number of seller agents, 8 the average bids per agent that take place until an item is sold in an
auction, o, is the number of miniauctions in a double auction, , the number of messages, and «, the total
number of agents.

The total number of agents is obtained in every auction type by adding the number of buyer, seller, and
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Table 1: Number of agents and messages in different auction types.

auctioneer agents. Since there is only one auctioneer in every auction type, the general formula is as follows:
a = aptoas+1

There are five main stages in an auction process: The creation, notification, subscription, bidding process
and notification of results of the auction. Referring to these stages, the computation of the number of
messages needed to complete an English auction in our model is as follows: In the first stage, the seller agent
requests the auctioneer to create a new auction by sending one message. In the second stage, the buyer
agents request to join the auction. Such process generates as many messages as the number of buyer agents
requesting. In the third stage, the auctioneer accepts or refuses the request of the buyer agents. The same
number of messages as in the second stage are generated. In the fourth stage, one buyer agent places a bid
by sending one message. The auctioneer notifies the other participants of the new bid. The total number of
messages generated in this stage is equal to the total number of buyer agents per bid. In the final stage, the
auctioneer notifies the seller and the buyers of the auction result. The total number of messages generated
in this stage is equal to the number of buyer agents plus one. By adding the number of messages in these
five stages, we obtain the formula in the Table 1 for the total number of messages:

k=14+a,+ap+PBap+ (p+1) = 143+ Pap+1 = 1+a(3+08)+1 = a(3+5)+2

The reverse auction is similar to the English auction, but the sellers and the buyers change their roles.
Consequently, the number of messages remains the same.

In sealed-bid auctions the total number of messages are deducted from the English auction. This is
because there is only one bid per agent in the fourth stage, and the rest of the stages remain the same as
the English auction.

In the first stage of a double auction, both buyers and sellers send their bids. That process generates
(ap + ) messages. In the second stage, the auctioneer notifies the matching sellers and buyers that they are
welcome to the second round, where miniauctions between them take place. It also notifies the not-matching
buyers or sellers of their elimination from the auction. This notification stage generates (o + «5) messages.
Therefore, in the first round in total 2(ap + ) messages are generated. In the second and consequent
round of a double auction, the number of seller and buyer agents is the same, and equals min(ap, as). In
this round, o miniauctions are situated, where o = min(ap, as). In every miniauction, (5 + 1) messages on
average are communicated, caused by biding done and the final notification to the auctioneer. Therefore, in
the second round of a double auction, o( + 1) messages are generated. By adding the number of messages
in these two rounds, we obtain the formula for the total number of messages in Table 1.

If there is one buyer and several sellers then the auctioneer generates a reverse auction. In the opposite
case, the auctioneer decides for the English. A third case is where many sellers and many buyers are
interested in buying and respectively selling similar items. In that case the auctioneer decides for a double
auction, because it minimizes the number of messages sent and allows more than one item to be purchased
with different prices to different parties.

4.2 Comparison of the Coordination Models

In addition to input variables defined in Section 4.1, we are going to use ¢, for the number of items in the
shopping list of an agent, A, for the number of auctions created, and a, for the total number of buyer agents
in the system (a large value represents stiff competition). According to these variables, we will calculate ,
the number of messages and p, the number of agent migrations.

Single-Agent: In this coordination model, the buyer is represented with one agent, migrating from one
auction to the next in order to buy the products on its shopping list. Because there is no other agent in the
system negotiating on behalf of the buyer, there are no messages communicated (x = 0).



Since every buyer is represented with a unique agent in the single-agent model, there is no coordination,
and this one agent migrates for each item to all of the auctions related with the item until it gets the item.
The number of migrations is calculated with:

u:(A—1)~<1—a”>+2

ar

The two at the end of the equation stands for the migration of the agent to the first auction and from the
last auction back to the buyer’s node. (A — 1) comes from the fact that, in order to buy the item, it may
need to migrate to all of the auctions, except the beginning auction. Assuming that all buyer agents have

equal probability of obtaining an item, we multiply it with (1 — g—;) Since, the increasing number of total

agents increases the concurrency, the probability of the agent to get the item in the auctions decreases. In
the best case there is no competition, the agent will get the item in the first auction, it joins. Therefore,
without migrating to other auctions, it returns back to the buyer’s node. In the worst case scenario, it is
going to migrate to all the auctions in its itinere.

Tuple Spaces: In tuple spaces, each agent continuously asks the memory space for changes, which
increases the number of messages extremely.

The number of agents in the tuple spaces model changes between the number of items and the number
of auctions, (¢ < ap < A).

Let ¢ symbolize the frequency of tuple space querying, and ¢ the duration of an auction. The number

of queries per agent to a tuple space during an auction is %) Every time there is a bid, a tuple in the

tuple space changes, therefore, 3 messages are needed. In order to find the number of querying messages
per auction for all the agents representing the buyer in all the auctions they join, we multiply ( 5 + % with

A - ap. In the best case scenario, there is only one buyer agent for each item, ap = ¢, and it gets the item in
the first auction it joins, A = 1. Which gives us the following formula for the total number of messages in

this best case scenario:
) 1) )
s =3 (53 ) =tan (5 3) = (9 5)

In the worst case (ap < ar), the agents have to join all the auctions offering the item they want to buy.
If ap, = A, then the formula for the number of messages will be follows:

Kworst:A'ab<6+j;>:>\'>\<ﬁ+i):)\2<ﬂ+j}>

We found a formula that gives the number of messages for all competition scenarios as following. When
(ap < ar), it implies that (ap/ar = 0), and when (ap ~ ar), it implies that (ap/ar ~ 1). Considering
these, the following formula gives the number of messages for tuple spaces:

n:(%-L+<1—ab>- ozb-)\> <6—|—6>
ar ar ¢

The number of migrations reaches its minimum value, when (ap = A), because in that case every agent
goes to a different auction and since all auctions are visited, there is no need for migration from one auction
to another. Otherwise, (a, < A), and the agents have to migrate to all the auctions, offering the item they
want to buy (A — «ap). Assuming that all buyer agents have equal probability of obtaining an item, we

multiply the number of migrations with (1 — (%) Furthermore, each agent migrates to the first auction

in its itinerary and back from the last auction in its itinerary, which denotes 2ay migrations. Considering
these, the formula for the total number of migrations is:

w=(A—ap) (1—%>+2ab
ar

Publish and Subscribe: Publish and Subscribe: The Publish and Subscribe coordination model
works very similar to tuple spaces. The only difference concerning the number of messages and the number



of migrations is that in publish and subscribe model, the agents do not query the tuple space regularly, but
the tuple space sends a broadcast to the agents whenever there is a change.

Because of these similarities the formula for the number of migrations, which we have described in the
tuple spaces, is the same for publish and subscribe and the formula for the number of messages is slightly
modified. So the number of messages is calculated with:

nz(i—i—(l—s;)-)\)-ﬁ(l—l— ap)

Hierarchical Coordination: In this model, the agents associated with a buyer are organized in the
form of a tree, with the root agent representing the buyer. The root has ¢ children, each of which is an
agent for some product in the shopping list. At the second level each agent has children agents, which are
responsible for one or many auctions for the item that the parent is responsible for. To be more precise, if a
is a node with depth two, then it is the agent that represents the buyer in an auction relation with the item
list, parent(a) is responsible for.

In this model, every leaf node sends a message to its parent and siblings after each bid of its corresponding
auction. Other agents are not to be informed, since they take role in the auctions for different items.

Let A,y be the number of auctions buyer b joins related with item i. The worst case performance
in terms of the number of messages transmitted arises, when a;, < ar and the buyer agent joins all the
auctions. In this special case Z§=1 Ab,i) = b Since, for each bid every agent sends a message to its parent
and siblings, and there exists \(; ;) siblings; number of messages transmitted is

L

k=Y (Away) B

i=1

From these, we can express worst case performance as the solution of the following quadratic convex program:
: 2
sup Y (Aw.i))
i=1

st Z ()\(b,i)) = \p and )\(b,i) >0 Vie{l,2,..,.}

Supremum of the above problem is (\;)? - 3, and it is achieved, when Ab,i) = A for some i € (1,2,...,¢) and
A,y =0, Vi’ € (1,2,...,¢) \{i}. Then:
Rworst = ()\b)2 : /6

In the best case, the agents get the items in the auction they first join, therefore the total number of
auctions joined is equal to ¢ (one auction per item in the shopping list). The number of total messages is
obtained, when A ;) = 1, Vi € {1,2,....}.

Rpest = 2;:1(>‘(b,i))2 p= Eé:lﬂ =0

For the average case; let a; be the number of buyers desiring to buy item i; let A; be the number of
auctions related with item i. Expected number of messages between the agents of the buyer is given by

L

Z()\(b,i)f] =p- Z E[(Aw)?]

i=1

i=1

Assuming \; < «;, every agent participating in the auction has an equal probability of winning, and the
winner agent does not join the remaining auctions related with i*" item,

A A O+ 12N + 1
Bl =31 = o St = MO

60@

Therefore;

Elx] = 3- Z Ai(Ai +1)(2); + 1)

60ti



In the hierarchical coordination model the number of migrations is equal to the number of edges in the
tree, which is one less than number of nodes in the tree. Therefore;

w= <1+L+Z>\(bvi)> -1 :L"_Z)‘(b,i)
i=1 i=1

Under the assumptions in the analysis of the expectation of k

‘ ¢ P Y] . . e
D S S T R S S I
i=1 i=1 i . i

i=1j=1 i=1

Comparing these four coordination models, we reach the conclusion that the hierarchical coordination

model gives the best results for large-scale systems. Because of its scalability property, it minimizes the

number of remote messaging by creating groups of agents. Therefore it allows minimal number of messages
and migrations for large number of agents.

Elp=E

4.3 Software Simulation and Experimental Results

The software simulation presented shows something that an analysis cannot: time measurements. Thus,
the goal of the prototype is to validate the analytical model and to provide insights into the significance of
remote communication versus migration in terms of time. Furthermore, relationships between number of
agents and different variables can be measured. The software prototype of our electronic marketplace and
the experimental results are described in the following paragraphs.

Software Prototype

Our electronic marketplace prototype implements the open-exit English auction (see Section 2.1) with a
single-agent approach coordination model (see Section 2.2). The SALSA[22] programming language was
used to implement it. The language and system take advantage of the concurrency and migration charac-
teristics of the actor model. Given enough bidding interaction, migration reduces network usage by avoiding
remote messaging.

The system is a simplified version of the proposed model. Stores can join the system dynamically. Stores
spawn auctions regularly. Buyer agents are created dynamically in the system. An itinerary of stores to visit
is created as the buyer agents join the system. Each agent has a time to return. This time is divided evenly
among stores in the itinerary. Therefore, buyer agents migrate from one store to the next in their itinerary.
Once an agent migrates to a store, it joins relevant auctions. The buyer agents try to fulfill the shopping
list of their buyer.

Experimental results

In this section, we will try to obtain the amount of time, the number of messages needed, the number of bids
and the price to complete a transaction. We will also evaluate how these variables change when the number
of buyer agents increase in different contexts. Three scenarios are as follows:

e A demand driven world: The supply of items is not enough to match the demand.
e A supply driven world: The supply of items is more than enough to match the demand.
e A balanced supply and demand world: The supply and demand of items are balanced.

All of these scenarios are evaluated with fixed characteristics such as budget and time in the system for
buyers. A characteristic that is not fixed is the number of stores, which grows with the number of agents to
make the bidding process more fair.

The results of testing the prototype are summarized in Figure 3. The upper-left graph plots the behavior
of number of messages per transaction as the number of agents increases. The upper-right graph plots the
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Figure 3: Messages, bids, time and price needed to complete a transaction as the number of agents grow.

behavior of time per transaction as the number of agents increases. The lower-left graph plots the behavior
of the number of bids per transaction as the number of agents increases. The lower-right graph plots the
behavior of the price as the number of agents increases.

Number of messages and bids per transaction: In a supply driven world, the number of messages
slightly increases as the number of agents increases. This is because the probability of competition grows
as the system becomes more complex. As probability of competition grows, so does the number of bids and
therefore the number of messages. The most critical case is the demand driven world: lots of competition
among agents leads to exponential increase in messages. This was predicted in the analytical model of Sec-
tion 4.1. In a balanced supply-demand world, the number of bids to get an item tends to increase in a linear
fashion, and so does the number of messages.

Time spent per transaction: In a supply driven world as more agents join the system, more stores
offer the item desired. Therefore time per transaction increases since there are more stores to migrate to in
order to fullfill the itinerary of the agent. In a demand driven world the time per transaction increases due
to competition. For buyer agent to complete a transaction, the number of bids increases, and so does the
time. Likewise in a balanced supply-demand world, the amount of time needed to complete a transaction
increases.

Price per transaction: Since the number of stores for this simulation is a function of the number of
agents, the price per transaction tends to increase slightly. In a demand driven world, in the case where the
number of stores were fixed, the prices per transaction would be a lot higher than the prices obtained.

Migration vs. Remote Messaging

Two approaches to implement auction systems are migration and remote messaging. In the former, the
parties of the auction are in the same location, buyer agents migrate to the seller agents location where the
auction takes place. In the latter, the bidding process is held through remote messaging. The prototype
proposed fits in the first approach while eBay-like systems fit in the second. To be able to come up with
time measurements we introduce Table 2.

Table 2 (taken from [22]) shows ranges of values measured with minimal actors and empty messages, as
well as larger actors. This values are used to show different aspects of remote comunication and migration.
These numbers were taken with a testbed containing three LANs and one WAN. The WAN configuration was
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Local actor creation 386us

Local message sending 148us
LAN message sending 30-60ms
WAN message sending 2-3 secs

LAN minimal actor migration | 150-160ms
LAN 100Kb actor migration 240-250ms
WAN minimal actor migration 3-Tsecs
WAN 100Kb actor migration 25-30secs

Table 2: Local, LAN and WAN Time Ranges [22]

tested with three machines: one in Europe, one in USA and one in Japan. Local times are in microseconds,
LAN times are in milliseconds, and WAN times are in seconds.

In eBay-like systems, the cost of comunication is very expensive. All the messaging is remote. Consider a
scenario in which a buyer agent wants to buy two items. The agent is in a supply driven world context. An
english auction is being held and the buyer agent is the only one participating. From the simulation results,
an average of four and a half messages are sent to complete one transaction. The bidding process will be
very simple, since there are no messages generated after outbids. To complete two transactions, there is a
need of nine messages.

In an eBay-like system, nine remote messages are all that is needed. In a LAN environment, the time to
complete nine messages is 270-540ms. In our prototype, nine local messages are needed and two migrations.
In a local environment, the time to complete nine messages is 1332us, or 1,3ms. The two LAN migrations
are completed in 300-320ms. The time to buy two items would be 301,3 to 321,3ms. Therefore in LAN
environments the two systems would perform similar as far as time.

The eBay-like systems are widely used in WAN environments. In a WAN environment nine messages will
be completed after 18-27 seconds. In our prototype, the messaging would cost the same, but the migration
would change. Two migrations in a WAN environment would cost 6-14 seconds. In the worst case of our
prototype performance, the time would be less than in the best case of the eBay-like system.

Considering that eBay-like systems are more complex than our example scenario, the migration tool would
improve the fairness of the bidding process. The bandwith and latency would no longer be a problem. It is
also true that the bidding decision is taken in microseconds. Therefore the system must become autonomous.
Human interaction in terms of user preferences will only be needed once at the beginning and once at the
end of the process.

5 DISCUSSION AND FUTURE WORK

In this paper, we have considered a futuristic electronic marketplace consisting of software agents representing
human buyers, sellers, and auctioneers.

We studied and analyzed different types of auctions in terms of their potential to satisfy buyers, sellers,
and/or auctioneers, and in terms of their electronic complexity, that is, number of software agents, cost
and patterns of communication, and likelihood of inducing transactions. English auctions favor sellers
in terms of profit, particularly on demand-driven scenarios. Reverse auctions favor buyers in terms of
budget, particularly on supply-driven scenarios. Sealed auctions have minimum requirements on messaging
which favors environments with expensive network communication—latency and bandwidth. Double auctions
provide the most fairness to buyers and sellers in terms of exchange prices, and maximizes transactions—a
key auctioneer metric, yet incurs in the most communication overhead and can therefore significantly benefit
from agent co-locality.

We also studied and analyzed different multi-agent coordination models in terms of computational com-
plexity, and electronic commerce metrics, such as user satisfaction. While a buyer could have a single agent
to accomplish its shopping task, thereby requiring no coordination, this strategy diminishes the probability
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of success getting all the items desired, or getting the best prices. This is particularly true upon fierce com-
petition from other buyers. Therefore, we analyzed the number of agents and messages required by three
specific coordination models: tuple spaces, publish and subscribe model, and hierarchical coordination, with
the goal of maximizing the probability of user satisfaction.

Finally, we prototyped an actor system to simulate an electronic marketplace, and we provided inter-
esting empirical results that validate the approach of dynamically choosing auction types and buyer agent
coordination models.

Further work involves considering empirically obtained actor creation, actor migration, and remote com-
munication times to feed back into the analytical models to help determine the best strategy not just in
terms of message passing and number of agents, but also in terms of communication and coordination times
on a given network infrastructure. The most informed and best coordinated buyer agent teams should out-
perform other buyer agents in terms of meaningful electronic commerce metrics such as number of successful
transactions and purchase prices as compared to average purchase prices by other (human and otherwise)
buyers.

Ultimately, the goal is to create an adaptive electronic marketplace that can successfully complement
today’s commercial activities and bring in a new perspective to the fair and efficient exchange of goods.
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