Cost-Efficient Elastic Stream Processing
Using Application-Agnostic Performance Prediction

Shigeru Imai, Stacy Patterson, and Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute
{imais,sep,cvarela} @cs.rpi.edu

Abstract—Cloud computing adds great on-demand scala-
bility to stream processing systems with its pay-per-use cost
model. However, to promise service level agreements to users
while keeping resource allocation cost low is a challenging
task due to uncertainties coming from various sources, such
as the target application’s scalability, future computational
demand, and the target cloud infrastructure’s performance
variability. To deal with these uncertainties, it is essential to
create accurate application performance prediction models.
In cloud computing, the current state of the art in perfor-
mance modelling remains application-specific. We propose an
application-agnostic performance modeling that is applicable
to a wide range of applications. We also propose an extension
to probabilistic performance prediction. This paper reports the
progress we have made so far.

Keywords-cloud computing; performance prediction; re-
source allocation

I. INTRODUCTION

Stream processing has been successfully used with cloud
computing in various applications including online adver-
tisement analytics, anomaly detection, and Twitter trend
analysis. Cloud computing adds great on-demand scala-
bility to stream processing systems with its pay-per-use
cost model. However, to promise service level agreements
(SLAs) to users while keeping resource allocation cost low
is a challenging task due to uncertainties coming from
various sources, such as the target application’s scalabil-
ity, future computational demand, and the target cloud
infrastructure’s performance variability. The performance of
virtual machines (VMs) from public cloud providers wildly
varies because of resource contention due to co-located
instances [1]. Also, Amazon EC2 reportedly offers different
hardware configurations under the same instance type and
the performance differs up to 60% [2].

To adaptively scale up and down virtual machines in
the cloud, various auto-scaling techniques have been pro-
posed [3]. These techniques mostly focus on how to scale
virtual machines (VMs) to keep up with fluctuating de-
mand either reactively or proactively; however, cost-aware
resource scheduling for elastic stream processing has not
been fully explored yet, unlike its batch processing al-
ternatives. Ishii and Suzumura first attempted to explic-
itly optimize monetary cost for hybrid clouds using linear

programming [4]. Han et al. developed a queuing theory
based performance model for web services and applied it to
find a cost-efficient allocation of servers [5]. Both previous
works use application-specific performance models created
offline to predict performance for streaming applications.
Offline models are created from benchmarking the target
application against all available VM types. Moreover, since
it is application-specific, we need to repeat the benchmarking
process every time we test new applications and/or environ-
ments. Another way of creating models is a hybrid approach,
where we create models offline using a training data set
and adapt them online afterwards. The hybrid approach
does not need to repeat the benchmarking process, and it
has ability to adapt to new test environments. AROMA [6]
trains performance prediction models from various Hadoop
jobs, and then it selects an appropriate model for a newly
submitted job using its resource utilization signature. Hybrid
approaches have been explored in the context of database
management systems [7], web applications [8], HPC appli-
cations [9], [10] and embedded systems [11] as well.

To the best of our knowledge, hybrid approaches used
in cloud computing to date are all application-specific;
however, if we could create performance models in an
application-agnostic way, the hybrid approach is potentially
applicable to a wide range of applications. Moreover, instead
of predicting performance y deterministically by a function
y = f(x), we can probabilistically predict it by a distribution
P(y | x). By adding this probabilistic prediction capability
to the prediction model, it can address public cloud com-
puting’s inherent performance variability and could lead to
a better prediction accuracy. The created models will be
used to probabilistically satisfy a user-specified SLA (e.g.,
latency violation must be at most X %) while keeping the
cost as low as possible. Also, to rapidly adapt to unexpected
demand changes, resource scheduling algorithms should not
use computationally heavy optimization algorithms. This is
a completely different requirement from batch processing,
where the use of computationally expensive algorithms is
meaningful for a long one-shot batch.

In summary, we would like to achieve the following goals
for elastic stream processing:

e We develop a hybrid performance model creation

method that is application-agnostic. Our approaches
only uses general resource usage information, and thus
can potentially be applicable to a broad range of cloud
applications.

o We further enhance the application-agnostic modelling
method by adding probabilistic prediction capability for
better prediction accuracy.

o We develop a light-weight resource scheduling algo-
rithm suitable for stream processing and evaluate the
monetary cost efficiency.

This paper reports progress we have made so far toward the
above goals. The rest of the paper is organized as follows.
Section II describes a general framework of cost-efficient
elastic stream processing. Section III summarizes our initial
VM scheduling heuristic for elastic stream processing and
its preliminary results. Section IV describes our proposed
application-agnostic performance prediction model creation
method. Finally, Section V concludes the paper.

II. COST-EFFICIENT ELASTIC STREAM PROCESSING

Figure 1 shows the architecture of the general elastic
stream processing system. For streaming systems, through-
put is one of the most important performance measures,
but too high throughput is not possible or too expensive to
achieve. So, the user first needs to set a reasonable maximum
throughput 7.« as an SLA to the system. The Application
Monitor monitors the application and collects information
such as the number of processing requests in the queue
and current throughput. The Resource Monitor monitors
application-independent resource usage information such as
CPU, memory, disk, and network utilization. The Resource
Controller collects information from the Application and
Resource Monitors, and make scaling decisions based on
predicted future demand from the Time Series Prediction
Model and predicted throughput from the Throughput Pre-
diction Model.

SLA configuration
(Required processing throughput)

Processing
Requests

Prediction

Time Series @
Prediction / i

pdate Monitored| [applicati

Model /¥—— Info ';:I”c.at'o" Application
Resource P — onitor

Prediction| Controller Resource Stream Processing
hroughput Scalin Monitor Engine
Prediction s

] Update VMs
odel
= w | w| - |

Figure 1.

Architecture of the elastic stream processing system

The Resource Controller makes scaling decisions ev-
ery At time. At each decision time step ¢, it ob-
tains a set of predicted maximum throughput H(t) =
{M(t),72(t),,in(t)} for N different VM configurations

from the Throughput Prediction Model. 7.(t) is a predicted
throughput at time ¢ using VM configuration c¢. Similarly,
the Resource Controller receives a set of predicted demand
for the next T time steps D(t) = {d(t), d(t + At), ..., d(t +
T-At)} from the Throughput Prediction Model. Using ()
and D(t), we can determine the cost minimum configuration
c for time ¢ as follows.

min COST (¢) s.t. min((f(t), Nmax) < 7e(t), (1)

where COST(c) is a function to compute the cost of VM
configuration ¢ when using it until the next decision time
step. We can repeat the same operation for the next T
time steps to obtain a sequence of optimal configurations
c(t), c(t+ At), ..., c(t+T - At). Public cloud providers such
as Amazon EC2 charge one full hour even if actual VM us-
age is just one minute. Therefore, to reduce cost, we should
adjust the sequence of VM configurations accordingly so
that useless VM termination and restart can be avoided. This
idea is known as smart kill [12].

III. PRELIMINARY HEURISTIC AND ITS EVALUATION

As an initial attempt to realize cost-efficient elastic stream
processing, we implemented an elastic VM scheduling
heuristic with future demand time series prediction and VM
performance prediction (for details, see [13]). The scheduler
receives a request of solving integer linear programming
problem every five minutes and is expected to finish it within
four minutes. The heuristic is evaluated on Amazon EC2 and
is aware of billing cycle of currently allocated VMs so that
it does not waste cost and computing power.

The result of an experiment with gradually changing de-
mand is shown in Figure 2. Due to inaccuracy of the demand
predictor, execution time exceeded the requested latency at
1800 and 6300 seconds respectively, but overall, it follows
demand changes relatively well. Figure 3 shows a VM
allocation sequence generated from the heuristic. We can
see that the heuristic gradually allocated VMs from c4.large
instances, and once it reached the c4.large’s allocation limit
(five instances by default), allocated a c4.xlarge instance.
Table I shows a comparison with Amazon EC2’s threshold-
based Auto Scaling. Since Auto Scaling only reacted to
CPU utilization threshold values, it failed to allocate enough
VMs and ended up with higher latency violations than our
heuristic.

Table 1
VM HOURS, COST, AND LATENCY VIOLATIONS FOR AMAZON EC2’s
AUTO SCALING AND THE DETERMINISTIC ELASTIC SCHEDULING.

Polic Cores VM hours Cost Violations
y [core-hour] | [USD] [%]
Auto Scaling 2t08 15.96 0.88 25
Elastic Scaling | 2 to 14 18.33 1.01 5.56

2000 25

E

£ 1500 03

-] 5

K T d 55

£ 1000 7~V < 2

2 // ~ 10% === Demand
B

3 4 S

3 500 7 S s COTES
g ; ~ 5 2

0 1800 3600 5400 7200 9000 10800

Time [sec]

(a) Computational demand and cores.

300
250

=== Requested
Latency

200 - — ---

[sec]
=
&
o

100 +—

Execution
50 + — Time

Latency/Execution Time

0 1800 3600 5400 7200 9000 10800

Time [sec]

(b) Requested latency and execution time.

Figure 2. Preliminary experimental result for deterministic elastic schedul-
ing.

D End qftest
|
i
6 c4.large H
5 [c4.xlarge | c4.xlarge [7 caxlarge
4 | c4.large | c4.large \ H
3 c4.large \
2 :
1 c4.large H
0| cd.large [|
SESCSSSECSCSSSSSSSSSSSSSSSSSSSSSSSSSSSsSsEsEsss
: EEEEERREERREE
Time [sec]
Figure 3. VM allocation sequence for generated from the deterministic

elastic scheduling.

IV. TOWARD COST-EFFICIENT, APPLICATION-AGNOSTIC
ELASTIC STREAM PROCESSING

Accurate application throughput estimation is key to
cost-efficiency of elastic stream processing. We plan to
develop the application-agnostic performance estimation in
two steps, as shown in Figure 4. In Step 1, we plan to achieve
throughput prediction deterministically (i.e., y = f(x)), and
then in Step 2, we plan to further enhance the developed
prediction method to generate a probability density function
to account for cloud computing’s inherent performance
variance (i.e., P(y | x)).

We describe the process of deterministic throughput pre-
diction in Step 1 by following Figure 4. First, in the
offline phase, we create an application-agnostic throughput
prediction model g¢;(p,d,c;) for each VM configuration
¢i(i = 1,..,N), where p is a resource usage profile
vector, d is computational demand, and ¢, is a target VM
configuration. The training set Dy, iS created in such
a way that g; can return relative throughput between c;
and all other VM configurations other than c¢;. That is,

9:(p, d, c;) gives relative throughput n; /n;, where n; and 7y,
are throughput obtained from c; and ¢, respectively. Next, in
the online phase, we run the target application on any VM
configuration ¢ one time and record p,d, and 7;. When
predicting throughput for ¢; (# c¢i), we can estimate the
throughput for ¢; using the relative throughput estimated by
gr. as follows:

= gr(P,d,cr) - Mk 2

In Step 2, we apply a corresponding performance variability
profile to the deterministic prediction generated from Step 1
and obtain a probability density function of throughput.

Step 1: Deterministic Prediction Step 2: Probabilistic

Prediction
) X Performance Performance

VM Configurations (cy, ..., cy) Prediction Models Variability Profiles
Training forcy,...,cy forcy,...,cy

Training I

Application I
Resource
Monitor

x=[p.d,c]
p: profile vector
d : computational demand

¢; : target VM configuration

Offline ¥ : Relative throughput
Online Model for VM Profile for Predicted
Configuration ¢ VM Configuration ¢;
Target
Application x = [p,d,c] ® Deterministic Probabilistic

Resource p: profile vector Ik Prediction Prediction

d : computational .demar)d

c; : target VM configuration

VM Configuration ¢,

Figure 4. Overview of application-agnostic throughput prediction.

Contributions and evaluation plans of the proposed ap-
proaches are summarized as follows:

o In cloud computing, it is common to create application
performance models offline only [14], [15], [4], [16] or
in a completely adaptive manner [17]. There are few
studies combining offline training and online adaptation
for predicting performance of Hadoop jobs [6] and
queries for database management systems [7]. Un-
like these application-specific approaches, we take an
application-agnostic approach, where the performance
predictor only uses general resource usage information.
Our approach can potentially be applicable to a broad
range of cloud applications. We will evaluate several
categories of applications and investigate the applica-
bility and limitations of this approach.

As reported from several studies [1], [2], the perfor-
mance of VMs varies due to resource contention. There
are several studies on cost-efficient resource manage-
ment that address the performance variance [18], [19];
however, their models are application-specific. Taking
the performance variation of VMs into consideration,
we will be able to obtain probabilistic performance
models for a wide range of applications. By using
a probability distribution, we can estimate the per-

formance probabilistically (e.g., X% of chance, the
application finishes within Y seconds). This would
give the users a chance to more precisely control the
performance through an SLA (e.g., latency violation
must be at most Z%).

e We will develop a light-weight resource scheduling
algorithm suitable for stream processing and evalu-
ate the monetary cost efficiency. We will collect real
application resource usage from public cloud service
providers and use it with CloudSim [20] for simulation-
based evaluation.

V. CONCLUSION

We showed a preliminary heuristic for elastic stream
processing and described our application-agnostic perfor-
mance prediction modelling method, which can be widely
applicable to many applications. The created models will be
used to probabilistically satisfy a user-specified SLA while
keeping the cost as low as possible. We plan to first formalize
the approach in detail and verify the effectiveness of the
approach on CloudSim [20], and then move to real cloud
environments.

ACKNOWLEDGMENTS

This research is partially supported by the DDDAS
program of the Air Force Office of Scientific Research,
Grant No. FA9550-15-1-0214 and NSF Awards, Grant No.
1462342, 1553340, and 1527287. The authors would like to
thank an Amazon Web Services educational research grant
and a Google Cloud Credits Award.

REFERENCES

[1] A. Gandhi, P. Dube, A. Karve, A. Kochut, and H. Ellanti,
“The Unobservability Problem in Clouds,” in Cloud and
Autonomic Computing, 2015 International Conference on.
IEEE, 2015, pp. 13-20.

[2] Z. Ou, H. Zhuang, J. K. Nurminen, A. Yl-jski, and P. Hui,
“Exploiting Hardware Heterogeneity within the Same In-
stance Type of Amazon EC2,)” in in Proc. 4th USENIX
Conference on Hot Topics in Cloud Computing, 2012, p. 4.

[3] T. Lorido-Botran, J. Miguel-Alonso, and J. a. Lozano, “A
Review of Auto-scaling Techniques for Elastic Applications
in Cloud Environments,” Journal of Grid Computing, vol. 12,
no. 4, pp. 559-592, 2014.

[4] A. Ishii and T. Suzumura, “Elastic Stream Computing with
Clouds,” 2011 IEEE 4th International Conference on Cloud
Computing, pp. 195-202, 2011.

[5] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond,
“Enabling Cost-Aware and Adaptive Elasticity of Multi-Tier
Cloud Applications,” Future Generation Computer Systems,
vol. 32, pp. 82-98, 2014.

[6] P. Lama and X. Zhou, “AROMA: Automated Resource Allo-
cation and Configuration of MapReduce Environment in the
Cloud,” Proceedings of the 9th international conference on
Autonomic computing, p. 63, 2012.

[7]1 M. B. Sheikh, U. F. Minhas, O. Z. Khan, A. Aboulnaga,
P. Poupart, and D. J. Taylor, “A Bayesian Approach to Online
Performance Modeling for Database Appliances Using Gaus-
sian Models,” in Proceedings of the 8th ACM international
conference on Autonomic computing. ACM, 2011, pp. 121-
130.

[8] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang,
“CloudProphet: Towards Application Performance Prediction
in Cloud,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 426-427.

[9] L. Carrington, M. A. Laurenzano, and A. Tiwari, “Inferring
Large-Scale Computation Behavior via Trace Extrapolation,”
in Parallel and Distributed Processing Symposium Workshops
& PhD Forum, 2013 IEEE 27th International. 1EEE, 2013,
pp. 1667-1674.

[10] C. Rosas, J. Giménez, and J. Labarta, “Scalability Predic-
tion For Fundamental Performance Factors,” Supercomputing
frontiers and innovations, vol. 1, no. 2, pp. 4-19, 2014.

[11] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer,
“Learning-based analytical cross-platform performance pre-
diction,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation, 2015 International Conference on.
IEEE, 2015, pp. 52-59.

[12] J. Kupferman, J. Silverman, P. Jara, and J. Browne,
“Scaling into the Cloud,” Tech. rep., University of California,
Santa Barbara; CS270-advanced operating systems, 2009.
[Online]. Available: http://www.cs.ucsb.edu/~jbrowne/files/
ScalingIntoTheClouds.pdf

[13] S. Imai, S. Patterson, and C. A. Varela, “Elastic Virtual Ma-
chine Scheduling for Continuous Air Traffic Optimization,” in
16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, May 2016.

[14] S. Imai, T. Chestna, and C. A. Varela, “Accurate Resource
Prediction for Hybrid IaaS Clouds Using Workload-Tailored
Elastic Compute Units,” in 6th IEEE/ACM International
Conference on Utility and Cloud Computing, December 2013.

[15] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema,
“Deadline-Constrained Workflow Scheduling Algorithms for
Infrastructure as a Service Clouds,” Future Generation Com-
puter Systems, vol. 29, no. 1, pp. 158-169, 2013.

[16] A. Verma, L. Cherkasova, and R. Campbell, “ARIA: Auto-
matic Resource Inference and Allocation for MapReduce En-
vironments,” 8th ACM international conference on Autonomic
computing, pp. 235-244, 2011.

[17] S.-M. Park and M. Humphrey, “Self-Tuning Virtual Machines
for Predictable Escience,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid. 1EEE Computer Society, 2009, pp. 356-363.

[18] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamo-
hanarao, “Robust Scheduling of Scientific Workflows with
Deadline and Budget Constraints in Clouds,” 2014 IEEE 28th
International Conference on Advanced Information Network-
ing and Applications, pp. 858-865, 2014.

[19] L. C. Canon and E. Jeannot, “Evaluation and Optimization
of the Robustness of Dag Schedules in Heterogeneous En-
vironments,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, no. 4, pp. 532-546, 2010.

[20] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, “CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation
of Resource Provisioning Algorithms,” Software: Practice
and Experience, vol. 41, no. 1, pp. 23-50, 2011.

