
Contents

1 Worldwide Computing Middleware 1
1.1 Middleware . 2

1.1.1 Asynchronous Communication . 2
1.1.2 Higher-level Services . 3
1.1.3 Virtual Machines . 4
1.1.4 Adaptability and Reflection . 4

1.2 Worldwide Computing . 5
1.2.1 Actor Model . 5
1.2.2 Language and Middleware Infrastructure 6
1.2.3 Universal Actor Model and Implementation 6
1.2.4 Middleware Services . 7
1.2.5 Universal Naming . 9
1.2.6 Remote Communication and Mobility . 10
1.2.7 Reflection . 12

1.3 Related Work . 16
1.3.1 Worldwide Computing . 16
1.3.2 Languages for Distributed and Mobile Computation 16
1.3.3 Naming Middleware . 17
1.3.4 Remote Communication and Migration Middleware 17
1.3.5 Adaptive and Reflective Middleware . 18

1.4 Research Issues and Summary . 18
1.5 Further Information . 19
1.6 Defining Terms . 19
1.7 Acknowledgments . 20

X-XXXX-XXXX-X/XX/$X.XX+$X.XX
c 2004 CRC Press LLC. i

CONTENTS CONTENTS

ii M. P. Singh, ed.

1

Worldwide Computing Middleware

Gul A. Agha, University of Illinois at Urbana-Champaign

Carlos A. Varela, Rensselaer Polytechnic Institute

CONTENTS

1.1 Middleware . 2
1.1.1 Asynchronous Communication . 2
1.1.2 Higher-level Services . 3
1.1.3 Virtual Machines . 4
1.1.4 Adaptability and Reflection . 4

1.2 Worldwide Computing . 5
1.2.1 Actor Model . 5
1.2.2 Language and Middleware Infrastructure 6
1.2.3 Universal Actor Model and Implementation 6
1.2.4 Middleware Services . 7
1.2.5 Universal Naming . 9
1.2.6 Remote Communication and Mobility 10
1.2.7 Reflection . 12

1.3 Related Work . 16
1.3.1 Worldwide Computing . 16
1.3.2 Languages for Distributed and Mobile Computation 16
1.3.3 Naming Middleware . 17
1.3.4 Remote Communication and Migration Middleware 17
1.3.5 Adaptive and Reflective Middleware 18

1.4 Research Issues and Summary . 18
1.5 Further Information . 19
1.6 Defining Terms . 19
1.7 Acknowledgments . 20

Abstract Widely distributed applications using Internet resources for computing require com-
plex resource naming, discovery, coordination, and management policies. Software complexity is
dealt with by developers withmiddleware, software layers dealing with distribution issues, such
as naming, mobility, security, load balancing, and fault-tolerance. Middleware enables application
developers to concentrate on their domain of expertise, reducing code and complexity by orders of

X-XXXX-XXXX-X/XX/$X.XX+$X.XX
c 2004 CRC Press LLC. 1

Middleware Agha & Varela

magnitude. We discuss different aspects of middleware infrastructures and we present theWorld-
Wide Computer, our own worldwide computing infrastructure with naming, mobility, and coordina-
tion middleware layers, facilitating Internet-based distributed systems development.

1.1 Middleware

The wide variety of networks, devices, operating systems, and applications in today’s comput-
ing environment create the need for abstraction layers to help developers manage the complexity of
engineering distributed software. A number of models, tools and architectures have evolved to ad-
dress the composition of objects into larger systems; some of the widely usedmiddlewareranging in
support from basic communication infrastructure to higher-level services includes CORBA [Object
Management Group, 1997], DCOM [Brown and Kindel, 1996], Java RMI [Sun Microsystems Inc.
– JavaSoft, 1996], and more recently Web Services [Curbera et al., 2002].

Middleware abstracts over operating systems, data representations and distribution issues thus
enabling developers to program distributed heterogeneous systems largely as though they were pro-
gramming a homogeneous environment. Many middleware systems accomplish this transparency
by enabling heterogeneous objects to communicate with each other. Since the communication
model for object-oriented systems is synchronous method invocation, middleware typically attempts
to give programmers the illusion of local method invocation when they invoke remote objects. The
middleware layers are in charge of low-level operations, such as marshalling and unmarshalling
arguments to deal with heterogeneity, and managing separate threads for network communication.

Middleware toolkits provide compilers capable of creating code for the client (a.k.a.stub) and
server (a.k.a.skeleton) components of objects providing remote application services, given their
network-unaware implementation. Intermediate brokers help establish inter-object communication
and provide higher-level services, such as naming, event and lifecycle services.

1.1.1 Asynchronous Communication

In order to give the illusion of local method invocation when invoking remote objects, a calling
object is blocked—waiting for a return value from a remote procedure or method call. When the
value returns the object resumes execution (see Figure 1.1). This style of communication is called
remote procedure callor RPC. Users of middleware systems realized early on that network latencies
make RPC much slower in nature than local communication and the consequence of its extensive
use can be prohibitive in overall application performance. Transparency of communication may
thus be a misleading design principle [Waldo et al., 1997].

Asynchronous (a.k.a.event-based) communication services enable objects to communicate in
much more flexible ways [Agha, 1986]. For example, the result of invoking a method may be redi-
rected to a third party orcustomer, rather than going back to the original method caller. Moreover,
the target object need not synchronize with the sender in order to receive the message, thus retaining
greater scheduling flexibility and reducing the possibilities of deadlocks.

Since asynchronous communication creates the need for intermediate buffers, higher-level com-
munication mechanisms can be defined without significant additional overhead. For example, one
can define a communication mechanism which enables objects to communicate with peers without
knowing in advance the specific target for a given message. One such model is a shared memory
abstraction used in Linda [Carriero and Gelernter, 1990]. Linda uses a shared tuple-space from
which different processes (active objects) read and write. Another communication model is Ac-
torSpaces [Callsen and Agha, 1994]; in ActorSpaces, actors use name patterns for directing mes-
sages to groups of objects (or a representative of a group). This enables secure communication
that is transparent for applications. A more open but restrictive mechanism, calledpublish-and-
subscribe[Banavar et al., 1999], has been used more recently. In publish-and-subscribe, set mem-

2 M. P. Singh, ed.

Agha & Varela Middleware'

&

$

%

0 5 10 15

0 5 10 15

Sender

Receiver

Message Value

Figure 1.1: Synchronous communication semantics requires the sender of a message to block and
wait until the receiver has processed the message and returned a value. In this example, the message
processing takes only seven time units, while the network communication takes ten time units.

bership can be explicitly modified by application objects without pattern matching by an ActorSpace
manager.

1.1.2 Higher-level Services

Beside communication, middleware systems provide high-level services to application objects.
Such high-level services include, for example, object naming, lifecycle, concurrency, persistence,
transactional behavior, replication, querying, and grouping [Object Management Group, 1997]. We
describe these services to illustrate what middleware may be used to provide.

A namingservice is in charge of providing object name uniqueness, allocation, resolution, and
location transparency. Uniqueness is a critical condition for names so that objects can be uniquely
found given their name. This is often accomplished using a name context. Object names should
be object location-independent, so that objects can move preserving their name. A global naming
context supports a universal naming space, in which context-free names are still unique. The im-
plementation of a naming service can be centralized or distributed; distributed implementations are
more fault-tolerant but create additional overhead.

A life-cycleservice is in charge of creating new objects, activating them on demand, moving
them, and disposing of them based on request patterns. Objects consume resources and therefore
cannot be kept on systems forever—in particular, memory is often a scarce shared resource. Life-
cycle services can create objects when new resources become available, can deactivate an object—
storing its state temporarily in secondary memory—when the object is not being actively used and
its resources are required by other objects or applications, and can also re-activate the object, mi-
grate it, or can dispose (garbage collect) it if there are no more references to it.

A concurrencyservice provides limited forms of protection against multiple threads sharing
resources by means of lock management. The service may enable application threads to request
exclusive access to an object’s state, read-only access, access to a potentially dirty state, and so on,
depending on concurrency policies. Programming models, such as actors, provide higher-level sup-
port for concurrency management, preventing common errors, such as corrupted state or deadlocks,
that can result from the use of a concurrency service,

A persistenceor externalizationservice enables applications to store an object’s state in sec-
ondary memory for future use, e.g., to provide limited support for transient server failures. This

Practical Handbook of Internet Computing 3

Middleware Agha & Varela

service, even though high-level, can be used by other services, such as the life-cycle service de-
scribed above.

A transactionalservice enables programming groups of operations with atomicity, consistency,
isolation, and durability guarantees. Advanced transactional services may contain support for vari-
ous forms of transactions, such as nested transactions, and long-lived transactions.

A replicationservice improves locality of access for objects by creating multiple copies at dif-
ferent locations. In case of objects with mutable state, a master replica is often used to ensure
consistency with secondary replicas. In case of immutable objects, cloning in multiple servers is
virtually unrestricted.

A queryservice enables manipulating databases with object interfaces using highly declarative
languages such as SQL or OQL. Alternative query services may provide support for querying semi-
structured data, such as XML repositories.

A groupingservice supports creation of interrelated collections of objects, with different or-
dering and uniqueness properties, such as sets and lists. Different object collections provided by
programming language libraries have similar functionality, albeit restricted to a specific program-
ming language.

1.1.3 Virtual Machines

While CORBA’s approach to heterogeneity is to specify interactions among object request bro-
kers to deal with different data representations and object services, an alternative approach is to
hide hardware and operating system heterogeneity under a uniform virtual machine layer (e.g.,
see [Lindholm and Yellin, 1997]). The virtual machine approach provides certain benefits but also
has its limitations [Agha et al., 1998].

The main benefit of a virtual machine is platform independence, which enables safe remote code
execution and dynamic program reconfiguration through bytecode verification and run-time object
migration [Varela and Agha, 2001]. In principle, the virtual machine approach is programming
language independent since it is possible to create bytecode from different high-level programming
languages. In practice, however, bytecode verification and language safety features may prevent
compiling arbitrary code in unsafe languages, such as C and C++, into Java bytecodes without
using loopholes such as the Java native interface, which break the virtual machine abstraction.

The main limitations of thepurevirtual machine approach are bytecode interpretation overhead
in program execution and the inability to control heterogeneous resources as required in embedded
and real-time systems. Research on just-in-time and dynamic compilation strategies has helped
overcome the virtual machine bytecode execution performance limitations [Krall, 1998]. Open
and extensible virtual machine specifications attempt to enable the development of portable real-
time systems satisfying hard scheduling constraints and embedded systems with control loops for
actuation [OVM Consortium, 2002; Schmidt et al., 1997; Bollela et al., 2000].

1.1.4 Adaptability and Reflection

Next-generation distributed systems will need to satisfy varying levels of quality of service, will
require to dynamically adapt to different execution environments, will need to provide well-founded
failure semantics, will have stringent security requirements, and will be assembled on-the-fly from
heterogeneous components developed by multiple service providers.

Adaptive middleware [Agha, 2002] will likely prove to be a fundamental stepping stone to
building next-generation distributed systems. Dynamic run-time customization can be supported by
a reflective architecture. A reflective middleware provides a representation of its different compo-
nents to the applications running on top of it. An application caninspectthis representation and
modify it. The modified services can be installed and immediately mirrored in further execution of
the application (see Figure 1.2). We will describe the reflective model of actors in the next section.

4 M. P. Singh, ed.

Agha & Varela Middleware'

&

$

%
(modify
Reflect

components)
middleware

Application

Image of application

Middleware

Image of middleware components

Reify
(inspect
middleware)

Figure 1.2: Using reflection, an application can inspect and modify middleware components.

1.2 Worldwide Computing

Worldwide computingresearch addresses problems in viewing dynamic networked distributed
resources as a coordinated global computing infrastructure. We have developed a specific actor-
based worldwide computing infrastructure, theWorld-Wide Computer(WWC), that provides nam-
ing, mobility, and coordination middleware, to facilitate building widely distributed computing sys-
tems over the Internet.

Worldwide computing applications view the Internet as an execution environment. Since In-
ternet nodes can join and leave a computation at run-time, the middleware infrastructure needs to
provide dynamic reconfiguration capabilities: in other words, an application needs to be able to de-
compose and re-compose itself while running – potentially moving its sub-components to different
network locations.

1.2.1 Actor Model

In traditional object-oriented systems, the interrelationship between objects—as state containers—
and threads—as process abstractions—is highly intertwined. For example, in Java [Gosling et al.,
1996], multiple threads may be concurrently accessing an object creating the potential for state
corruption. A class can declare all its member variables to beprivate , and all its methods to
be synchronized to prevent state corruption because of multiple concurrent thread accesses.
However, this practice is inefficient and creates potential for deadlocks (see e.g., citepvarela-agha-
www7-98). Other languages, such as C++, do not even have a concurrency model built-in, requiring
developers to use thread libraries.

Such passive object computation models severely limit applications reconfigurability. Moving
an object in a running application to a different computer requires guaranteeing that active threads
within the object remain consistent after object migration. Moving a thread in a running application
to a different computer requires very complex invocation stack migration ensuring that references
remain consistent, and that any locks held by the thread are safely released.

Practical Handbook of Internet Computing 5

Middleware Agha & Varela

The actor model of computation is a more natural approach to application reconfigurability,
since an actor is an autonomous unit abstracting over state encapsulation and state processing. Ac-
tors can only communicate through asynchronous message passing and do not share any memory.
As a consequence, actors provide a very natural unit of mobility and application reconfigurability.
Actors also provide a unit of concurrency by processing one message at a time. Migrating an actor
is then as simple as migrating its encapsulated state along with any buffered un-processed messages.

Reconfiguring an application composed of multiple actors is as simple as migrating a subset of
the actors to another computer. Since communication is asynchronous and buffered, the application
semantics remains the same as long as actor names can be guaranteed to be unique across the
Internet. The universal actor model is an extension to the actor model, providing actors with a
specific structure for universal names.

1.2.2 Language and Middleware Infrastructure

Several libraries which support the Actor model of computation have been implemented in different
object-oriented languages. Three examples of these are the Actor Foundry [Open Systems Lab,
1998], Actalk [Briot, 1989] and Broadway [Sturman, 1996]. Such libraries essentially provide high-
level middleware services, such as universal naming, communication, scheduling, and migration.

An alternate is to support distributed objects in a sufficiently rich language which enables co-
ordination across networks. Several actor languages have also been proposed and implemented to
date, including ABCL [Yonezawa, 1990], Concurrent Aggregates [Chien, 1993], Rosette [Tomlin-
son et al., 1989], and Thal [Kim, 1997]. An actor language can also be used to provide interop-
erability between different object systems; this is accomplished by wrapping traditional objects in
actors and using the actor system to provide the necessary services. There are several advantages
associated with directly using an actor programming language, as compared to using a library to
support actors:� Semantic constraints:Certain semantic properties can be guaranteed at the language level.

For example, an important property is to provide complete encapsulation of data and process-
ing within an actor. Ensuring there is no shared memory or multiple active threads, within an
otherwise passive object, is very important to guarantee safety and efficient actor migration.� API evolution: Generating code from an actor language, it is possible to ensure that proper
interfaces are always used to create and communicate with actors. In other words, program-
mers cannot incorrectly use the host language. Furthermore, evolutionary changes to an actor
API need not affect actor code.� Programmability: Using an actor language improves the readability of programs developed.
Often writing actor programs using a framework involves using language level features (e.g.,
method invocation) to simulate primitive actor operations (e.g., actor creation or message
sending). The need for a permanent semantic translation, unnatural for programmers, is a
very common source of errors.

Our experience suggests that an active object oriented programming language—one providing
encapsulation of state and a thread manipulating that state—is more appropriate than a passive
object oriented programming language (even with an actor library) for implementing concurrent
and distributed systems to be executed on the Internet.

1.2.3 Universal Actor Model and Implementation

The universal actor model extends the actor model [Agha, 1986] by providing actors with universal
names, location awareness, remote communication, migration, and limited coordination capabili-
ties [Varela, 2001].

6 M. P. Singh, ed.

Agha & Varela Middleware'
&

$
%

World-Wide Web World-Wide Computer

Entities Hypertext Documents Universal Actors
Transport Protocol HTTP RMSP/UANP

Language HTML/MIME Types Java ByteCode
Resource Naming URL UAN/UAL

Linking Hypertext Anchors Actor References
Run-time Support Web Browsers/Servers Theaters/Naming Servers

Table 1.1: Comparison ofWWWandWWCconcepts.

We describeSimple Actor Language System and Architecture(SALSA), an actor language and
system that has been developed to provide support for worldwide computing on the Internet. Asso-
ciated with SALSA is a runtime system which provides the middleware necessary services [Varela
and Agha, 2001]. By using SALSA, developers can program at a higher level of abstraction.

SALSA programs are compiled into Java bytecode and can be executed standalone or on the
World-Wide Computer infrastructure. SALSA programs are compiled into Java bytecode to take
advantage of Java virtual machine implementations in most existing operating systems and hardware
platforms. SALSA-generated Java programs use middleware libraries implementing protocols for
universal actor naming, mobility, and coordination in the World-Wide Computer. Table 1.1 relates
different concepts in the World-Wide Web to analogous concepts in the World-Wide Computer.

1.2.4 Middleware Services

Services implemented in middleware to support the execution of SALSA programs over the World-
Wide Computer can be divided into two groups:core servicesandhigher-level servicesas depicted
in Figure 1.3.

1.2.4.1 Core Services

An actor creationservice supports the creation of new actors (which comprise an initial state, a
thread of execution, and a mailbox) with specific behaviors. Every created actor is in a continu-
ous loop, sequentially getting messages from its mailbox, and processing them. Concurrency is a
consequence of the fact that multiple actors in a given program may execute in parallel.

A transportservice supports reliable delivery of data from a computer to another. The transport
service is used by the higher-level remote communication, migration, and naming services.

A persistenceservice supports saving an actor’s state and mailbox into secondary memory, either
for checkpoints, fault-tolerance or improved resource (memory, processing, power) consumption.

1.2.4.2 Higher-Level Services

A messagingservice supports reliable asynchronous message delivery between peer actors. A mes-
sage in SALSA is modelled as a potential Java method invocation. The message along with optional
arguments is placed in the target actors mailbox for future processing. A message sending expres-
sion returns immediately after delivering the message—not after the message is processed as in
traditional method invocation semantics. Section 1.2.6 discusses this service in more detail.

A namingservice supports universal actor naming. Auniversal namingmodel enables devel-
opers to uniquely name resources worldwide in a location-independent manner. Location indepen-
dence is important when resources are mobile. Section 1.2.5 describes the universal actor naming
model and protocol used by this service.

Practical Handbook of Internet Computing 7

Middleware Agha & Varela

'

&

$

%
CORE
SERVICES

Transport
Service

HIGHER-LEVEL SERVICES

Naming
Service

Migration
Service

Actor Creation
Service

Messaging
Service

Persistence
Service

Lifecycle
Service

Coordination
Service

Replication
Service

Split and Merge
Service

Figure 1.3: Core services include actor creation, transportation, and persistence. Higher-level ser-
vices include actor communication, naming, migration, and coordination.

8 M. P. Singh, ed.

Agha & Varela Middleware

A life-cycleservice can deactivate an actor into persistent storage for improved resource uti-
lization. It can also reactivate the actor on demand. Aditionally, it performs distributed garbage
collection.

A migrationservice enables actor mobility preserving universal actor names and updating uni-
versal actor locations. Migration can be triggered by the programmer using SALSA messages, or
it may be triggered by higher-level services such as load balancing and coordination. Section 1.2.6
provides more details on the actor migration service.

A replicationservice can be used to improve locality and access times for actors with immutable
state. It can also be used for improving concurrency in parallel computations when additional
processing resources become available.

A split-and-mergeservice can be used to fine-tune the granularity of homogeneous actors doing
parallel computations to improve overall system throughput.

Coordinationservices are meant to provide the highest-level of services to applications, includ-
ing those requiring reflection and adaptation. For example, a load balancing service can profile
resource utilization and automatically trigger actor migration, replication, and splitting and merging
behaviors for coordinated actors [Desell et al., 2004].

1.2.5 Universal Naming

Since universal actors are mobile—their location can change arbitrarily—it is critical to provide a
universal naming system that guarantees that references remain consistent upon migration.

Universal Actor Names(UAN) are identifiers that represent an actor during its life-time in a
location-independent manner. An actor’s UAN is mapped by a naming service into aUniversal
Actor Locator (UAL), which provides access to an actor in a specific location. When an actor
migrates, its UAN remains the same, and the mapping to a new locator is updated in the naming
system. Since universal actors refer to their peers by their name, references remain consistent upon
migration.

1.2.5.1 Universal Actor Names

A Universal Actor Names(UAN) refers to an actor during its life-time in a location-independent
manner. The main requirements on universal actor names are location-independence, worldwide
uniqueness, human readability, and scalability.

We use the Internet’s Domain Name System (DNS) [Mockapetris, 1987] to hierarchically guar-
antee name uniqueness over the Internet in a scalable manner. More specifically, we use Uniform
Resource Identifiers (URI) [Berners-Lee et al., 1998] to represent Universal Actor Names. This
approach does not require actor names to have a specific naming context, since we build on unique
Internet domain names.

The universal actor name for a sample address book actor is:

uan://wwc.yp.com/˜smith/addressbook/

The protocol component in the name isuan . The DNS server name represents an actor’shome.
An optional port number represents the listening port of the naming service—by default 3030.
The remaining name component, therelative UAN, is managed locally at the home name server to
guarantee uniqueness.

1.2.5.2 Universal Actor Locators

An actor’s UAN is mapped by a naming service into aUniversal Actor Locator(UAL), which
provides access to an actor in a specific location. For simplicity and consistency, we also use URIs
to represent UALs. Two universal actor locators for the address book actor above are:

Practical Handbook of Internet Computing 9

Middleware Agha & Varela

rmsp://wwc.yp.com/˜smith/addressbook/

and

rmsp://smith.pda.com:4040/addressbook/

The protocol component in the locator isrmsp , which stands for theRemote Message Sending
Protocol. The optional port number represents the listening port of the actor’s currenttheater, or
single-node run-time system—by default 4040. The remaining locator component, therelative UAL
is managed locally at the theater to guarantee uniqueness.

While the address book actor can migrate from the user’s laptop to her personal digital assistant
(PDA), or cellular phone; the actor’s UAN remains the same, and only the actor’s locator changes.
The naming service is in charge of keeping track of the actor’s current locator.

1.2.5.3 Universal Actor Naming Protocol

When an actor migrates, its UAN remains the same, and the mapping to a new locator is updated
in the naming system. TheUniversal Actor Naming Protocol(UANP) defines the communication
between an actor’s theater and an actor’s home, during its life-time: creation and initial binding,
migration, and garbage collection.

UANP is a text-based protocol resembling HTTP with methods to create a UAN to UAL map-
ping, to retrieve a UAL given the UAN, to update a UAN’s UAL, and to delete the mapping from
the naming system. The following table shows the different UANP methods:

Method Parameters Action
PUT relative UAN, UAL Creates a new entry in the database
GET relative UAN Returns the UAL entry in the database
DELETE relative UAN Deletes the entry in the database
UPDATE relative UAN, UAL Updates the UAL entry in the database

A distributed naming service implementation can use consistent hashing to replicate UAN to
UAL mappings in a ring of hosts and provide a scalable and reasonable level of fault-tolerance. The
logarithmic lookup time can further be reduced to a constant lookup time in most cases [Tolman,
2003].

1.2.5.4 Universal Naming in SALSA

TheSALSApseudo-code for a sample address book management program is shown in Figure 1.4.
The program creates an address book manager and binds it to a UAN. After the program successfully
terminates, the actor can be remotely accessed by its name.

1.2.6 Remote Communication and Mobility

The underlying middleware used by SALSA-generated Java code uses an extended version of Java
object serialization for both remote communication and actor migration.

1.2.6.1 Remote Message Sending Protocol

Universal actors communicate with peers by passing messages asynchronously. When actors are ex-
ecuting in remote theaters, an Internet-based protocol is used for such communication—theRemote
Message Sending Protocol(RMSP).

10 M. P. Singh, ed.

Agha & Varela Middleware'

&

$

%

behavior AddressBook {

String getEmail(String name){...}

void act(String[] args){
AddressBook addressBook = new AddressBook();
try {

addressbook<-bind("uan://wwc.yp.com/˜smith/addressbook/",
"rmsp://wwc.yp.com/˜smith/addressbook/");

} catch (Exception e){
standardOutput<-println(e);

}
}

}

Figure 1.4: Universal Actor Name and Locator binding inSALSA.

RMSP is a protocol implemented as an extension to Java object serialization. An actor’s theater
contains an RMSP server that listens for incoming messages from actors in remote theaters. Such
messages are targeted to an actor with a locator local to the receiving theater. The theater keeps
track of hosted actors and their locators, so that incoming messages can be properly passed to the
target actor.

Messages are represented as potential method invocations along with an optional continuation.
Arguments are passed by value for primitive types, and Javaserializableobjects; and by reference
for universal actors.

In addition to passing information by using object serialization, RMSP updates universal actor
references so that most efficient access can be performed for peer actors that are hosted in the target
theater. Interested readers are refered to [Varela, 2001] for details.

1.2.6.2 Universal Actor Migration Protocol

Universal actors can move from a theater to another by processing a migration request message. A
universal actor implementation contains a thread of execution and encapsulated state. In response
to a migration request, a universal actor’s state—including buffered unprocessed messages—is se-
rialized, and a new thread of execution is started at the receiving theater.

We reuse RMSP for universal actor migration. The theater’s RMSP server accepts incoming
objects and acts upon them based on their type. Currently there are two types:Message , for
asynchronous message passing; andUniversalActor , for actor migration. An actor migration
involves several steps: updating the naming service to reflect the actor’s new locator; serializing the
actor’s state to the new theater; updating the actor’s references to local resources—which we call
environment actors; updating the theaters’ meta-data; and restarting the actor’s thread in the new
location.

To avoid potential race conditions which arise because of messages en-route to migrating actors,
we do not release the lock protecting the migrating actor’s mailbox until the actor has completed
the migration. Once the actor has acknowledged migration completion, the actor mailbox lock is
released, and messages get re-routed as appropriate by the run-time system, with the assurance that
the actor is already ready to receive them.

Practical Handbook of Internet Computing 11

Middleware Agha & Varela'
&

$
%

//
// Getting a remote actor reference and sending a message:
//

AddressBook addressBook = new
AddressBook("uan://wwc.yp.com/˜smith/addressbook/");

addressBook<-getEmail("David") @
standardOutput<-println(token);

Figure 1.5: Remote Communication inSALSA.'
&

$
%

//
// Migrating an address book to a remote theater:
//

AddressBook addressBook =
new AddressBook("uan://wwc.yp.com/˜smith/addressbook/");

a<-migrate("rmsp://smith.pda.com/addressbook/");

Figure 1.6: Actor Migration inSALSA.

1.2.6.3 Remote Communication and Actor Migration in SALSA

The code for sending agetEmail() message to the address book manager created in the previous
section, is shown in Figure 1.5. The code gets a reference to the address book manager using its
UAN, sends a message requesting a user’s email address, and prints it out in the console.

SALSAalso enables migrating an actor to a given theater. For example, the code for migrating
the address book manager above is shown in Figure 1.6. In this case, the actor is migrated to a new
location given by a UAL (rmsp://smith.pda.com/addressbook/).

1.2.7 Reflection

We use an explicit representation of the implementation of actors to provide a mechanism for cus-
tomization of middleware Astley and Agha [1998]. Such a representation is called themeta-level
system. Thus, in a reflective architecture, a system is composed of two kinds of actors—base-level
(application) actors and meta-level actors ormeta-actors. Meta-actors are part of the middleware
that manages system resources and implements the base-actor’s runtime semantics.

In implementation terms, actors do not directly interact with one another. Instead, actors make
system callsto the middleware—these calls correspond to invocations of methods in meta-actors.
A system call by an actor is always blocking and the actor waits till the call returns. A meta-
actor executes the method that is invoked by another actor and returns control on completion of the
execution.

A meta-actor is capable of customizing the behavior of another actor by executing the method
invoked by it. Multiple customizations may be applied to a single actor by building ameta-level
stack(see Figure 1.7). A meta-level stack consists of a single base-actor and a stack of meta-actors
on top of it, where each meta-actor customizes the actor which is just below it in the stack. Messages
received by an actor in a meta-level stack are always delegated to the top of the stack so that the
meta-actor always controls the delivery of messages to its base-actor. Similarly message sent by an
actor passes through all the meta-actors in the stack.

12 M. P. Singh, ed.

Agha & Varela Middleware'

&

$

%
Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

System

 Node

Meta−level stacks

Message queue
Message queue

Figure 1.7: Meta-level stacks in an embedded node.'

&

$

%
ready()create(beh)send(msg)

Meta−actor

Base Actor

transmit(msg) create(beh) ready()

 ()
 a

()msg msg

beh

Figure 1.8: Interaction between meta-actor and base actor.

Practical Handbook of Internet Computing 13

Middleware Agha & Varela

Conceptually, we can translate actor operations into method calls to a meta-actor. These opera-
tions are:� transmit(msg): This method is invoked when an actor sends a messagemsg. If the actor

has a meta-actor on its top it calls the transmit method of the meta-actor and wait for its
return. The method returns without any value. Otherwise, if the actor is not customized by a
meta-actor, it passes the message to the system for sending.� create(beh): This method is invoked when the actor wants to create another actor with a
given behaviorbeh . If there is a meta-actor on top of the actor, it calls the create method
of the meta-actor and waits for it return. The method returns the addressa of the new actor.
Otherwise, the actor passes the create request to the system.� ready: The ready method is invoked when an actor has completed processing the current
message and is waiting for another message. If the actor has a meta-actor on its top it calls
the ready method of the meta-actor and waits for its return. The method returns a message to
the base-actor. Otherwise, the actor picks up a message from its mail queue and processes it.
Notice, there is single mail-queue for a given meta-level stack.

Every meta-actor has a default implementation of the three system methods. They are given
below:� transmit(msg): If there is a meta-actor on its top, it callstransmit(msg) method of that

meta-actor and waits for it to return. Otherwise, it asks the system to send the message to the
target and returns.� ready(): If there is a meta-actor on top of it, it callsready() method of that meta-actor and
waits for it to return a message. Otherwise, the actor, by definition located at the top of the
meta-level stack, dequeues a message from the mail queue. After getting the message, the
actor returns the message to the base actor.� create(beh): If the actor has a meta-actor at its top, it callscreate(beh) method of that
meta-actor and waits for the actor to return with an actor address. Otherwise, the actor passes
the create request to the system and waits till it gets an actor address from the system. After
receiving new actor address, the actor returns it to the base actor.

As an example of how we may customize actors under this model, consider the encryption of
messages between a pair of actors. Figure 1.9 gives pseudo-code for a pair of meta-actors which may
be installed on each endpoint. TheEncrypt meta-actor implements thetransmit method which
is called by the base-actor while sending a message. Withintransmit , a message is encrypted
before it is sent to its target. TheDecrypt meta-actor implements theready method which is
called when the base actor is ready to process a message. Methodready decrypts the message
before returning the message to the base-actor.

Thus the abstraction of the middleware in terms of meta-actors gives the power of dynamic
customization. Meta-actors can be installed or pulled out dynamically (see Figure 1.10). The in-
stallation and removal of meta-actors by the application itself makes it capable of customizing the
middleware. Applications can thus control adaptive middleware by reification and reflection. This
means that while middleware can provide default policies for resource profiling, secure communi-
cation, load balancing, and coordination; applications can override default mechanisms and provide
their own resource management policies.

14 M. P. Singh, ed.

Agha & Varela Middleware'

&

$

%

actor Encrypt () f
actor server ;

// Instantiated with name of server
init (actor S) f

server := S;g
// Encrypt outgoing messages if they
// are targeted to the server
method transmit (Msg msg) f

actor target = msg.dest;
if (target == server)

target encrypt (msg);
else

target msg;
continue();gg

actor Decrypt () f
// Decrypt incoming messages targeted for
// base actor (if necessary)
method rcv (Msg msg) f

if (encrypted (msg))
deliver(decrypt (msg));

else
deliver(msg);gg

Figure 1.9: TheEncrypt policy actor interceptstransmit signals and encrypts outgoing messages.
TheDecrypt policy actor intercepts messages targeted for the server (i.e., thercv method) and, if
necessary, decrypts an incoming message before delivering it.'

&

$

%

Encrypt1
Meta
Actor

Encrypt1
Meta
Actor

Encrypt1
Pulling out

Pushing in
Encrypt2

Before
After

Encrypt2
Meta
Actor

Encrypt2
Meta
Actor

Actor Actor

SystemSystem

Figure 1.10: Dynamic customization is enabled by pulling out and pushing in new meta-actors for
the implementation of the encryption algorithm.

Practical Handbook of Internet Computing 15

Middleware Agha & Varela

1.3 Related Work

1.3.1 Worldwide Computing

Several research groups have been trying to achieve distributed computing on a large scale. Berke-
ley’s NOW project has been effectively distributing computation in a “building-wide” scale [An-
derson et al., 1995], and Berkeley’s Millennium project is exploiting a hierarchical cluster struc-
ture to provide distributed computing on a “campus-wide” scale [Buonadonna et al., 1998]. The
Globus project seeks to enable the construction of largercomputational grids[Foster and Kessel-
man, 1998]. Caltech’s Infospheres project has a vision of a worldwide pool of millions of objects
(or agents) much like the pool of documents on the World-Wide Web today [Chandy et al., 1996].
WebOS seeks to provide operating system services, such as client authentication, naming, and per-
sistent storage, to wide area applications [Vahdat et al., 1998]. UIUC’s 2K is an integrated operating
system architecture addressing the problems of resource management in heterogeneous networks,
dynamic adaptability, and configuration of component-based distributed applications [Kon et al.,
1999].

Most approaches to worldwide computing are either operating system-dependent, application-
dependent, or require a set of computers under the administrative control of its users.

In application-dependent worldwide computing, a domain-specific program is downloaded by
users to provide their computing power to the data analysis task at hand. For example, the Search
for Extra Terrestrial Intelligence (SETI) project at Berkeley uses idle computers from participants
around the world to analyze space data in search of patterns and potential “signals” from intelligent
life in outer space [Sullivan et al., 1997]. Interesting extensions include: a separation between
office (SETI@Work) and home computers (SETI@Home) in the global computing task; and another
project started at Stanford to understand how proteins fold (Folding@Home).

In other middleware approaches to worldwide computing, such as the Grid [Foster and Kessel-
man, 1998], it is required of users to have accounts (logins and passwords) in the systems that take
part in the global computation. While this approach may work well for certain groups of users with
multiple supercomputer accounts, it does not properly scale to Internet computing. On the Internet,
there is a wide variety of hardware architectures, operating systems, and domains of administrative
control.

The WWC attempts to provide middleware for distributed system developers to use a hetero-
geneous network of Internet-connected computers, under multiple administrative domains, in an
application-independent manner.

1.3.2 Languages for Distributed and Mobile Computation

The ABCL family of languages has been developed by Yonezawa’s research group [Yonezawa,
1990] to explore an object-oriented concurrent model of computation, based on Actors. ABCL has
been developed in Common Lisp. One significant difference is that the order of messages from
one object to another is preserved in their model. There are also three types of message passing
mechanisms: past, now, and future. Thepasttype of message passing is non-blocking as in actors.
Thenow type is a blocking (RPC) message with the sender waiting for a reply. And thefuture type
is a non-blocking message with a reply expected in the future. SALSA’s more general continuation
passing style can be used to implementnowandfuturemessage passing.

THAL, an extension to HAL (High-level Actor Language) [Houck and Agha, 1992], was de-
veloped by Kim [Kim, 1997] to explore compiler optimizations and high performance actor sys-
tems. As a high performance implementation, THAL has taken away features from HAL like re-
flection, and inheritance. THAL provides several communication abstractions including concurrent
call/return communication, delegation, broadcast and local synchronization constraints. THAL has
shown that with proper compilation techniques, parallel actor programs can run as efficiently as their

16 M. P. Singh, ed.

Agha & Varela Middleware

non-actor counterparts. Future research includes studying optimizations of SALSA actor programs,
in particular, the actor model’s data encapsulation enables eliminating most of Java’s synchroniza-
tion overhead.

Gray et al. present a very complete survey of mobile agent systems [Gray et al., 2000] catego-
rized by the programming languages they support. Agent systems supporting multiple programming
languages include: Ara, D’Agents, and Tacoma. Java-based systems include Aglets [Lange and Os-
hima, 1998], Concordia, Jumping Beans, and Voyager. Other systems supporting a non-Java single
programming language include: Messengers, Obliq, Telescript, and Nomadic Pict [Wojciechowski
and Sewell, 1999].

Obliq [Cardelli, 1995] is a lexically-scoped, untyped, interpreted language, with an implemen-
tation relying on Modula 3’s network objects. Obliq has higher-order functions, and static scope:
closures transmitted over the network retain network links to sites that contain their free (global)
variables.

Emerald [Jul et al., 1988], one of the first systems supporting fine-grained migration, includes
different parameter passing styles, namely call by reference, call by move and call by visit. Instance
variables can be declaredattachedallowing arbitrary depth traversals in object serialization.

1.3.3 Naming Middleware

ActorSpaces[Callsen and Agha, 1994] is a communication model that compromises the efficiency
of point-to-point communication in favor of an abstract pattern-based description of groups of mes-
sage recipients. ActorSpaces are computationally passive containers of actors. Messages may be
sent to one or all members of a group defined by a destination pattern. The model decouples actors
in space and time, and introduces three new concepts:� patterns—which allow the specification of groups of message receivers according to their

attributes� actorspaces—which provide a scoping mechanism for pattern matching� capabilities—which give control over certain operations of an actor or actorspace

ActorSpaces provide the opportunity for actors to communicate with other actors by using their
attributes. The model provides the equivalent of a Yellow Pages service, where actors may publish
(in ActorSpace terminology, “make visible”) their attributes to become accessible. Berners-Lee, in
his original conception of Uniform Resource Citations [1998], intended to use this type of meta-
data to facilitate semi-automated access to resources. Actorspaces bridge the gap between actors
searching for a particular service and actors providing it.

Smart Namesor Active Names(WebOS) provide scalability of read-only resources in the World-
Wide Web by enabling application-dependent name resolution in Web clients [Vahdat et al., 1998].
Using smart names, a client may find the most highly available resource, which depending on the
application may be the closest in distance or the one that provides the best quality of service.

The 2K distributed operating system [Kon et al., 1999] builds upon and enhances CORBA’s
naming system [Hydari, 1999]. CORBA objects have Interoperable Object References (IORs),
which 2K objects can find through locally availableclerks. Junctionsenable the use of other re-
source naming spaces, such as DNS or a local file system. A special junction could be used to refer
to WWCactors from 2K objects.

1.3.4 Remote Communication and Migration Middleware

The Common Object Request Broker Architecture (CORBA) [Object Management Group, 1997]
has been designed with the purpose of handling heterogeneity in object-based distributed systems.

Practical Handbook of Internet Computing 17

Middleware Agha & Varela

Sun’s JINI [Waldo, 1998] architecture has a goal similar to that of CORBA; the main difference
between the two is that the former is Java-centric. One of the main components of JINI is the
Remote Method Invocation (RMI) [Sun Microsystems Inc. – JavaSoft, 1996]. JavaSpaces [Sun
Microsystems Inc. – JavaSoft, 1998] is another important component of JINI that uses a Linda-
like [Carriero and Gelernter, 1990] model to share, coordinate, and communicate tasks in Jini-based
distributed systems.

Java [Gosling et al., 1996] was the first programming language allowing Web-enabled secure
execution of remote mobile code. Such mobile code—calledapplets—is downloaded, verified and
interpreted in a virtual sandbox protecting the executing host from potentially insecure operations:
e.g., reading and writing from secondary memory and opening arbitrary network connections. IBM
Aglets [Lange and Oshima, 1998] is a more recent framework for the development of Internet agents
which can migrate, preserving their state.

1.3.5 Adaptive and Reflective Middleware

Adaptive middleware in distributed systems has been studied by several researchers. Gul Agha
et al. [1993] have introduced meta-actors to implement different interaction services such as fault
tolerance, security, and synchronization. Fabio Kon et al. [2002] have presented a model of re-
flective middleware that allows dynamic inspection and modification of the execution semantics of
running applications as a response to changing resources in a distributed environment in order to
improve performance. Research has also been done at the level of middleware security. Venkata-
subramanian [2002] discussed the safe composibility of reflective middleware services to ensure the
trustworthiness of systems. The Two-Level Actor Machine (TLAM) model [Venkatasubramanian
and Talcott, 1995] is a reasoning framework for specifying and proving properties about interactions
of middleware components.

Varela and Agha [1999] introduced a hierarchical model that groups actors intocastscoordi-
nated bydirectors. The cast directors are meta-level actors that filter incoming messages to group
members. The hierarchical model is more general than the stack model presented in this paper in
that a single meta-actor can coordinate more than one base actor. The hierarchical model does not
restrict actor creation or message sending, only message reception. This restriction is valid in that
actors are reactive entities, i.e., all computation proceeds in response to messages.

1.4 Research Issues and Summary

Worldwide computingis the coordinated use of large scale network-connected resources for
global computations and human collaboration. In this chapter, we defined the universal actor model
and linguistic abstractions for coordination of globally distributed actors. We also described middle-
ware services, such as naming and mobility, that are needed to implement actors on the World-Wide
Computer.

There are still several open research problems before worldwide computing will become more
common. These problems include:� A security model that enables participants to safely volunteer their resources without risking

loss of their information, and that enables worldwide computing users to trust the validity of
global computations and the privacy of their data.� A fine-grained resource management framework, which enables participants to control and
be compensated for the computing resources they provide. For example, a participant may
wish to volunteer only a fixed percentage of their computing, communication, and storage
capabilities.

18 M. P. Singh, ed.

Agha & Varela Middleware� Higher-level coordination abstractions to facilitate the programming of worldwide computing
systems in a way that is largely transparent to systems issues such as load balancing and fault-
tolerance.

A worldwide computing infrastructure including a universal actor programming language (SALSA)
and several middleware services at different stages of development (WWC/IO) is freely available
at http://www.cs.rpi.edu/wwc/salsa/. This infrastructure can be used as a modular starting point for
implementing additional middleware services, or for developing distributed computing applications
to be executed over the Internet or over Grid-like environments.

Worldwide computing will enable new classes of applications, where the dividing line between
the physical world of communicating devices and the logical world of computing actors will get
thinner and thinner. Physical devices are becoming more powerful and inter-connected and logical
actors are becoming more mobile and autonomous.

Mobility of devices and actors with different granularities in heterogeneous networks will in-
duce ad-hoc emergent coordination and interaction behavior patterns. These self-coordinated actor
systems will enable efficient use of scarce resources, and will clear the way for the creation of
complex computing systems at very large scales. The availability of virtually unlimited storage,
communication, and data processing capabilities will open a new door for applications in many
domains, including science, education, business, government, and technology.

1.5 Further Information

Worldwide computing research is published in several computer science journals, including
ACM Transactions of Internet TechnologiesandIEEE Internet Computing. There are several con-
ferences devoted to special topics, critical to worldwide computing, e.g., the International Confer-
ence on Coordination Models and Languages (COORDINATION), the ACM/IFIP/USENIX Inter-
national Middleware Conference (MIDDLEWARE), the IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), and the International World Wide Web Conference (WWW)
series. Online bibliographies for many of these conferences and journals can be found on the World
Wide Web.

1.6 Defining Terms

Common Object Request Broker Architecture (CORBA): Suite of protocols, languages and soft-
ware systems for object-based distributed computing.

HyperText Markup Language (HTML): Language used to write Web content, including hyper-
text references or anchors.

HyperText Transfer Protocol (HTTP): Light-weight network protocol designed for information
exchange between web servers and clients.

Local Area Network (LAN): Computer network physically colocated, which is characterized by
low latencies and high bandwidth.

Middleware: Software layers in between applications and operating systems dealing with dis-
tributed computing issues, such as naming, mobility, security, load balancing, and fault-
tolerance.

Practical Handbook of Internet Computing 19

Middleware Agha & Varela

Remote Method Invocation (RMI): Java programming language API and framework for RPC-
style synchronous interactions between objects.

Remote Message Sending Protocol (RMSP):Network protocol for asynchronous message exchange
between WWC actors. Used by Java code generated from code written in the SALSA pro-
gramming language.

Remote Procedure Call (RPC): Protocol for invoking remote procedures and marshalling and un-
marshalling arguments across a network.

Simple Actor Language System and Applications (SALSA):Programming language facilitating
the development of WWC applications using the universal actor model.

Uniform Resource Identifier (URI): Generic term uniformly denoting names, locators, or cita-
tions for worldwide resources.

Uniform Resource Locator (URL): URI specifying the location of a Web resource.

Universal Actor Locator (UAL): URI specifying the location of a universal actor.

Universal Actor Name (UAN): URI specifying the name of a universal actor, transparent to its
location.

Universal Actor Naming Protocol (UANP): Network protocol to exchange information with a
naming service regarding universal actor names and locations.

Wide Area Network (WAN): Computer network spread by a distance larger than a single building,
potentially across continents. Characterized by higher latencies and lower bandwidths.

World-Wide Computer (WWC): Suite of protocols, languages, and software systems for world-
wide computing using universal actors.

Worldwide computing: Area in computer science and engineering that studies all aspects related
to using a wide area network as a computing and collaboration platform.

World-Wide Web (WWW): Suite of protocols, languages and software systems for worldwide
information exchange.

1.7 Acknowledgments

Many ideas presented here are the result of countless discussions in the Open Systems Labora-
tory at UIUC; in particular, we would like to express our gratitude to Mark Astley, Nadeem Jamali,
Yusuke Tada, Prassanna Thati, Koushik Sen, James Waldby, and Reza Ziaei for helpful discussions
about this work, and for some of the figures. We also thank members of the Worldwide Computing
Laboratory at Rensselaer Polytechnic Institute for many discussions about worldwide computing re-
search; in particular, we would like to express our gratitude to Travis Desell, Kaoutar El Maghraoui,
and Abe Stephens for continued development of the SALSA programming language and IO mid-
dleware framework. The work described here has been supported in part by DARPA IXO NEST
Program under contract F33615-01-C-1907, by the DARPA IPTO TASK Program under contract
F30602-00-2-0586, and by ONR under MURI contract N00014-02-1-0715.

20 M. P. Singh, ed.

Agha & Varela Middleware

References
G. Agha.Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

G. Agha, M. Astley, J. Sheikh, and C. Varela. Modular Heterogeneous System Development:
A Critical Analysis of Java. In J. Antonio, editor,Proceedings of the Seventh Heteroge-
neous Computing Workshop (HCW ’98), pages 144–155. IEEE Computer Society, March 1998.
http://osl.cs.uiuc.edu/Papers/HCW98.ps.

G. Agha, S. Frølund, R. Panwar, and D. Sturman. A linguistic framework for dynamic composi-
tion of dependability protocols. InDependable Computing for Critical Applications III, pages
345–363. International Federation of Information Processing Societies (IFIP), Elsevier Science
Publisher, 1993.

Gul A. Agha. Introduction: Adaptive middleware.Communications of the ACM, 45(6):30–32, June
2002. ISSN 0001-0782.

Thomas E. Anderson, David E. Culler, and David A. Patterson. A Case for Networks of Worksta-
tions: NOW. IEEE Micro, February 1995.

M. Astley and G. A. Agha. Customization and composition of distributed objects: Middleware
abstractions for policy management. InSixth International Symposium on the Foundations of
Software Engineering (FSE-6, SIGSOFT ’98), November 1998.

G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman. An efficient
multicast protocol for content-based publish-subscribe systems. In19th International Conference
on Distributed Computing Systems (19th ICDCS’99), Austin, Texas, May 1999. IEEE.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax.
IETF Internet Draft Standard RFC 2396, August 1998. http://www.ietf.org/rfc/rfc2396.txt.

G. Bollela, J. Gosling, B. Brosgoland, P. Dibble, S. Furr, and M. Turnbull.The Real-Time
Specication for Java. Addison-Wesley, Reading, Massachusetts, June 2000. Available from
http://www.rtj.org/rtsj-V1.0.pdf.

J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80
environment. InProceedings of the European Conference on Object Oriented Programming
(ECOOP’89), pages 109–129. Cambridge University Press, 1989.

N. Brown and C. Kindel. Distributed component object model protocol – dcom/1.0. Technical
report, Microsoft, May 1996. http://ds1.internic.net/internet-drafts/draft-brown-dcom-v1-spec-
00.txt.

Philip Buonadonna, Andrew Geweke, and David E. Culler. An implementation and analysis of the
virtual interface architecture. InProceedings of Supercomputing ’98, Orlando, FL, November
1998.

C. Callsen and G. Agha. Open Heterogeneous Computing in ActorSpace.Journal of Parallel and
Distributed Computing, pages 289–300, 1994.

L. Cardelli. A language with distributed scope.Computing Systems, 8(1):27–59, January 1995.
URL http://research.microsoft.com/Users/luca/Papers/Obliq.A4.pdf .

N. Carriero and D. Gelernter.How to Write Parallel Programs. MIT Press, 1990.

Practical Handbook of Internet Computing 21

Middleware Agha & Varela

K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandelson, M. Richardson, W. Tanaka, and L. Weis-
man. A World-Wide Distributed System Using Java and the Internet. InProceedings of the Fifth
IEEE International Symposium on High Performance Distributed Computing, New York, U.S.A.,
Aug 1996.

A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel Programs. MIT
Press, 1993.

Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the Web services web: An introduction to
SOAP, WSDL, and UDDI. IEEE Distributed Systems Online, 3(4), 2002. URL
http://dsonline.computer.org/0204/features/wp2spot.htm .

Travis Desell, Kaoutar El Maghraoui, and Carlos Varela. Load balancing of autonomous actors over
dynamic networks. InProceedings of the Adaptive and Evolvable Software Systems: Techniques,
Tools, and Applications Minitrack of the Software Technology Track of the Hawaii International
Conference on System Sciences (HICSS’37), January 2004.

I. Foster and C. Kesselman. The Globus Project: A Status Report. In J. Antonio, editor,Proceedings
of the Seventh Heterogeneous Computing Workshop (HCW ’98), pages 4–18. IEEE Computer
Society, March 1998.

J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison Wesley, 1996.

R. Gray, D. Kotz, G. Cybenko, and D. Rus. Mobile agents: Motivations and state-
of-the-art systems. Technical report, Darmouth College, April 2000. Available at
ftp://ftp.cs.dartmouth.edu/TR/TR2000-365.ps.Z.

C. Houck and G. Agha. HAL: A high-level actor language and its distributed implementation. In
Proceedings of the 21st International Conference on Parallel Processing (ICPP ’92), volume II,
pages 158–165, St. Charles, IL, August 1992.

M. Hydari. Design of the 2K Naming Service. M.S. Thesis. Department of Computer Science.
University of Illinois at Urbana-Champaign., February 1999.

Eric Jul, Henry M. Levy, Norman C. Hutchinson, and Andrew P. Black. Fine-grained mobility in
the Emerald system.TOCS, 6(1):109–133, 1988.

W. Kim. THAL: An Actor System for Efficient and Scalable Concurrent Computing. PhD thesis,
University of Illinois at Urbana-Champaign, May 1997.

F. Kon, R. Campbell, M. Dennis Mickunas, and K. Nahrstedt. 2K: A Distributed Operating System
for Dynamic Heterogeneous Environments. Technical report, Department of Computer Science,
University of Illinois at Urbana-Champaign, December 1999.

F. Kon, F. Costa, G. Blair, and Roy H. Campbell. The case for reflective middleware.Commun.
ACM, 45(6):33–38, 2002.

Andreas Krall. Efficient JavaVM just-in-time compilation. In Jean-Luc Gaudiot, editor,Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 205–212, Paris,
1998. North-Holland. URLciteseer.nj.nec.com/krall98efficient.html .

D. Lange and M. Oshima.Programming and Deploying Mobile Agents with Aglets. Addison-
Wesley, 1998.

T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison Wesley, 1997.

22 M. P. Singh, ed.

Agha & Varela Middleware

P. Mockapetris. Domain Names - Concepts and Facilities. IETF Internet Draft Standard RFC 1034,
November 1987. http://www.ietf.org/rfc/rfc1034.txt.

Object Management Group. CORBA services: Common object services specification version 2.
Technical report, Object Management Group, June 1997. http://www.omg.org/corba/.

Open Systems Lab. The Actor Foundry: A Java-based Actor Programming Environment, 1998.
Work in Progress. http://osl.cs.uiuc.edu/foundry/.

OVM Consortium. OVM An Open RTSJ Compliant JVM. http://www.ovmj.org/, 2002.

Douglas C. Schmidt, Aniruddha Gokhale, Timothy H. Harrison, and Guru Parulkar. A high-
performance endsystem architecture for real-time CORBA.IEEE Communications Magazine,
14(2), 1997. URLciteseer.nj.nec.com/schmidt97highperformance.html .

D. Sturman.Modular Specification of Interaction Policies in Distributed Computing. PhD thesis,
University of Illinois at Urbana-Champaign, May 1996. TR UIUCDCS-R-96-1950.

W.T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. A New Major SETI
Project based on project SERENDIP data and 100,000 Personal Computers. InProceedings of
the Fifth International Conference on Bioastronomy. Editrice Compositori, Bologna, Italy, 1997.

Sun Microsystems Inc. – JavaSoft. Remote Method Invocation Specification, 1996.
http://www.javasoft.com/products/jdk/rmi/.

Sun Microsystems Inc. – JavaSoft. JavaSpaces, 1998.
http://www.javasoft.com/products/javaspaces/.

Camron Tolman. A Fault-Tolerant Home-Based Naming Service for Mo-
bile Agents. Master’s thesis, Rensselaer Polytechnic Institute, April 2003.
http://www.cs.rpi.edu/wwc/theses/fhns/camthesisfinal.pdf.

C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette: An object oriented
concurrent system architecture.Sigplan Notices, 24(4):91–93, 1989.

Amin Vahdat, Thomas Anderson, Michael Dahlin, David Culler, Eshwar Belani, Paul Eastham,
and Chad Yoshikawa. WebOS: Operating System Services For Wide Area Applications. In
Proceedings of the Seventh IEEE Symposium on High Performance Distributed Computing, July
1998.

C. Varela.Worldwide Computing with Universal Actors: Linguistic Abstractions for Naming, Mi-
gration, and Coordination. PhD thesis, U. of Illinois at Urbana-Champaign, April 2001.

C. Varela and G. Agha. A Hierarchical Model for Coordination of Concurrent Activities. In
P. Ciancarini and A. Wolf, editors,Third International Conference on Coordination Languages
and Models (COORDINATION ’99), LNCS 1594, pages 166–182, Berlin, April 1999. Springer-
Verlag. http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with SALSA.
ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings, 36(12):20–
34, December 2001. ISSN 0362-1340. http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

N. Venkatasubramanian. Safe composibility of middleware services.Commun. ACM, 45(6):49–52,
2002.

Practical Handbook of Internet Computing 23

Middleware Agha & Varela

Nalini Venkatasubramanian and Carolyn Talcott. Meta-architectures for resource management in
open distributed systems. InProceedings of the ACM Symposium on Principles of Distributed
Computing, pages 144–153, New York, August 1995. ACM Press.

J. Waldo. JINI Architecture Overview, 1998. Work in progress.
http://www.javasoft.com/products/jini/.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed computing. In
Mobile Object Systems: Towards the Programmable Internet, pages 49–64. Springer-Verlag: Hei-
delberg, Germany, 1997. URLciteseer.nj.nec.com/waldo94note.html .

Pawel Wojciechowski and Peter Sewell. Nomadic Pict: Language and Infrastructure Design for Mo-
bile Agents. InFirst International Symposium on Agent Systems and Applications (ASA’99)/Third
International Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA, 1999. URL
citeseer.nj.nec.com/article/wojciechowski99nomadic.html .

A. Yonezawa, editor.ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge, Mass.,
1990.

24 M. P. Singh, ed.

Index

ABCL, 16
actors, 2, 6

languages, 6
libraries, 6
migration, 11
names, 9
reflection, 12
universal, 6

ActorSpaces, 2, 17
capabilities, 17
patterns, 17

agents
mobile, 17

asynchronous communication, 2

CORBA, 2, 17
services, 3

DCOM, 2

grid computing, 16

Java, 18
RMI, 2, 18
virtual machine, 4

Linda, 2, 18

middleware, 2
adaptive, 4, 18

publish and subscribe, 2

reflection, 4
RPC, 2

SALSA, 7, 19
migration, 12
universal naming, 10

services, 7
actor creation, 7
concurrency, 3
coordination, 9
externalization, 3

grouping, 4
life-cycle, 3, 9
messaging, 7
migration, 9
naming, 3, 7
persistence, 3, 7
query, 4
replication, 4, 9
split and merge, 9
transactional, 4
transport, 7

THAL, 16

universal naming, 9

Web Services, 2
World-Wide Computer, 5, 7, 19
worldwide computing, 5, 16, 18

X-XXXX-XXXX-X/XX/$X.XX+$X.XX
c 2004 CRC Press LLC. 25

