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Abstract—To analyze data distributed across the world, one
can use distributed computing power to take advantage of data
locality and achieve higher throughput. The multi-cloud model,
a composition of multiple clouds, can provide cost-effective
computing resources to process such distributed data. As multi-
cloud becomes more and more accessible from cloud users,
the use of MapReduce/Hadoop over multi-cloud is emerging;
however, existing work has two issues in principle. First, it
mainly focuses on maximizing throughput by improving data
locality, but the perspective of cost optimization is missing.
Second, conventional centralized optimization methods would
not be able to scale well in multi-cloud environments due to
its highly dynamic nature. We plan to solve the first issue by
formalizing an optimization framework for MapReduce over
multi-cloud including virtual machine and data transfer costs,
and then the second issue by creating decentralized resource
management middleware that considers multi-criteria (cost and
performance) optimization. This paper reports progress we
have made so far on these two directions.
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I. INTRODUCTION

As demand for large-scale data processing grows in many
application areas, data is logged, collected, and processed
globally. For example, seismographic data is collected by
sensors at various locations; financial data is generated from
stock markets all around the world; and an enormous number
of web sites are created and hosted virtually everywhere
in the world. These data sets can be very big depending
on the number of data sources and the data production
rate. Or, often times, they are big in nature such as crowd-
sourced databases, for example, Wikipedia. To process these
globally distributed “Big Data” in a timely manner, one can
take advantage of data locality by using distributed public
cloud data centers. Not only public clouds, but also private
clouds can be part of distributed computing resources.
By connecting these multiple clouds, we can construct a
multi-cloud environment [1] that works as a foundation of
Internet-scale distributed data analytics. Unlike the federate
cloud model requires an agreement between multiple cloud
providers to give users transparent access to the cloud, the
multi-cloud model is more client-centric. That is, in the
multi-cloud model, interoperability between multiple clouds
is maintained by the user using libraries or third party

brokers [2].
MapReduce’s [3] open-source implementation Hadoop [4]

has been successfully used in data analytics to date, due
to its simple programming abstraction as well as scalable
and fault-tolerant architecture. As multi-cloud environments
become more and more accessible, deploying MapReduce
applications over multi-cloud is emerging [5], [6], [7], [8].
We have identified two main issues for MapReduce-based
data analytics over multi-cloud. First, existing work on
multi-cloud mainly focuses on maximizing throughput by
improving data locality [5], [8], but the perspective of cost
optimization is missing. To consider the cost and running
time of applications doing the optimization process, we need
to focus not only on data locality, but also on data transfer
costs defined by multiple different cloud providers’ cost
models. Second, existing resource provisioning optimiza-
tion methods for single clouds [9], [10] require centralized
knowledge. Namely, a single resource scheduler collects
required information for optimization from distributed cloud
resources. Crucially, such centralized methods would not be
able to scale in multi-cloud that consist of the Internet and
public cloud data centers. Since they are highly dynamic in
nature, we cannot collect all the required information and
run an optimization algorithm frequently to keep up with
the changes. Moreover, the scheduler would become a single
point of failure.

We plan to tackle these issues two-fold. First, we will
formalize an optimization framework for MapReduce over
multi-cloud and show that it is solvable with a centralized
optimizer with limited scalability. Next, we will decentralize
the formalized optimization algorithm, which has better scal-
ability with compromised performance. The rest of the paper
is organized as follows. Section 2 describes a formalization
for a centralized MapReduce optimization over multi-cloud.
Section 3 presents a brief concept of decentralized resource
management for MapReduce. Finally, we conclude the paper
in Section 4.

II. CENTRALIZED MAPREDUCE OPTIMIZATION OVER
MULTI-CLOUD

In this section, we formalize a centralized optimization of
MapReduce computation over multi-cloud.



1) Notations:
Nodes and data sets: The architecture of multi-cloud

MapReduce is shown in Figure 1. S “ ts1, s2, ..., s|S|u is a
set of data sources. S collectively generates a source data set
Dsrc “ td1, d2, ..., d|S|u, where di is produced by a source
si. There are a set of mappers M “ tm1,m2, ...,m|M |u
to process Dsrc, which generates a set of mapped data
Dmap “ td

1
1, d

1
2, ...u. Dmap then is received by a shuffler h.

All the mappers work in parallel, but the shuffling process
does not finish until all the mapped data come to the shuffler.
Once mapped data is shuffled, all the intermediate key-value
pairs in Dmap is grouped by key, the shuffler h outputs
a set of shuffled data Dshuf “ td21, d

2
2, ...u to reducers

R “ tr1, r2, ..., r|R|u. Finally, the reducers process Dshuf

and output a set of reduced data Dred “ td31 , d
3
2 , ...u to

the end node e. For notational simplicity, we call N “

M Y thu Y R the entire set of processing nodes and
D “ Dsrc YDmap YDshuf YDred the entire set of data.
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Figure 1. High-level View of Multi-Cloud MapReduce.

For any data d P D, the source and the destination
nodes of d are given by the following functions: fdÑns

pdq
defines the source node of data d and fdÑnd

pdq defines the
destination node of data d. Inversely, given a node n P N , a
set of data coming out of the node is given by the function
gnsÑdpnq “ f´1

dÑns
pnq. Similarly, a set of data coming into

to the node is given by the function gndÑdpnq “ f´1
dÑnd

pnq.
Also, fsizepdq returns the size of data d.

Multi-cloud data centers: C “ tc1, c2, ..., cMu Y tc̄u
is a set of public cloud providers. A cloud provider has one
or more regions that are geographically distributed. P “

tρ1, ρ2, ...u Y tρ̄u is a s set of regions. Likewise, a region
has several zones internally. Z “ tz1, z2, ...u Y tz̄u is a set
of zones, in which virtual machines (VMs) are launched.
Relationships between C,P , and Z are defined by fzÑρ,c :
Z Ñ P ˆ C. We define special symbols c̄, ρ̄, and z̄ to be
used for VMs allocated outside the public clouds. For such

VMs, fzÑρ,cpz̄q “ pρ̄, c̄q. We intend to use these symbols
to support VMs allocated in private clouds.
~t “ rt1, t2, ..., tT s is a vector of available VM types,

where each ti is associated with a zone in a region from
a cloud provider, the number of CPU cores γptiq, and
standardized computing power ηptiq such as defined in [11].
Even if there are multiple instance types with the same QoS
and price, if they are in different regions, we treat them as
different VM types. For example, m3.medium in US East and
m3.medium in US West are two different VM types here.
πptjq is a VM usage price for a VM type tj per unit time.

Inbound/outbound data transfer costs are defined for regions
ρi P P pi “ 1, ..., |P |q. πin

z pρiq, π
in
ρ pρiq, and πin

inetpρiq are
inbound data transfer prices per unit data: πin

z pρiq is for data
transferred from another zone of the same region; πin

ρ pρiq is
for data transferred from another region of the same cloud
provider; and πin

inetpρiq is for data transferred from the In-
ternet. Note that πin

z pρ̄q “ πin
ρ pρ̄q “ πin

inetpρ̄q “ 0. Outbound
data transfer prices πout

z pρiq, π
out
ρ pρiq, and πout

inetpρiq are de-
fined similarly: πout

z pρiq is for data going to another zone of
the same region; πout

ρ pρiq is for data going to another region
of the same cloud provider; and πout

inetpρiq is for data going
to the Internet. Again, πout

z pρ̄q “ πout
ρ pρ̄q “ πout

inetpρ̄q “ 0.
Virtual machine instances: We assume there can be

at most Vmax VM instances per instance type. VM instances
are represented by a VmaxˆT matrix V , where the pj, kq-th
entry is vjk P t0, 1u. If vjk “ 1, we create a VM instance
for the VM type tk, we do not create any VMs otherwise.
Clearly,

ř

1ďjďVmax
vjk is the total number of VM instances

we create for the VM type tk. Every processing node in N
is mapped to a VM by a |N | ˆ Vmax ˆ T matrix X. The
pi, j, kq-th element of X is defined as xijk P t0, 1u, where
xijk “ 1 if ni P N is mapped to vjk “ 1, and xijk “ 0
otherwise. To guarantee each node is mapped to only one
VM,

řVmax

j“1

řT
k“1 xijk “ 1 must hold for i “ 1, ..., |N |. We

assign a submatrix of X p1 ď i ď |M |q for the mapping for
the mappers, X pi “ |M |`1q for the shuffler, and X p|M |`
2 ď i ď |N |q for the reducer. We call them XM ,Xh,XR

respectively. Using xijk, we define a function fnÑvm that
maps nodes to VMs as follows. For ni P N , fnÑvmpniq “
vjk s.t. xijk “ 1, vjk “ 1. Every VM instance vjk P V is
mapped to a zone by the function fvmÑzpvjkq “ z P Z and
a VM type by the function fvmÑtpvjkq “ tj .

Networking parameters: For every arbitrary pair of
VMs vs, vd P V , λpvs, vdq defines the latency between
VMs vs and vd. Likewise, ωpvs, vdq defines the bandwidth
between VMs vs and vd.

Helper functions for data transfer cost computation:
To compute data transfer costs, we define some more helper
functions. For a node n P N , fnÑzpnq “ pfvmÑz ˝

fnÑvmqpnq returns a zone where the node belongs to.
Using fnÑz and fzÑρ,c, for a source node ns and

a destination node nd, we can obtain a triplet of
a zone, a region, and a cloud provider as follows.



`

fnÑzpnsq, fnÑρpnsq, fnÑcpnsqq “ pzs, ρs, csq and simi-
larly,

`

fnÑzpndq, fnÑρpndq, fnÑcpndqq “ pzd, ρd, cdq. Note
that fnÑρ “ 1st ˝ fzÑρ,c ˝ fnÑz and fnÑc “ 2nd ˝
fzÑρ,c ˝ fnÑz, where 1st and 2nd are the functions to get
the first and the second entries from a pair respectively (i.e.,
1stpa, bq “ a, 2ndpa, bq “ b). For nodes outside the public
cloud, we get a triplet pz̄, ρ̄, c̄q.

The following binary functions are defined to determine
whether a data transfer from ns to nd is inter-zone, inter-
region, or inter-cloud provider. Note that if the data transfer
is local, i.e., cs “ cd and ρs “ ρd and zs “ zd, there is no
cost associated with the data transfer.

bzpns, ndq “

"

1 if cs “ cd and ρs “ ρd and zs ‰ zd,
0 otherwise.

bρpns, ndq “

"

1 if cs “ cd and ρs ‰ ρd,
0 otherwise.

bcpns, ndq “

"

1 if cs ‰ cd,
0 otherwise.

2) Processing Time and Cost:
Processing time: Suppose we are given functions to

compute processing times: τmappmi, dj , vmi
q for a map-

per mi to process data dj on the mapped VM vmi ,
τshufph, d

1
j , vhq for the shuffler h to process data d1j on

the mapped VM vh, and τredpri, d
2
j , vriq for a reducer

ri to process data d2j on the mapped VM vri , we can
compute processing times for the map, shuffle, and reduce
phases as follows. Note that vmi , vh, and vri are given by
fnÑvmpmiq, fnÑvmphq, and fnÑvmpriq respectively.

tmappV,XM q “ max
miPM

ÿ

djPgndÑdpmiq

„

fsizepdjq

ωpvs, vmiq
` λpvs, vmiq

` τmappmi, dj , vmiq `
fsizepd

1
jq

ωpvmi , vhq
` λpvmi , vhq



,

where vs “ fdÑns
pdjq, d1j represents processed dj by mi,

and vs “ fnÑvmpsq.

tshufpV,Xhq “ τshufph, d
1
j , vhq

tredpV,XRq “ max
riPR

ÿ

d2
j
PgndÑdpriq

„

fsizepd
2
j q

ωpvh, vriq
` λpvh, vriq

` τredpri, d
2
j , vriq `

fsizepd
3
j q

ωpvri , veq
` λpvri , veq



,

where d3j represents processed d2j by ri and ve “

fnÑvmpeq. tmap takes the maximum time over all processing
times from the mappers in M . Each mapper mi takes the
time to: 1) receive source data from a source, 2) process
the data at the mapper, and 3) transfer the processed data to
the shuffler. Similarly, tred takes the maximum time over all
processing times from the reducers in R. The total process-
ing time can be represented as ttotalpV,Xq “ tmap ` tred.
Note that we do not include tshuf because the shuffler h
can process individual mapped data incrementally as they
arrive from the mappers. Assuming the shuffler has enough

computing power, the time for shuffling is masked by tmap.
Cost: The total VM usage cost πvm is given as follows:

πvmpV,Xq “

Vmax
ÿ

j“1

T
ÿ

k“1

πpfvmÑtpvjkqq ˆ

„

tmap ¨H
´

|M |
ÿ

i“1

xijk
¯

` tshuf ¨ x|M |`1,jk `

tred ¨H
´

|R|
ÿ

i“1

x|M |`1`i,jk

¯



,

where Hpxq returns 1 only if 1 ď x, otherwise 0. The data
transfer cost πdata is given as follows:

πdatapV,Xq “
ÿ

dPD

fsizepdq ˆ πdpns, ndq,

where ns “ fdÑns
pdq, nd “ fdÑnd

pdq and

πdpns, ndq “ bzpns, ndq

´

pπout
z ˝ fnÑρqpnsq ` pπ

in
z ˝ fnÑρqpndq

¯

` bρpns, ndq

´

pπout
ρ ˝ fnÑρqpnsq ` pπ

in
ρ ˝ fnÑρqpndq

¯

` bcpns, ndq

´

pπout
c ˝ fnÑρqpnsq ` pπ

in
c ˝ fnÑρqpndq

¯

.

Notice that fnÑρ in πd uses fnÑvm, so we can see
πdata as a function of V and X . Finally, the total cost
πtotalpV,Xq “ πvm ` πdata. πdata is a summation of data
transfer costs for all data d P D. If a data transfer is either
inter-zone, inter-region, or inter-cloud provider, then data
transfer is charged for both inbound and outbound by one
of the binary functions bz, bρ, and bc. Note that if a node is
not in the public cloud, then fnÑρ returns ρ̄, which is not
subject to charge.

3) Problem Formulations: Given the information from
Section II-1 and Section II-2, we define both time and
budget-constrained non-linear integer programming prob-
lems of MapReduce over multi-cloud as follows:
‚ Time-constrained cost minimization:

min πtotalpV,Xq,

subject to ttotalpV,Xq ď tdeadline,

xijk P t0, 1u, vjk P t0, 1u,
Vmax
ÿ

j“1

T
ÿ

k“1

xijk “ 1,@i P r1, |N |s, (1)

Hp

|N |
ÿ

i“1

xijkq “ vjk, (2)

@j P r1, Vmaxs,@k P r1, T s.

where tdeadline is a given time deadline constraint.
‚ Budget-constrained time minimization: Given a bud-

get constraint πbudget, minimize ttotalpV,Xq subject to
πtotalpV,Xq ď πbudget. Other constraints are given by
Equation 1 and 2.

The first constraint (Equation 1) is to ensure each node is
mapped to only one VM instance. The second constraint



(Equation 2) is to ensure that there is at least one node
mapped to a created VM, and that no nodes are mapped to
VMs that do not exist.

Both ttotal and πtotal are non-linear and the above non-
linear integer programming problems are NP-hard [12].
Thus, there is no known algorithm obtaining the optimal
solution to these problems efficiently. We are now working
to find heuristics (e.g., Particle Swarm Optimization [13])
that give cost-efficient high-performance solutions within a
reasonable amount of time.

III. TOWARDS DECENTRALIZED INTERNET-SCALE DATA
ANALYTICS

Here, we describe the basic idea of decentralized re-
source management for MapReduce applications. As shown
in Figure 2, there are three layers in the framework: the
VM resource layer, the agent network (middleware) layer,
and the application layer. There is an agent per VM that
independently makes application resource reconfiguration
decisions.
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Figure 2. Layered architecture of the decentralized resource management
framework.

Given a time or budget constraint from the user, the
goal of decentralized resource management is to find a
resource configuration that is efficient in both cost and
performance while satisfying the given constraint. Whether
the application is satisfying the constraint (i.e., throughput
or cost per time) or not, each agent always tries to improve
the throughput by migrating one of the application nodes
to another VM. Only if the application is not satisfying the
constraint, the agent creates a new VM that satisfies the
constraint and migrates one of the application nodes to the
newly created VM. Before an actual migration is performed,
it is important for the agent to predict the performance after
the migration. We are currently making progress on the
performance prediction model.

IV. CONCLUSION

We are working towards creating a scalable Internet-scale
data analytics framework over multi-cloud. In this paper,
as a first step to achieve that goal, we first formalized an
optimization framework for MapReduce over multi-cloud,
and then we showed a brief idea of decentralized resource

management middleware that considers both cost and per-
formance during resource allocation.
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