
Elastic Virtual Machine Scheduling for Continuous Air Traffic Optimization

Shigeru Imai, Stacy Patterson, and Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute
{imais,sep,cvarela}@cs.rpi.edu

Abstract—As we are facing ever increasing air traffic demand,
it is critical to enhance air traffic capacity and alleviate human
controllers’ workload by viewing air traffic optimization as a
continuous/online streaming problem. Air traffic optimization
is commonly formulated as an integer linear programming
(ILP) problem. Since ILP is NP-hard, it is computationally
intractable. Moreover, a fluctuating number of flights changes
computational demand dynamically. In this paper, we present
an elastic middleware framework that is specifically designed
to solve ILP problems generated from continuous air traffic
streams. Experiments show that our VM scheduling algorithm
with time-series prediction can achieve similar performance
to a static schedule while using 49% fewer VM hours for a
realistic air traffic pattern.

1. Introduction

The number of flight passengers is expected to reach
7.3 billion by 2034 globally, which requires a 4.1% av-
erage growth in flight capacity in every year from 2014
on [1]. Air traffic optimization is crucial to enhance flight
capacity and also alleviate human controllers’ workload. Air
traffic management problems are commonly formulated as
integer linear programs (ILP), which are known to be NP-
hard [2]. Therefore, large-scale ILP problems are computa-
tionally intractable. Moreover, since the number of flights
fluctuates a lot in practice, computational demand for air
traffic optimization also changes dynamically as shown in
Figure 1. To keep up with the fluctuating computing demand
in a cost-efficient way, we can dynamically allocate and
deallocate virtual machines (VMs) from Infrastructure-as-a-
Service (IaaS) cloud computing providers.

�

���

����

����

����

����

����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

	

�

�

�

�

��������	�
����������������������

Figure 1. U.S. flights on January 18th, 2014 (created from [3]).

The Link Transmission Model (LTM) is an air traffic
flow management model that optimizes nationwide air traffic
and is formulated as an ILP problem [4]. Since ILP is NP-
hard, it is common to use relaxation methods such as La-
grangean relaxation to find an approximate solution in a rea-
sonable amount of time. Using Lagrangean decomposition,
Cao and Sun decomposed LTM into multiple sub-problems,
where each sub-problem corresponds to the optimization of
one air traffic route [5]. We use a simplified version of
the original LTM that is also decomposable to route-wise
sub-problems using Lagrangean decomposition [6]. For each
route i, a decomposed sub-problem of the simplified LTM
problem is given as follows:

maximize
´

cᵀi ´ λᵀAi

¯

xi (1)

subject to 0 ď xi,
Ni
ÿ

j“1

xj
i ď di,

where λ is a vector of Lagrangean multipliers, Ai, ci, di are
given parameters associated with route i, and xi is a vector
of variables representing the number of traffic on each link
of route i. For air traffic consists of K routes, we iteratively
solve the K sub ILP problems shown in (1) to find optimal
xipi “ 1, ...,Kq for a specific λ, and then update λ for the
master dual problem (see [6] for details). Since the number
of sub ILP problems is determined by the number of routes,
fluctuating number of flights will impact the computational
demand.

ILP has a lot of practical applications, and some of
them have a strong time-dependency. Examples of such
applications include: public transportation routing [7], in-
vestment portfolio optimization [8], and marketing budget
optimization [9]. Just as air traffic management, public trans-
portation routing has similar characteristics: e.g., the number
of buses changes depending on time of the day. Elastic ILP
middleware is potentially useful for many application areas
considering these applications’ time-dependent behaviors.

To implement such an elastic ILP middleware, we can
either passively adjust the number of VMs at run time or
proactively predict the number of VMs using a resource
prediction model. The former approach includes a threshold-
based scaling, as used in Amazon’s Auto Scaling [10],
reinforcement learning [11], and control theory [12]. We

take the latter approach with the full application domain
knowledge of air traffic management. Moreover, we use an
autoregressive time series prediction model to decide when
to allocate/deallocate VMs in a speculative manner.

In this paper, to provide cost-efficient scalable resource
management infrastructure for ILP problems with fluctuat-
ing computational demand, we propose an elastic middle-
ware framework specifically designed to solve ILP prob-
lems. In particular, we evaluate the simplified LTM problem
that we have shown in (1) as the target ILP problem. This
paper is a summary of a technical report [6].

2. Elastic Air Traffic Management Middleware

2.1. Background

System interaction. We assume that the user of the
middleware is a human air traffic controller who uses output
of our middleware for air traffic control activity. We also
assume that some flight information providers or airplanes
directly send the latest flight status information to the mid-
dleware (see Figure 2). Since air traffic management is time
critical, the middleware tries to schedule VMs so that the
optimization result can be used by the user in a timely
manner. Hence, the user can configure latency to request
how quickly the application should return the result.

Cloud deployment. The middleware is designed to work
on an IaaS cloud. The IaaS cloud can be private, public,
or hybrid; however, the scheduling algorithm presented in
Section 3.2 is optimized for public IaaS clouds due to its
billing cycle aware scheduling. The billing cycle is the unit
of monetary charge (e.g., 1 hour for Amazon EC2 [10]).
The scheduler only terminates VMs just before their billing
cycle so that the application can use the VMs’ computing
power until right before the next billing cycle.

2.2. Application Implementation

We use Spark 1.5.1 [13], a general cluster computing
engine, to implement an iterative ILP solver of the simplified
LTM problem presented in Section 1. Spark’s high-level
abstractions for distributed programming and in-memory
data processing features are suitable for the iterative ILP
problem solving process. Spark applications run on a cluster
consisting of a master node and multiple worker nodes. Sub-
problems defined in (1) are executed in parallel by executors
running on the worker nodes while the rest of the solver
application runs on the master node. While Spark allows
us to cache parameters Ai, ci, di for sub-problems on each
worker node, the master needs to broadcast the updated
value of λ to the workers in each iteration.

When executors solve the sub-problems, we use
lp solve [14] since it is open-source and thread-safe. Since
Spark runs multiple threads in one executor process in
parallel, thread safety is a required property for our ILP
problem solver.

2.3. Middleware Architecture

Figure 2 illustrates the architecture of the proposed
middleware framework. We describe how the middleware
works, step by step, as follows:

‚ Step 1: The Controller periodically pulls (e.g., every 5
minutes) flight status information in the queue such as
airplane positions and flights’ departure and arrivals.

‚ Step 2: The Controller creates an ILP problem instance
from the obtained flight status information and then
pushes it to the VM Scheduler with requested processing
latency (e.g., 4 minutes).

‚ Step 3: The VM Scheduler uses a time series predic-
tion model and a resource prediction model to estimate
the required number of VMs to finish the optimization
within the requested processing latency.

‚ Step 4: The VM Scheduler allocates or deallocates VMs
accordingly by calling cloud APIs such as the ones
provided by Amazon EC2 [10].

‚ Step 5: The Controller requests the Application
Launcher to run the ILP application.
Even though flight status information flows into the

middleware continuously, the middleware processes the in-
formation collected within a sliding time window. We can
see this as a discretized stream processing model just as
used in Spark streaming [13].

�

���������	�
�

�����	���

��������

�

���������	
������

�	���������

���

�����	
��

������	�����
�����

���������	���

����

����	����

�� ��
��������

���	
��
��

��	��

�

������	���

�	
�����

��	��������� �	������	�	���������!!��"	��

�������������

���

#�$�

������	���

���

�����

������������������

������

�
������
��

���	
��
��

��	��

Figure 2. Architecture of the elastic air traffic management middleware
framework.

3. Virtual Machine Scheduling
The VM Scheduler introduced in Section 2.3 needs a

VM scheduling algorithm to determine how many VMs
it should allocate to achieve the target processing latency.
We show our resource estimation approach in Section 3.1.
Then, in Section 3.2, we present our elastic VM scheduling
algorithm with a time-series prediction capability.

3.1. Resource Prediction Model
From a preliminary experiment, we observed non-linear

relationship between the number of cores and execution time
for different numbers of routes as shown in Figure 3. To
determine how many resources the VM scheduler should
allocate to achieve the target processing latency, we use
linear regression with a polynomial transform to model the
relationship between the two input parameters: processing
latency l and number of routes r, and the output: number of

cores c. We sampled 50 application runs to create a training
data set and evaluated five polynomial transforms. We chose
the most complex transform among them that showed the
best correlation of 0.890 to the training data set as follows:

fpl, rq “ wᵀ ¨ Φpl, rq (2)
“ rw1, w2, ..., w11s ¨

r1{r2, 1{rl, 1{l2, 1{r, 1{l, 1, r, l, r2, rl, l2sᵀ,

where w is a weight vector acquired from linear regression
using the polynomial transform Φpl, rq.

��

���

����

� � �� �� �� �� �� ��

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

��������	�
����

���	
����

���	
�����

���	
�����

���	
������

Figure 3. Characteristics of the ILP problem execution time.

3.2. Elastic Scheduling Algorithm
We describe a speculative VM scheduling algorithm,

specScheduler shown in Algorithm 1, that uses the re-
source prediction model presented in Section 3.1. Key no-
tations used in the algorithms are summarized in Table 1.

TABLE 1. KEY NOTATIONS USED IN SCHEDULING ALGORITHMS.

Name Description
lreq Requested processing latency.
rt Number of routes to process at time t.
tup VM startup time.

fpl, rq Resource prediction model that predicts the number
of cores to satisfy latency l when processing r routes.

Vact Set of VMs that are actively used by the application.
Vidle Set of VMs to be removed at the end of next billing

cycle.
Vspec Set of speculative VMs to be allocated.
V Set of currently allocated VMs. V “ Vact Y Vidle.
cpvq Number of cores of a VM v P V .

The speculative VM scheduling algorithm takes ad-
vantage of future computational demand prediction. VM
scheduling and time series prediction are performed every
∆t time. We predict the number of routes for time step t`1
using a slope computed from rt and rt´1: r̂t`1 “ 2rt´rt´1.
This time-series prediction model is equivalent to an autore-
gressive model (i.e., AR(2)) just as used in [15].

In Algorithm 1, the specScheduler first obtains a base-
line configuration using the baseScheduler (Line 1). The
baseScheduler only considers the current number of routes
rt, but is aware of billing cycle and tries to take advan-
tage of existing VMs even when they are not needed to
achieve required processing latency 1. Then, all of available

1. We cannot present the algorithm of baseScheduler here due to the
space limitation. For the complete algorithm, see [6].

number of cores is computed in call (Line 2). Next, the
specScheduler predicts the number of routes for the next
step in r̂t`1 by using the time series prediction model (Line
3). Using r̂t`1 and the resource prediction model f , we
estimate a speculative required cores ĉreq. Finally, if we
need more cores at next time step than what we currently
have (call ă ĉreq), then we schedule to launch VMs that
are worth ĉreq ´ call cores just before the next time step
(Line 8). Since the speculative VM scheduler takes the VM
startup time tup into account, by the time the middleware
receives a next processing request, newly allocated VMs are
expected to be already available.

Algorithm 1: specScheduler
(Speculative VM scheduling algorithm)

input : lreq, rt, rt´1, tup, V
output: Vact, Vidle, Vspec

1 pVact, Vidleq Ð baseSchedulerplreq, rt, tup, V q;
2 call Ð

ř

vPV cpvq;
3 r̂t`1 Ð predictT imeSeriesprt, rt´1q;
4 ĉreq Ð rfplreq, r̂t`1qs;
5 Vspec ÐH;
6 if call ă ĉreq then
7 // Schedule to finish launching Vspec

VMs before the next time step
8 Vspec Ð scheduleAllocVMspĉreq ´ callq;
9 end

4. Evaluation
4.1. Elastic Behavior Confirmation

Experiments are simulation-based. We develop a simu-
lator that executes the proposed VM scheduling algorithm.
Using the generated schedules by the simulator, we man-
ually allocate and deallocate VMs on Amazon EC2 cloud
and run the Spark application to evaluate used VM hours,
cost, and latency violations based on actual execution time.
We create a test data set from the 24-hour real nationwide
flights shown in Figure 1, which has the peak number of
routes about 1200. We use the following test parameters for
evaluation:

‚ Requested processing latency (lreq) : 4 minutes.
‚ Scheduling interval (∆t): 5 minutes (36 scheduling prob-

lems over 3 hours).
‚ VM startup time (tup): 90 seconds.
‚ VM instances for Spark’s worker nodes: {c4.large,

c4.xlarge, c4.2xlarge}. Up to five instances can be cre-
ated for each instance type.

‚ Billing cycle: 1 hour (Amazon EC2’s default).
The result for specScheduler is shown in Figure 4(a)-

(b). From Figure 4(a), we can visually confirm that the
speculative scheduler gradually allocates smaller numbers of
cores. Since the scheduleAllocVMs at Line 8 in Algorithm 1
creates VMs ahead of time, the baseScheduler does not
create any new VMs in this experiment. From Figure 4(b),
there are two latency violations which occurred at around
1800 and 6300 seconds respectively due to inaccurate time-
series predictions. The total cost is $1.01 every 3 hours.

�

�

��

��

��

��

�

���

����

����

����

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

���������	

�����

�����

�

��

���

���

���

���

���

� ���� ���� ���� 	���
��� �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	

��������

�������

��������

����

��������	
����
��	��������
	��

�����	��	�	� ��	��������	�	��������	�

Figure 4. Experimental results for the Nationwide dataset.

4.2. Comparison with Other Schedulers

We compare our proposed elastic algorithms to static
scheduling and Amazon EC2’s threshold-based Auto Scal-
ing to confirm the effectiveness of our approach. Exper-
imental settings are the same as Section 4.1. For the
static scheduling, we test VM configurations with cores =
t2, 4, 8, 10, 12, 14, 16u. For Auto Scaling, we implemented
the compatible scaling rules used in [10]. Comparison of
VM hours, cost, and the percentage of latency violations
are shown in Tables 2.

TABLE 2. VM HOURS, COST, AND LATENCY VIOLATIONS FOR ELASTIC
AND STATIC SCHEDULING ALGORITHMS PER 3 HOURS.

Policy Cores VM hours Cost/3hrs Violations
[core¨hour] [USD] [%]

Static

2 6 0.33 63.89
4 12 0.66 44.44
8 24 1.32 19.44
10 30 1.65 13.89
12 36 1.98 0
14 42 2.31 0

Auto Scaling 2 to 8 15.96 0.88 25
Elastic (spec.) 2 to 14 18.33 1.01 5.56

The performance of the static schedule with 12 cores is
comparable to the speculative scheduler (0% vs. 5.56% vio-
lations). When comparing the two, the speculative scheduler
achieves a similar performance with 49% less VM hours and
cost. While our elastic scheduling policy exhibits a small
percentage of latency violations, we note that any static
scheduler, other than a very highly provisioned one, will
not be able to guarantee zero latency violations. For any
static VM allocation, there is a possibility that it will not be
sufficient for some level of demand. Our elastic schedulers,
on the other hand, successfully adapt to unforeseen compu-
tational demand changes and scale VMs accordingly with
reasonably low cost. Since the threshold-based Auto Scaling
is not aware of the application performance requirement

(i.e., 240 seconds latency) at all, it under-provisions the VMs
and ends up producing relatively many latency violations
compared to our elastic schedulers.

5. Conclusion
In this paper, we presented an elastic middleware frame-

work that is specifically designed to solve ILP problems
generated from continuous air traffic streams over an IaaS
cloud. We proposed a speculative VM scheduling algorithm
with time series and resource predictions. Experiments show
that our speculative VM scheduling algorithm can achieve
a similar performance to a static schedule while using 49%
less VM hours for a realistic air traffic pattern.

Acknowledgments. This research is partially supported by the
DDDAS program of the Air Force Office of Scientific Re-
search, Grant No. FA9550-15-1-0214 and NSF Awards, Grant No.
1462342, 1553340, and 1527287. The authors would like to thank
an Amazon Web Services educational research grant and a Google
Cloud Credits Award.

References

[1] International Air Transport Association (IATA), “New IATA
Passenger Forecast Reveals Fast-Growing Markets of the Future,”
http://www.iata.org/pressroom/pr/pages/2014-10-16-01.aspx,
October 2014.

[2] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[3] General Electric, “GE Flight Quest Challenge 2,” http://www.gequest.
com/c/flight2-final/data.

[4] Y. Cao and D. Sun, “A Link Transmission Model for Air Traffic Flow
Management,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 5, pp. 1342–1351, 2011.

[5] ——, “Migrating Large-Scale Air Traffic Modeling to the Cloud,”
Journal of Aerospace Information Systems, vol. 12, no. 2, pp. 257–
266, 2015.

[6] S. Imai, S. Patterson, and C. A. Varela, “Elastic Virtual Machine
Scheduling for Continuous Air Traffic Optimization,” Dept. of Com-
puter Science, Rensselaer Polytechnic Institute, Tech. Rep. 16-01,
Feb. 2016.

[7] J.-F. Cordeau, P. Toth, and D. Vigo, “A Survey of Optimization
Models for Train Routing and Scheduling,” Transportation Science,
vol. 32, no. 4, pp. 380–404, 1998.

[8] C. Papahristodoulou and E. Dotzauer, “Optimal portfolios using linear
programming models,” Journal of the Operational research Society,
vol. 55, no. 11, pp. 1169–1177, 2004.

[9] T. Lu and C. Boutilier, “Dynamic segmentation for large-scale mar-
keting optimization,” in ICML-2014 Workshop on Customer Life-Time
Value Optimization in Digital Marketing, June 2014.

[10] Amazon Web Services, “Amazon Elastic Compute Cloud (Amazon
EC2),” https://aws.amazon.com/ec2/.

[11] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: Towards a fully automated workflow,” in ICAS
2011, pp. 67–74.

[12] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck,
“From data center resource allocation to control theory and back,”
in IEEE CLOUD 2010, pp. 410–417.

[13] The Apache Software Foundation, “Apache Spark,” http://spark.
apache.org/.

[14] LGPL open source project, “lp solve: linear integer programming
solver,” http://lpsolve.sourceforge.net/.

[15] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in IEEE CLOUD
2011, pp. 500–507.

