
Maximum Sustainable Throughput Prediction for
Data Stream Processing over Public Clouds

Shigeru Imai, Stacy Patterson, and Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute
{imais,sep,cvarela}@cs.rpi.edu

Abstract—In cloud-based stream processing services, the
maximum sustainable throughput (MST) is defined as the
maximum throughput that a system composed of a fixed
number of virtual machines (VMs) can ingest indefinitely. If
the incoming data rate exceeds the system’s MST, unprocessed
data accumulates, eventually making the system inoperable.
Thus, it is important for the service provider to keep the
MST always larger than the incoming data rate by dynamically
changing the number of VMs used by the system. In this paper,
we identify a common data processing environment used by
modern data stream processing systems, and we propose MST
prediction models for this environment. We train the models
using linear regression with samples obtained from a few VMs
and predict MST for a larger number of VMs. To minimize
the time and cost for model training, we statistically determine
a set of training samples using Intel’s Storm benchmarks with
representative resource usage patterns. Using typical use-case
benchmarks on Amazon’s EC2 public cloud, our experiments
show that, training with up to 8 VMs, we can predict MST for
streaming applications with less than 4% average prediction
error for 12 VMs, 9% for 16 VMs, and 32% for 24 VMs.
Further, we evaluate our prediction models with simulation-
based elastic VM scheduling on a realistic workload. These
simulation results show that with 10% over-provisioning, our
proposed models’ cost efficiency is on par with the cost of
an optimal scaling policy without incurring any service level
agreement violations.

Keywords-cloud computing; performance prediction; re-
source management; auto-scaling

I. INTRODUCTION

The need for real-time stream data processing is ever
increasing as we are facing an unprecedented amount of
data generated at high velocity. Upon the arrival of a
stream event, we want to process it as quickly as possible
to timely react to events such as aircraft airspeed sensor
failure [1] or unusually high CPU usage in data centers [2].
Traffic management [3], [4] and sensor data processing from
Internet-of-Things (IoT) devices [5], [6], [7] are also com-
mon real-time stream processing applications. To process
these fast data streams in a scalable and reliable manner, a
new generation of stream processing systems has emerged:
systems such as Storm [8], [9], Flink [10], [11], Samza [12],
and Spark Streaming [13], [14] have been actively used and
developed in recent years. Cloud computing can add on-
demand elasticity to these stream processing systems to deal

with fluctuating computing demand using autoscaling [15].
To guarantee a service level agreement (SLA) in terms of
application performance, we need a prediction model that
connects VM configurations and application performance
so that the autoscalers can estimate and provision the right
number of VMs.

We define maximum sustainable throughput (MST) as the
maximum throughput that the stream processing system can
ingest indefinitely. It is an application performance metric
that is useful from the service provider’s perspective. If the
incoming data rate exceeds the system’s MST, unprocessed
data accumulates, eventually making the system inoperable.
By dynamically allocating and deallocating VMs, service
providers can keep the MST larger than the incoming data
rate, to maintain stable service operation. Recent elastic
stream processing studies primarily focus on guaranteeing
latency [16], [17], [18], [19]. ElasticStream [20] estimates
maximum throughput using a model that is linear in the
number of VMs, which is not realistic for all applications,
as we show in this work.

We propose models to predict MST for both linearly and
non-linearly scalable applications. We identify a common
data processing environment used among modern stream
processing systems and propose a framework to measure
MST for streaming applications. The models assume a ho-
mogeneous VM instance type and predict MST only by the
number of VMs. We train and test the models using linear
regression with performance results obtained from Intel’s
Storm benchmarks [21] running on Amazon EC2 cloud. To
minimize the cost for training, we statistically determine a
good set of training samples from a few VMs. We then use
this model to predict MST up to a larger number of VMs
(32 VMs). Further, we evaluate models’ cost-effectiveness
for elastic stream processing by simulation. In summary, our
contributions are as follows:

1) A maximum sustainable throughput measurement
framework for a common data stream environment.

2) Maximum sustainable throughput prediction models
for stream processing systems.

3) Evaluations, using Storm benchmarks from Intel run-
ning on Amazon EC2, that show that the proposed
models are reasonably accurate and cost effective.

The rest of the paper is organized as follows. In Sec-
tion II, we present related work for performance models
used in stream processing. In Section III, we describe
the background on stream processing systems, including a
common data processing environment and the concept of
maximum sustainable throughput. Section IV introduces a
framework for maximum sustainable throughput measure-
ment. Section V presents the proposed maximum sustainable
throughput prediction models and how we statistically select
training samples. Section VI shows the evaluation of our
models’ prediction accuracy, and then Section VII shows
the cost-effectiveness of a proposed model for elastic stream
processing by simulation. Section VIII discusses the results
of experiments. Finally, we conclude the paper in Section IX.

II. RELATED WORK

In stream processing, one of the most common perfor-
mance metrics is latency. There are several proposals on
topology-aware latency models [16], [17], [18], [19]. They
all assume that the user gives a logical topology composed of
multiple processing units, which are parallelized as threads
(also often called tasks) at runtime for distributed execution.
This model is commonly used in modern stream processing
systems such as Apache Storm [8] and Apache Flink [10].
Li et al. propose a topology-aware average latency model
that uses thread-level statistics such as the average tuple
processing latency and tuple transfer latency [16]. Heinze et
al. try to minimize latency spikes due to stateful operator mi-
gration when scaling stream applications [17]. Their model
considers an application topology consisting of multiple
operators. It enumerates operators that need to be paused and
restarted for migration, and it estimates latency including
operator pause time. Queuing theory is also used for latency
prediction. Nephele (a prototype of Apache Flink) models
each processing unit to be a G/G/1 single server system with
a degree of parallelism [18]. DRS models multiple threads
derived from a processing unit to be a M/M/c multiple server
system [19].

Another important metric for stream processing is
throughput. There are some proposals that do not explicitly
model throughput, but try to achieve high throughput by
improving task scheduling. R-Storm implements a resource-
aware task scheduler on top of Storm [22]. It tries to increase
throughput by maximizing resource utilization while co-
locating tasks communicating with each other. Similarly,
Fischer and Bernstein use graph partitioning to minimize
network communication across different machines and also
to minimize load imbalance [23].

To alleviate excessive incoming workload for stream
processing, techniques such as random sampling [24] and
backpressure [25] have been proposed. Random sampling
randomly picks up events from a stream to reduce the
amount of data to process, but the answers are approximate.
Backpressure is a mechanism in which the data receiver

sends a signal to request the data sender to halt its data
transmission.

To safely scale up a cluster to process fluctuating work-
load without relying on these techniques, it is important
to know the maximum processing capacity of the cluster.
Maximum sustainable throughput (MST) is a general metric
for services-based applications [26], but has received less
attention compared to latency in stream processing. To
the best of our knowledge, ElasticStream [20] is the only
elastic stream processing system that tries to maintain the
cluster’s maximum throughput to handle fluctuating input
data rates through automated VM allocation. It uses a linear
model to predict maximum throughput; however, there are
applications for which maximum throughput is not linearly
scalable as we show in Section VI. Unlike ElasticStream,
we model MST for both linearly and non-linearly scalable
applications.

III. BACKGROUND ON STREAM PROCESSING SYSTEMS

In this section, we describe the background on stream
processing systems. We first show a data processing en-
vironment commonly used by multiple data processing
frameworks (Section III-A), and then, we introduce the
concept of maximum sustainable throughput (MST) for this
environment (Section III-B). Also, we show how we can use
MST in SLAs for stream processing systems (Section III-C).

A. Stream processing environment

Figure 1 shows a commonly used stream processing envi-
ronment, which works for frameworks including Storm [8],
Samza [8], Flink [10], [11], and Spark Streaming [13]. Data
streams flow from left to right, starting from the producer
to the data store. The producer sends events at the rate
of λ and they are appended to message queues in Kafka.
Kafka is a message queuing system that is scalable, high-
throughput, and fault-tolerant [27]. The consumer (i.e., a
stream processing system) pulls data out of Kafka as quickly
as it can at the throughput of τ . Note that there can be
multiple producers and consumers working simultaneously
with one Kafka instance, which can be multiple nodes. After
the consumer processes events, it optionally stores results in
the data store (e.g., a file system or database).

ConsumerConsumerProducer
(Data Source)

Kafka
(Broker)

Data

Store

Input data rate: Data processing

throughput:

Consumer

Figure 1. Common stream processing environment.

B. Maximum sustainable throughput

Figure 2 shows examples of stream processing by Storm
ingesting events from Kafka with increasing data input
rates. Using the stream processing environment in Figure 1,
these experiments are performed with a network intensive
application as shown in Figure 2(a) and a memory intensive
application as shown in Figure 2(b). For both examples,
we gradually increase the input data rate by adding data
producers, where each producer generates 1.0 Mbytes/sec.
In Figure 2(a), the data processing throughput ingested by

�

�

�

�

�

�

� ��� ��� ��� ��� ��� ���

�
�
��
�
�
�
�
�
�	

�
�

��
��
��
��

���������	
��

�	
��
����
����
��� ����

�������	�
�������
��
���

��

���
�������������������
���
������

���
�������
�	��	�� �
�

!������	

�

�

�

�

�

� ��� ��� ��� ��� ��� ���

�
�
��
�
�
�
�
�
�	

�
�

��
��
��
��

���������	
��

�	
��
����
����
��� ����

�������	�
�������
��
���

��

�	���� ����

���
����	��
�	���� �����
����

�"�
#�$��% �	��	�� �
�

!������	

Figure 2. Input data rates and data processing throughput by Apache
Storm.

Storm starts diverging from the input data rate at around 140
seconds. This means that Storm cannot keep up with the
input data rate, and the incoming events start accumulating
in Kafka. This data processing is not sustainable as the
accumulated events will eventually exceed the capacity of
available storage in Kafka. Thus, the MST for this example
is about 2.5 Mbytes/sec. In Figure 2(b), the data processing
throughput rate matches the input data rate until around 250
seconds but starts oscillating after that. From the log, we
found that an out-of-memory error occurred in one of the
Storm worker nodes when the output rate started dropping
around 250 seconds, and then Nimbus (the master node of
Storm) relaunched a worker. After the relaunched worker
becomes active at around 400 seconds, the workers rapidly
digest accumulated events in Kafka. Just as the first example,
when the data processing throughput starts diverging from
the input data rate at around 250 seconds, events start
accumulating in Kafka. For the same reason as the first
example, the MST is around 1.5 Mbytes/sec for the second

example.
As we can see from these examples, MST tells us the

limit for sustainable data processing. To scale up a cluster
to process fluctuating workload, we need to predictively
scale up the cluster by adding VMs before it hits the MST.
Therefore, we need a prediction model to estimate how many
VMs we need to satisfy the required MST.

C. Performance objectives and Service Level Agreements

In the common stream processing environment we have
shown in Figure 1, latency is the time it takes to process
an event, transmitted from Kafka, by the consumer. Also,
end-to-end latency is the time taken for an event produced
at the producer to get to the data store. As we have shown
in Section III-A, data processing throughput τ is the rate of
events ingested by the consumer. According to Etzion and
Niblett, the following performance objectives are commonly
used in event processing systems [28]: 1) maximize input
throughput, 2) maximize output throughput, 3) minimize
average latency, 4) minimize maximal latency, 5) latency
leveling, 6) real-time constraints. Note that #5 latency lev-
eling refers to minimizing the variance of the latency. The
SLAs used in previous works [16], [17], [18], [19] focusing
on latency are equivalent to #6 real-time constraints. That
is, they restrict the latency l to be smaller than or equal to
some constant latency lmax:

l ≤ lmax. (1)

In this paper, the SLA of interest is related to #1 maximize
input throughput, but not identical. The objective is for
the system to keep up with the input data rate without
completely saturating the system capacity. So, the SLA is
as follows:

λ ≤ τms, (2)

where λ is the input data rate and τms is the MST of
the system. Since latency and throughput are related and
important metrics in stream data processing, performance
objectives and SLAs may consist of multiple metrics in
practice [28].

IV. MAXIMUM SUSTAINABLE THROUGHPUT
MEASUREMENT FRAMEWORK

A. Stream processing system model

The common stream processing environment we have
shown in Figure 1 has a high-level stream processing system
model as shown in Figure 3. While we fix the master node of
the cluster, we scale up the worker nodes by simply adding
new VM instances of the same type. We assume Kafka
and the data store have enough resources to not become
a bottleneck. A series of messages (called a topic) in Kafka
is stored across p partitions, which can be accessed from
the consumer worker nodes in parallel. Since the number
of partitions defines the parallelism of data processing, the

number of threads consuming data from Kafka needs to
match the number of partitions.

1

m

Consumer

Worker Nodes

Kafka

2partition #1

partition #2

partition #p

Data

store

Figure 3. High-level stream processing system model.

B. Scaling policy

We define system-independent scaling rules that are appli-
cable to multiple stream processing systems. We assume that
the user writes stream applications in the form of connected
processing units (see the logical topology shown on the left
of Figure 4 as an example). Each processing unit receives
events from the preceding units and emits processing results
to the following units. Processing units can be duplicated
to an arbitrary number of threads (i.e., tasks) when they are
deployed on the cluster. The goal of the scaling policy is to
assign one thread per virtual CPU (vCPU). Actual binding
between threads and machines is up to the stream processing
system’s task scheduler. Parameters for the scaling decision
are shown as follows:

• n: Number of processing units.
• m: Number of virtual machines.
• γ: Number of vCPUs per virtual machine.

Given these parameters, we can compute duplication factor
(or parallelism) d as follows.

d = max(1, b(m · γ)/nc). (3)

This rule is a generalization of technique used in Yahoo
Streaming Benchmarks [29]. When n = 3, γ = 2, examples
of scaling to m = 3 and m = 5 are shown in Figure 4.

C. Obtaining maximum sustainable throughput

To measure MST, we gradually increase the input data
rate until we observe one of the two cases we have shown
in Section III-B. We collect both input data rate and
data processing throughput from Kafka through the Java
Management Extensions (JMX) interface. Since we do
not need to access a stream data processing framework
to get these metrics, this metric collection scheme is
applicable to multiple stream data processing frameworks
that support Kafka. We use the following Mbeans to get

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Logical topology

Actual deployment

m = 3

m = 5

Numbers of processing
units () = 3

6 threads on 6 vCPUs

9 threads on 10 vCPUs

(vCPUs per machine () = 2)

Duplication factor () = 3

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

: Processing unit

: Thread

Duplication factor () = 2

Figure 4. Examples of scaling a topology with three processing units
(n = 3) to three and five machines (m = 3 and 5) respectively. Each
machine has two vCPUs (γ = 2).

the input data rate and processing throughput respectively.
kafka.server:name=BytesInPerSec,type=BrokerTopicMetrics

kafka.server:name=BytesOutPerSec,type=BrokerTopicMetrics

V. MODELING STREAM PROCESSING PERFORMANCE

We propose MST prediction models in Section V-A. To
reduce the training cost and time, we use as few training
samples as possible as we describe in Section V-B. We use
Storm version 1.0.2 [8] throughout this paper for evaluation.

A. Performance model

We design two performance models for MST based on
the system model shown in Figure 3, where there are m
worker nodes (VMs) that communicate with each other.
They take input data events from Kafka and optionally
transmit processed results to the data store.

Factors: We assume that a combination of the follow-
ing factors determine the total performance of the system
shown in Figure 3.

1) Parallel processing gain: Performance improves as m
increases.

2) Input/output distribution overhead: Performance de-
cays linearly as m increases due to event transmissions
from Kafka to the m worker nodes and also due to
result transmissions from the m worker nodes to the
data store.

3) Inter-worker communication overhead: Performance
decays quadratically as m increases due to the m(m−
1) communication paths between m worker nodes.

Model 1: As shown in Equation (4), Model 1 estimates
MST (τ̂ms) as a function of the number of VMs m. It is
defined as the inverse of event processing time (t), which is
represented as a polynomial of the number of VMs m. The
terms have the following meanings: serial processing time

(w0), parallel processing time (w1), input/output distribution
time (w2), and inter-worker communication time (w3). Note
that all the weights are restricted to be non-negative (i.e.,
wi ≥ 0, i = 0, ..., 3).

τ̂ms(m) =
1

t(m)
=

1

w0 + w1 · 1
m + w2 ·m+ w3 ·m2

. (4)

This model is inspired by Ernest [30], which models job
completion time for batch processing jobs by considering
computation and communication topology. Ernest represents
job completion time as a polynomial of the number of
machines and the size of input data. We take the inverse
of processing time to model throughput.

Model 2: As shown in Equation (5), Model 2 models
MST (τ̂ms) as a polynomial of the number of VMs m. The
terms have the following meanings: base throughput (w0),
parallel processing gain (w1), inter-worker communication
overhead (w2). Same as Model 1, all the weights are
restricted to non-negative (i.e., wi ≥ 0, i = 0, 1, 2), but we
add a minus sign for w2 to account for negative impact of
the inter-worker communication.

τ̂ms(m) = w0 + w1 ·m− w2 ·m2. (5)

B. Training sample selection

We train Model 1 and Model 2 using linear regression
with training samples of MST obtained from a few VMs. We
statistically determine the most effective training samples in
terms of prediction error and cost for Model 1 and Model
2, respectively, by exhaustive search. To find such training
samples, we use the following simple resource benchmarks
from Intel Storm Benchmark [21].

• Word Count: CPU intensive, typical word count for text
inputs.

• SOL (i.e., Speed-Of-Light): Network intensive, received
events are transferred to the following processing units
immediately without any processing.

• Rolling Sort: Memory intensive, received events are
accumulated in a ring buffer and are sorted every x
seconds.

We choose these three benchmarks since they have repre-
sentative orthogonal resource usage patterns (i.e., CPU, net-
work, and memory intensive), and thus, the training samples
obtained from these benchmarks can be generalizable to
other applications. The sample selection steps are as follows.

Step 1. Collect MST samples: We run the three simple
resource benchmarks, Word Count, SOL, and Rolling Sort,
on Amazon EC2 using the m4.large instance type for
two sets of VM configurations: Mtrain = {1, 2, 3, ..., 8}
and Mtest = {12, 16, 24, 32}. After collecting MST for
these VM configurations, we divide collected samples into
two sets: Dtrain that contains training samples from Mtrain

and Dtest that contains test samples from Mtest. That
is, Dtrain = {(τm,m) | m ∈ Mtrain} and Dtest =

{(τm,m) | m ∈ Mtest}, where τm is the MST obtained
from m VMs.

Step 2. Enumerate training subsets: Since we do not
know which samples of Dtrain best predict MST in Dtest, we
create all possible training subsets with cardinality greater
than one. That is, given k ∈ {2, 3, ..., 8}, we enumerate
all the possible k combinations out of 8 training samples
in Dtrain and create

(
8
k

)
training subsets called Dk,j

train as
follows:

Dk,j
train ⊆ Dtrain, j = 1, 2, ...,

(
8

k

)
. (6)

Step 3. Identify best samples: For each benchmark,
we train Model 1 and Model 2 using the training subsets
Dk,j

train and test the trained models with Dtest. We then
evaluate the total cost and the average test error over the
three benchmarks for each k. Note that the cost is computed
as (total test hour)∗$0.12/hr (cost per hour for m4.large
as of November 2016). Since we use the homogeneous VM
type m4.large only, the cost is linearly proportional to the
time needed to obtain MST. When training Model 1, we
change Equation (4) to a linear form in terms of weights to
be able to apply linear regression as follows:

1

τ̂ms(m)
= t(m) = w0 + w1 ·

1

m
+ w2 ·m+ w3 ·m2. (7)

For Model 2, we directly apply linear regression to Equa-
tion (5).

The results are shown in Figure 5. For each data point
k, the average prediction error and cost obtained from the
best training subset that gives the lowest average error are
plotted. Both models take the lowest average error when
k = 3, and set of data points are M1 = {3, 5, 8} for Model
1 and M2 = {5, 6, 8} for Model 2. Since the cost of model
training is reasonably low, we use M1 and M2 as the training
samples for the model accuracy evaluation in Section VI.

�

���

���

���

���

�

���

���

���

�

���

���

���

���

�

���

���

���

� � � � � 	 �
 � �

�
��
��
��
�
��
	

�
��

�
�
�

�
�
�
��
�
�
��
��
	
�

����������	
��

�

�

����

�

���

���

���

���

�

���

���

���

�

���

���

���

���

�

���

���

���

� � � � � 	 �
 � �

�
��
��
��
�
��
	

�
��

�
�
�

�
�
�
��
�
�
��
��
	
�

����������	
��

�

�

����

�������� �����������	���������������
�������� �����������	���������������

Figure 5. Model training results for Model 1 and Model 2.

VI. MODEL ACCURACY EVALUATION

Using the best sets of training samples, M1 for Model
and M2 for Model 2, we evaluate our prediction models

using the the following four typical use-case benchmarks
from Intel Storm Benchmark.

• Grep: Text inputs are pattern-matched with a regular
expression and the number of matched sentences is
counted.

• Rolling Count: Similar to word count, the number of
word counts is emitted every x seconds.

• Unique Visitor: From web access logs, the number of
unique visitor to website is counted.

• Page View: From web access logs, the number of page
views per website is counted.

A. Experimental settings

As in Section V-B, we run the four typical use-case bench-
marks, Grep, Rolling Count, Unique Visitor, Page View, on
Amazon EC2 using the m4.large instance type for a set of
VMs M = M1 ∪M2 ∪Mtest = {3, 5, 6, 8, 12, 16, 24, 32},
and collect MST for these VMs. For Model 1, we use M1

to learn parameters and predict MST for M1 ∪ Mtest =
{3, 5, 8, 12, 16, 24, 32}. Similarly, for Model 2, we use M2

to learn parameters and predict MST for M2 ∪ Mtest =
{5, 6, 8, 12, 16, 24, 32}. For Grep and Rolling Count, we
use the texts from The Adventures of Tom Sawyer [31] as
inputs. For Unique Visitor and Page View, we artificially
create web access logs that contain access to 100 randomly
generated websites. We use default parameter settings for
Storm version 1.0.2 [8].

B. Model accuracy results

Learned parameters for Model 1 and Model 2 are shown
in Table I and II respectively. In Model 1, w2 is always
zero, and also w3 is almost always zero. With these learned
parameters, Model 1 is effectively equivalent to Amdhal’s
law [32], except for Grep. Also, in Model 2, w2 is close to
zero except for Grep, which means the learned models are
almost linear except for Grep.

Table I
LEARNED PARAMETERS FOR MODEL 1

Benchmark w0 w1 w2 w3

Grep 0.0119 1.0111 0.0000 0.0002
Rolling Count 0.2076 1.3401 0.0000 0.0000
Unique Visitor 0.0459 1.2375 0.0000 0.0000
Page View 0.0000 2.3239 0.0000 0.0000

Table II
LEARNED PARAMETERS FOR MODEL 2

Benchmark w0 w1 w2

Grep 0.0000 1.0676 0.0280
Rolling Count 0.5011 0.2914 0.0000
Unique Visitor 0.0000 0.6776 0.0014
Page View 0.0000 0.6897 0.0038

Prediction results for all VM configurations are shown
in Figure 6 and 8 for Model 1 and Model 2 respectively.

Also, prediction accuracy results for Mtest normalized by
(predicted / actual) MST are shown in Figure 7 and 9 for
Model 1 and Model 2 respectively.

�

�

�

�

�

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

�

�

�

�

�

	

�

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

�

�

�

��

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

�

�

�

��

��

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�������� �	��
���
�� �����

������
��� �
�
��� �������� �
��

Figure 6. Maximum sustainable throughput prediction results obtained
from Model 1.

�

���

�

���

�

���	
���
�������� ��
�����
�
��� ������
��

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

������

������

������

������

Figure 7. Normalized prediction accuracy obtained from Model 1.

�

�

�

�

�

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

�

�

�

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

��

��

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�

�

��

��

��

� � �� �� ��

�
�
�
��
�
�
�
�	

�

	
�

��������	�
��
��

�����

������

�������� �	��
���
�� �����

������
��� �
�
��� �������� �
��

Figure 8. Maximum sustainable throughput prediction results obtained
from Model 2.

Model 1 shows relatively good accuracy for Unique
Visitor and Page View with error up to 29%; however, it

�

���

�

���

�

���	
���
�������� ��
�����
�
��� ������
��

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

������

������

������

������

Figure 9. Normalized prediction accuracy obtained from Model 2.

does not work well for Grep and Rolling Count except for
m = 12, 16. One of the reasons of these large errors is due
to the fact that we apply linear regression to the inverse of
τ̂ms as shown in Equation (7). Even though we minimize
the training error in Equation (7), the error is magnified in
the original Equation (4). This effect can clearly be seen for
Page View with m = 5, 8 in Figure 6(d).

As we can see from Figure 8 and 9, Model 2 can predict
up to m = 16 well (max error 18% for Unique Visitor, avg
error 9%); however, the error becomes larger for m = 24
(max error 74% for Unique Visitor, avg error 32%) and
m = 32 (max error 88% for Unique Visitor, avg error
49%) due to non-linear behavior of MST. Even though our
models are non-linear, training samples obtained from M2

almost linearly improve for Unique Visitor and Page View.
That is why Model 2 cannot predict non-linear behavior for
these two benchmarks. However, Model 2 captures the linear
behavior of Rolling Count well and shows consistently good
accuracy throughout all the VM configurations with error up
to 17% when m = 32.

VII. COST EFFICIENCY EVALUATION

We evaluate the cost efficiency of the trained models we
have shown in Section VI using simulation-based elastic
VM scheduling. In the simulation, we do not consider any
overhead for VM allocation and application reconfiguration.
Therefore, this evaluation is not fully realistic, but shows
upper-bounds of cost efficiency that can be achieved by our
models.

A. Experimental settings

The workload we use is based on the FIFA World
Cup 1998 website access logs over three weeks time (500
hours) [33], as shown in the blue region of Figure 10. Since
the original workload is presented in the number of access
to the website, we convert the number of access to the input
data rate. After this conversion, the peak workload is 7.7
Mbytes/sec and the average workload is 4.58 Mbytes/sec,
so our models are applicable to this workload. We see
this workload as a sequence of input data rates λ(t), for
t = 1, 2, ..., 500. Our SLA is to keep higher MST than input
data rates (i.e. λ ≤ τms as shown in Section III-C).

Evaluation is simulation-based with the scheduling inter-
val of one hour. For every t, a VM scheduler has a chance to
allocate or deallocate one or more VMs without any startup
time delay. We do not consider any overhead related to the
stream processing system’s reconfiguration either, such as
rebalancing tasks. We simulate two benchmarks, Grep and
Rolling Count, separately and assume each benchmark tries
to process incoming events shown in Figure 10. We choose
these two benchmarks since their scaling characteristics are
quite different from each other. For each benchmark, we use
Model 1 and Model 2 with the parameters in Table I and II
respectively. We use the m4.large instance type of Amazon
EC2 whose cost is $0.12 per hour (as of November 2016).
We compare the following scaling policies:

• Ground truth: Optimal scaling policy based on the
actual measurement of MST (solid lines) shown in
Figure 6(a) (or Figure 8(a)) for Grep and Figure 6(b) (or
Figure 8(b)) for Rolling Count. Allocate the minimum
number of VMs that satisfies incoming input data rate.

• Static (peak): Static VM allocation policy that covers
the peak load of 7.7 Mbytes/sec.

• Static (average): Static VM allocation policy that cov-
ers the average load of 4.58 Mbytes/sec.

• Elastic (Model 1, x%): Allocate the minimum number
of VMs that satisfy the input data rate multiplied by
(1.0+x/100) based on the predicted MST (dotted lines)
shown in Figure 6(a) (or Figure 8(a)) for Grep and
Figure 6(b) (or Figure 8(b)) for Rolling Count. We test
x = 0, 5, 10.

• Elastic (Model 2, x%): Same as above except for using
Model 2.

Note that moderate over-provisioning is a common practice
in actual VM provisioning to account for the inaccuracy of
prediction models.

SLA violations are counted if the following condition is
true:

τms(m) < λ(t), (8)

where τms is the ground truth function given by the actual
measurement of MST, m is the allocated number of VMs
as the result of a scaling decision, λ(t) is the input data rate
at time t. Violations are evaluated as the percentage against
the total 500 scaling attempts over t = 1, 2, ..., 500.

B. Cost efficiency results

Table III and IV show results of average hourly VM
usage cost and SLA violations for Grep and Rolling Count
respectively. Both evaluations show that all the elastic poli-
cies have 0.0% SLA violation with 10% over-provisioning
and with much lower cost compared to the Static (peak)
policy. Notably, the elastic policy of Model 1 with 5% over-
provisioning achieves 0% violations with just 5% more cost
than the ground truth. Also, comparing to the “Static (peak)”
allocation policy, this elastic policy uses 49% less cost per

hour. These results show that with a reasonable percentage
of over-provisioning, the proposed model’s cost efficiency is
on par with the optimal scaling policy.

Table III
AVERAGE HOURLY VM USAGE COST AND SLA VIOLATIONS FOR GREP

BENCHMARK (EC2 INSTANCE TYPE: M4.LARGE).

Policy VMs/hour Cost/hour Violations[%]
Ground truth 5.15 $0.62 0.00
Static (peak) 11.00 $1.32 0.00
Static (average) 5.00 $0.60 36.40
Elastic (Model 1, 0%) 5.12 $0.61 4.60
Elastic (Model 1, 5%) 5.41 $0.65 0.00
Elastic (Model 1, 10%) 5.69 $0.68 0.00
Elastic (Model 2, 0%) 5.04 $0.60 12.20
Elastic (Model 2, 5%) 5.34 $0.64 0.60
Elastic (Model 2, 10%) 6.00 $0.72 0.00

Table IV
AVERAGE HOURLY VM USAGE COST AND SLA VIOLATIONS FOR

ROLLING COUNT BENCHMARK (EC2 INSTANCE TYPE: M4.LARGE).

Policy VMs/hour Cost/hour Violations[%]
Ground truth 13.76 1.65 0.00
Static (peak) 28.00 3.36 0.00
Static (average) 14.00 1.68 43.00
Elastic (Model 1, 0%) 22.27 2.67 7.40
Elastic (Model 1, 5%) 23.33 2.80 0.80
Elastic (Model 1, 10%) 24.14 2.90 0.00
Elastic (Model 2, 0%) 12.99 1.56 61.40
Elastic (Model 2, 5%) 13.70 1.64 22.20
Elastic (Model 2, 10%) 14.42 1.73 0.00

Figure 10 presents the input data rate sequence and MST
generated by elastic VM scheduling using Model 1 for
the Grep benchmark, which shows the minimum violations
with minimum cost among other models. We can see from
the graph that the “Elastic (model 1, 5%)” and “Elastic
(model 1, 10%)” generate slightly over-provisioned MST,
but closely follow the input data rate.

VIII. DISCUSSION

In this section, we discuss the results of the experiments
as well as our models’ applicability to large-scale prediction
and VM instance type heterogeneity.

A. Likely cause of the bottlenecks

From the experiments in Section VI, the scalability for
Grep, Unique Visitor, and Page View is limited. The reason
seems to be load imbalance between workers. For the Grep
benchmark, to compute the total count of matched patterns,
the global counter is incremented by a single thread and
the MST is bounded by the performance of that single
thread. In Unique Visitor and Page View, they show similar
scalability patterns, which can be attributed to skewed web
access log patterns. That is, since URLs in the log are not
evenly distributed, a hash function fails to distribute the
workload to worker nodes uniformly. Since our approach is

application-agnostic, we do not attempt to diminish the load
imbalance; however, we may be able to detect it to predict
the performance bottlenecks. As we have seen in Figure 8(c)
and 8(d), it is difficult to predict long term performance
trends from a limited number of training samples. One way
to improve the prediction accuracy is monitoring resource
usage patterns over time and predict when they will hit the
resource capacity.

B. Qualitative characteristics of prediction in elastic
scheduling

In Section VI, we look at prediction performance for each
VM configuration; however, when we use the model for
elastic VM scheduling, the overall relationship between the
model and actual MST becomes important. For example,
in Figure 6(a), when we need MST of 6 Mbytes/sec, the
model tells you either 6 or 30 VMs would give you that
performance. Obviously, one would not choose 30 VMs
since 6 VMs would give you the required MST. More
generally, for elastic VM scheduling, accurate prediction of
the peak performance (in this case 16 VMs) is important
and prediction after the peak is less important. Another
observation is that the relationship between the model and
actual measurement decides whether we over-provision or
under-provision VMs. As shown in Figure 6(b), to get MST
of 4 Mbytes/sec, the model tells you to allocate 32 VMs, but
it actually generates only about 8.5 Mbytes/sec. This means
when the predicted MST from the model is below the actual,
we over-provision VMs. Likewise, when the predicted MST
is above the actual, we under-provision VMs.

C. Prediction for large-scale applications

We predict MST up to 32 VMs because that is the
maximum number of VMs we are allowed to use on
Amazon EC2. Looking at Figure 6, we can process data
for typical use-case benchmarks with the throughput of
about 10 Mbytes/sec (= 35 Gbytes/hour) using 32 VMs.
This processing throughput would probably be enough for
many regular data analytics applications. Given enough
training samples, we believe our modeling approach itself
is applicable to larger-scale applications that require more
than 32 VMs. However, predicting MST for larger-scale
applications leads to a larger prediction uncertainty. Thus,
we need to improve prediction accuracy by implementing
techniques such as online model updates from actual runs
or the performance bottleneck detection as discussed in
Section VIII-A

D. Homogeneous vs. heterogeneous VM types

We use the homogeneous VM type (i.e., m4.large from
Amazon EC2) in our MST prediction models. If tasks cre-
ated from a stream application show different resource usage
patterns, it is meaningful to use heterogeneous VM types for
the performance optimization (e.g., compute optimized VM

�

�

�

�

�

�

�

�

	

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

��
�
�
��
�
�
��
�	
�
�

��
��

�
��
�
�
��

��

��������	
�

��
���������������� ��������������������� ��������������������� ���������������������� ��������!���"�� �������
��#�

Figure 10. Input data rate sequence created from the FIFA World Cup 1998 website access logs and maximum sustainable throughput generated by elastic
VM scheduling based on prediction model (Model 1) for the Grep benchmark.

for CPU intensive tasks, memory optimized VM for memory
intensive tasks). As we have shown in Section IV-B, we
control the parallelism of the target streaming application,
but not the actual task assignment. It is determined by the
stream processing framework’s task scheduler. Especially in
Storm, the default task scheduler tries to schedule resources
evenly to application tasks. Thus, as long as we use such
task scheduler, using homogeneous VM types is sufficient.

IX. CONCLUSION

We have presented a method to estimate the maximum
sustainable throughput for public cloud-based stream pro-
cessing applications. We identified a common data process-
ing environment used by modern stream processing systems
and proposed two models for MST prediction. The models
use a homogeneous VM instance type and predict MST
based on the number of VMs. For evaluation, we used
Intel’s Storm benchmarks running on Amazon’s EC2 cloud.
To minimize the time and cost for training, we statistically
determined a set of training samples from running the appli-
cation on a few VMs (up to 8). We use our model to predict
MST for a larger number of VMs (in our experiments,
up to 32). Our experiments show that one of our models
can predict MST for Storm applications with less than
4% average prediction error for 12 VMs, 9% for 16 VMs,
and 32% for 24 VMs. Further, we evaluated our prediction
models with simulation-based elastic VM scheduling for a
realistic data streaming workload. Simulation results showed
that with 10% over-provisioning, the proposed models cost
efficiency is on par with the optimal scaling policy without
incurring any SLA violations.

For future work, we plan to integrate system resource
usage metrics such as CPU, memory, and network utilization
to the model to better predict performance bottlenecks.
Also, we plan to apply the proposed models to other data
processing frameworks such as Flink [10], [11] to confirm

the applicability of our modeling approach. Other interesting
future directions include online learning to improve the
performance prediction model accuracy over time, the use of
meta-algorithms such as boosting to construct a prediction
model from multiple weak models, and large-scale perfor-
mance prediction using a cloud environment simulator such
as CloudSim [34].

ACKNOWLEDGMENTS

This research is partially supported by the DDDAS
program of the Air Force Office of Scientific Research,
Grant No. FA9550-15-1-0214 and NSF Awards, Grant No.
1462342, 1553340, and 1527287. The authors would like to
thank an Amazon Web Services educational research grant
and a Google Cloud Credits Award.

REFERENCES

[1] S. Imai, R. Klockowski, and C. A. Varela, “Self-healing
spatio-temporal data streams using error signatures,” in IEEE
2nd International Conference on Big Data Science and En-
gineering, 2013, pp. 957–964.

[2] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, and
J. B. Ingram, “Spark-based anomaly detection over multi-
source VMware performance data in real-time,” in IEEE
Symposium on Computational Intelligence in Cyber Security,
2014, pp. 1–8.

[3] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov,
O. Verscheure, H. N. Koutsopoulos, M. Rahmani, and B. Gü,
“Real-time traffic information management using stream com-
puting,” IEEE Data Engineering Bulletin, vol. 33, pp. 64–68,
June 2010.

[4] S. Imai, S. Patterson, and C. A. Varela, “Elastic virtual
machine scheduling for continuous air traffic optimization,” in
16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2016, pp. 183–186.

[5] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, in IEEE
9th International Conference on Cloud Computing.

[6] C. Hochreiner, S. Schulte, S. Dustdar, and F. Lecue, “Elastic
stream processing for distributed environments,” IEEE Inter-
net Computing, vol. 19, no. 6, pp. 54–59, Nov 2015.

[7] A. Shukla and Y. Simmhan, “Benchmarking distributed
stream processing platforms for IoT applications,” arXiv
preprint arXiv:1606.07621, 2016.

[8] The Apache Software Foundation, “Apache Storm,” http://
storm.apache.org/, Accessed: 2017-02-15.

[9] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy, “Storm@twitter,” in
Proceedings of the 2014 SIGMOD International Conference
on Management of Data, 2014, pp. 147–156.

[10] The Apache Software Foundation, “Apache Flink,” http://
spark.apache.org/, Accessed: 2017-02-15.

[11] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl,
and K. Tzoumas, “Apache Flink: Stream and batch processing
in a single engine,” IEEE Data Engineering Bulletin, in the
special issue on Next-gen Stream Processing, vol. 38, no. 4,
Dec 2015.

[12] The Apache Software Foundation, “Apache Samza,” http://
samza.apache.org/, Accessed: 2017-02-15.

[13] ——, “Apache Spark,” http://spark.apache.org/, Accessed:
2017-02-15.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013, pp. 423–438.

[15] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A
Review of Auto-scaling Techniques for Elastic Applications
in Cloud Environments,” Journal of Grid Computing, vol. 12,
no. 4, pp. 559–592, Dec 2014.

[16] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework
for fast and distributed stream data processing,” in IEEE
International Conference on Big Data, 2015, pp. 333–338.

[17] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer,
“Latency-aware elastic scaling for distributed data stream
processing systems,” in Proceedings of the 8th ACM Interna-
tional Conference on Distributed Event-Based Systems, 2014,
pp. 13–22.

[18] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream pro-
cessing with latency guarantees,” in IEEE 35th International
Conference on Distributed Computing Systems, 2015, pp.
399–410.

[19] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang,
and Z. Zhang, “DRS: Dynamic resource scheduling for real-
time analytics over fast streams,” in IEEE 35th International
Conference on Distributed Computing Systems, 2015, pp.
411–420.

[20] A. Ishii and T. Suzumura, “Elastic stream computing with
clouds,” in IEEE 4th International Conference on Cloud
Computing, 2011, pp. 195–202.

[21] Intel Corporation, “Storm benchmark,” https://github.com/
intel-hadoop/storm-benchmark, Accessed: 2017-02-15.

[22] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell,
“R-storm: Resource-aware scheduling in storm,” in Proceed-
ings of the 16th ACM Annual Middleware Conference, 2015,
pp. 149–161.

[23] L. Fischer and A. Bernstein, “Workload scheduling in dis-
tributed stream processors using graph partitioning,” in IEEE
International Conference on Big Data, 2015, pp. 124–133.

[24] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 2002, pp. 1–16.

[25] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter
Heron: Stream processing at scale,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data, 2015, pp. 239–250.

[26] Microsoft, “Measuring maximum sustainable engine through-
put,” https://msdn.microsoft.com/en-us/library/cc296884(v=
bts.10).aspx, Accessed: 2017-02-15.

[27] J. Kreps and L. Corp, “Kafka : a distributed messaging system
for log processing,” ACM SIGMOD Workshop on Networking
Meets Databases, p. 6, 2011.

[28] O. Etzion and P. Niblett, Event processing in action. Man-
ning Publications Co., 2010.

[29] Yahoo! Inc., “Yahoo streaming benchmarks,” https://github.
com/yahoo/streaming-benchmarks, Accessed: 2017-02-15.

[30] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica, “Ernest: Efficient performance prediction for large-scale
advanced analytics,” in Proceedings of the 13th Usenix Con-
ference on Networked Systems Design and Implementation,
2016, pp. 363–378.

[31] Mark Twain, “The project gutenberg ebook of the ad-
ventures of tom sawyer,” https://www.gutenberg.org/files/74/
74-h/74-h.htm, Accessed: 2017-02-15.

[32] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings
of the Spring Joint Computer Conference, 1967, pp. 483–485.

[33] M. Arlitt and T. Jin, “A workload characterization study of
the 1998 world cup web site,” IEEE Network, vol. 14, no. 3,
pp. 30–37, May 2000.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23–50, Jan 2011.

