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Abstract—Self-healing spatio-temporal data streaming systems
enable error detection and data correction based on error
signatures. Error signatures are mathematical function patterns
with constraints and are used to identify and categorize errors
in redundant spatio-temporal data streams. In this paper, we
apply these methods to real data from a private Cessna flight
and from the Air France AF447 accident in June 2009. For
the private Cessna flight, three error scenarios are simulated:
pitot tube failure, GPS failure, and simultaneous pitot tube and
GPS failures. The error detection accuracy is approximately
93% and the response time to correct data is at most 5
seconds. For the AF447 flight, 162 seconds of available flight data
including the pitot tubes failure is collected from the accident
report. The pitot tube failure of the AF447 flight is successfully
detected and corrected after 5 seconds from the beginning of the
failure. Overall error mode detection accuracy reaches 96.31%.
Furthermore, our simulations show that the system never corrects
data incorrectly, i.e., all inaccurate mode detections produce
either unknown or unrecoverable errors.

I. INTRODUCTION

Spatio-temporal data streams generated from sensors can be
erroneous and could lead to serious problems. For example,
pitot tubes icing which occurred to Air France flight 447
(AF447) in June 2009 led to faulty airspeed readings and
eventually caused a fatal accident killing all 228 people on
board. Airplanes are one of the most complicated machines
to operate since pilots have to deal with a lot of information
provided from the instruments in a cockpit. In the event of
instrument failures, making the right decision becomes even
more difficult because of potentially partially erroneous data.
In the worst case scenario, misinterpreting the data could lead
to deadly accidents such as the Air France flight 447 [1].

The aircraft of the AF447 flight crashed in the Atlantic
Ocean due to ice which temporarily formed in the pitot
tubes causing erroneous airspeed readings, and the subsequent
inability of the auto-pilot and human pilots to recover. The
accident could have been prevented by endowing the flight
system with the ability to understand the following data
relationship:

−→vg = −→va +−→vw. (1)

where −→vg ,−→va, and −→vw represent the ground speed, the airspeed,
and the wind speed vectors. These speeds are obtained through
independent data collection methods: the ground speed is
typically computed from Global Positioning System (GPS)
data, the airspeed is computed from air pressure measurements

by pitot tubes, and the wind speed from weather forecast
computer models. Since any one of the three speeds can be
calculated using the other two with Equation (1), they are
redundant to each other. Using the available redundancy in
the data, we can detect and correct errors. Note that we use
this speed example throughout the paper. Our error signature-
based detection and correction methods can fix erroneous
data readings caused by sensor failures within a few seconds
and thereby keep flight systems working properly. Such self-
healing flight systems could have prevented the tragic AF447
accident from happening and saved the lives of all crew
members and passengers.

We have created a highly declarative programming language
called PILOTS (ProgrammIng Language for spatiO-Temporal
Streaming applications) [2], [3], [4] that enables data correc-
tion and detection of spatio-temporal data streams based on
data redundancy. Spatio-temporal data streams refer to data
streams whose items include associated spatial and temporal
coordinates, often viewed as meta data. Examples include
temperature measurements, financial stock values, gas prices,
surveillance camera imaging, and aircraft sensor readings. A
PILOTS program may specify 1) how to view heterogeneous
data stream sources as homogeneous spatio-temporal data
streams, 2) how to correct the data streams based on error
signatures, and 3) how to output values of interest based on
the corrected data streams. Error signatures are mathematical
function patterns with constraints and are used to stochastically
identify and categorize errors. The PILOTS programming
language enables high-level development of applications to
handle spatio-temporal data streams and ultimately assist hu-
mans in making better decisions.

The PILOTS project has evolved gradually to date. First,
the design of the PILOTS programming language and the
concept of error signatures were proposed [2]. Next, a runtime
implementation of PILOTS capable of data selection and error
signatures computation was presented [3]. Thirdly, an error de-
tection method and a runtime implementation of PILOTS with
error detection and correction capability were presented [4].
In this paper, we overview PILOTS version 0.2.3 [5] and
mathematically refine the error signature-based detection and
data correction methods. Also, we evaluate error detection
performance with real data from a private Cessna flight and
from the AF447 flight.

The rest of the paper is organized as follows. Section II



describes technical background of the paper including methods
and software for error detection and correction. Section III
talks about error signatures for commonly used speed data in
aviation and how to express these error signatures in PILOTS
programs. Section IV shows performance metrics and results
of error detection performance for a private Cessna flight
and the AF447 flight data. Finally, we show related work in
Section V and conclude the paper in Section VI with potential
future directions.

II. TECHNICAL BACKGROUND

A. Error Detection and Correction Methods

The error detection and correction methods [4] are refined
and described in detail. The basic idea is that the algorithm
recognizes the shape of an error function, identifies a type of
error, and corrects associated data values if possible.

Error function An error function is an arbitrary function
that computes a numerical value from independently measured
input data. It is used to examine the validity of redundant data.
If the value of an error function is zero, we interpret it as no
error in the given data.

A vector −→v can be defined by a tuple (v, α), where v is
the length of −→v and α is the angle between −→v and a base
vector. Following this expression, −→vg ,−→va, and −→vw are defined
as (vg, αg), (va, αa), and (vw, αw) respectively as shown in
Figure 1. To examine the relationship in Equation (1), we
can compute −→vg by applying trigonometry to △ABC. We can
define an error function as the difference between measured
vg and computed vg as follows:

e(−→vg ,−→va,−→vw) = |−→vg − (−→va +−→vw)|
= vg −

√
v2a + 2vavw cos(αa − αw) + v2w.

(2)
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Fig. 1. Trigonometry applied to the ground speed, airspeed, and wind speed.

The values of input data are assumed to be sampled period-
ically from corresponding spatio-temporal data streams. Thus,
an error function e changes its value as time proceeds and can
also be represented as e(t).

Error signatures An error signature is a constrained math-
ematical function pattern that is used to capture the characteris-
tics of an error function e(t) under a specific condition. Using
a vector of constants K̄ = ⟨k1, . . . , km⟩, a function f(t), and
a set of constraint predicates P̄ = {p1(K̄), . . . , pl(K̄)}, the
error signature S(K̄, f(t), P̄ (K̄)) is defined as follows:

S(K̄, f(t), P̄ (K̄)) = {f(t)|p1(K̄) ∧ · · · ∧ pl(K̄)}. (3)

For example, an interval error signature can be defined as:

SI(K̄, f(t), Ī(K̄, Ā, B̄)) = {f(t)| (4)
a1 ≤ k1 ≤ b1, . . .

am ≤ km ≤ bm},

where Ā = ⟨a1, . . . , am⟩ and B̄ = ⟨b1, . . . , bm⟩. When f(t) =
t+ k, K̄ = ⟨k⟩, Ā = ⟨2⟩, and B̄ = ⟨5⟩, the error signature SI

contains all linear functions with slope 1, and crossing the Y-
axis at values [2, 5] as shown in Figure 2. On the other hand,
for f(t) = 0, SI only contains the constant function f(t) = 0.
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Fig. 2. Error signature SI with a linear function f(t) = t+ k, 2 ≤ k ≤ 5.

Given an error signature S(K̄, f(t), P̄ (K̄)), we enumerate
its elements as error signature samples, i.e.,

s(t, K̄) = f(t) s.t. s(t, K̄) ∈ S(K̄, f(t), P̄ (K̄)). (5)

An error signature sample is thus a particular function sat-
isfying the constraints defined by an error signature. For the
interval error signature SI , a sample sI(t, ⟨3⟩) is f(t) = t+3.

Mode likelihood vectors Given a set of error signatures
{S0, . . . , Sn}, we calculate δi(t), the distance between the
measured error function e(t) and each error signature Si by:

δi(t) = min
K̄

∫ t

t−ω

|e(t)− si(t, K̄)|dt. (6)

where ω is the window size and si(t, K̄) ∈ Si. Note that our
convention is to capture “normal” conditions as signature S0.
The smaller the distance δi(t), the closer the raw data is to the
theoretical signature Si. We define the mode likelihood vector
as L(t) = ⟨l0(t), l1(t), . . . , ln(t)⟩ where each li(t) is defined
as:

li(t) =

{
1, if δi(t) = 0
min{δ0(t),...,δn(t)}

δi(t)
, otherwise.

(7)



Observe that for each li ∈ L, 0 < li ≤ 1 where li represents
the ratio of the likelihood of signature Si being matched with
respect to the likelihood of the best signature. At each time
stamp, the maximum two elements li and lj of the mode
likelihood vector, where li ≥ lj , are inspected in order to
determine the error mode. Because of the way L(t) is created,
the maximum entry li will always be equal to 1. Given a
threshold τ ∈ (0, 1) we check for one likely candidate that
is sufficiently more likely than its successor by ensuring that
lj ≤ τ . Thus we determine the correct mode by choosing the
error signature, and error mode i, corresponding to li which
is Si. If i = 0 then the system is in normal mode. If lj > τ ,
then regardless of the value of j, unknown error mode (−1)
is assumed.

Error correction It is problem dependent if a known error
mode i is recoverable or not. If there is a mathematical rela-
tionship between an erroneous value and other independently
measured values, the erroneous value can be replaced by a
new value computed from the other independently measured
values. In the case of the speed example used in Equations (1)
and (2), if the ground speed vg is detected as erroneous, its
corrected value vcg can be computed by the airspeed and wind
speed as follows:

vcg =
√
v2a + 2vavw cos(αa − αw) + v2w. (8)

B. Error Detection and Correction Software

PILOTS (ProgrammIng Language for spatiO-Temporal
data Streaming applications) is a programming language
specifically designed for analyzing data streams incorporating
space and time. Using PILOTS, application developers can
easily program an application that handles spatio-temporal
data streams by writing a high-level (declarative) program
specification. The PILOTS code includes an inputs section to
specify the data streams and how data is to be extrapolated
from incomplete data, typically using declarative geometric
criteria (e.g., closest, interpolate, euclidean keywords) [3].
It includes outputs and errors sections to specify the data
streams to be produced by the application, as a function of
the input streams with a given frequency. If a detected error is
recoverable, output values are computed from corrected input
data, otherwise original input data is used. The signatures and
correct sections, enable PILOTS programmers to specify error
signatures for known error conditions, as well as the function
to use to correct the data automatically if such data errors are
found.1

Figure 3 shows the architecture of the PILOTS runtime
system, which implements the error detection and correction
methods described in the previous section. It consists of
three parts: the Data Selection, the Error Analyzer, and the
Application Model modules.

The Application Model obtains homogeneous data streams
(d′1, d

′
2, . . . , d

′
N ) from the Data Selection module, and

then it generates outputs (o1, o2, . . . , oM ) and data errors

1Parameters τ and ω—for specifying threshold and time window
respectively—can be given in command-line options.

(e1, e2, . . . , eL). The Data Selection module takes heteroge-
neous incoming data streams (d1, d2, . . . , dN ) as inputs. Since
this runtime is assumed to be working on moving objects, the
Data Selection module is aware of the current location and
time. Thus, it returns appropriate values to the Application
Model by selecting or interpolating data in time and location
depending on the data selection method specified in the
PILOTS program.

The ErrorAnalyzer collects the latest ω error values from
the Application Model and keeps analyzing errors based on
the error signatures. If it detects a recoverable error, then it
replaces an erroneous input with the corrected one by applying
a corresponding error correction equation. The Application
Model computes the outputs based on the corrected inputs
produced from the Error Analyzer.

d1 (x, y, z, t)
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Fig. 3. Data streaming architecture with error detection and correction.

III. ERROR SIGNATURES FOR SELF-HEALING SPEED DATA

In this section, we derive a set of error signatures for the
speed example used in the previous sections. Also, we present
a PILOTS program implementing the error signatures and
corresponding error correction equations.

A. Error Signatures

We consider the following four error modes: 1) normal (no
error), 2) pitot tube failure due to icing, 3) GPS failure, 4) both
pitot tube and GPS failures. Suppose the airplane is flying at
airspeed va. For computing error signatures for different error
conditions, we will assume that other speeds as well as failed
airspeed and ground speed can be expressed as follows.

• ground speed: vg ≈ va.
• wind speed: vw ≤ ava, where a is the wind to airspeed

ratio.
• pitot tube failed airspeed: blva ≤ vfa ≤ bhva, where bl

and bh are the lower and higher values of pitot tube
clearance ratio and 0 ≤ bl ≤ bh ≤ 1. 0 represents a
fully clogged pitot tube, while 1 represents a fully clear
pitot tube.

• GPS failed ground speed: vfg = 0.



We assume that when a pitot tube icing occurs, it is
gradually clogged and thus the airspeed data reported from
the pitot tube also gradually drops and eventually remains at
a constant speed while iced. This resulting constant speed is
characterized by ratio bl and bh. On the other hand, when a
GPS failure occurs, the ground speed suddenly drops to zero.
This is why we model the failed ground speed as vfg = 0.

In the case of pitot tube failure, let the ground speed, wind
speed, and airspeed be vg = va, vw = ava, and vfa = bva. The
error function (2) can be expressed as follows:

e = va −
√
v2a(b

2 + 2ab cos(αa − αw) + a2).

Since −1 ≤ cos(αa − αw) ≤ 1, the error is bounded by the
following:

va −
√
v2a(a+ b)2 ≤ e ≤ va −

√
v2a(a− b)2

(1− a− b)va ≤ e ≤ (1− |a− b|)va. (9)

In the case of GPS failure, let the ground speed, wind speed,
and airspeed be vfg = 0, vw = ava, and va = va. The error
function (2) can be expressed as follows:

e = 0−
√
v2a(1 + 2a cos(αa − αw) + a2).

Similarly to the pitot tube failure, we can derive the following
error bounds:

−(a+ 1)va ≤ e ≤ −|a− 1|va. (10)

We can derive error bounds for the normal and both failure
cases similarly. Applying the wind to airspeed ratio a and the
pitot tube clearance ratio bl ≤ b ≤ bh to the constraints ob-
tained in Inequations (9) and (10), we get the error signatures
for each error mode as shown in Table I.

TABLE I
ERROR SIGNATURES FOR SPEED DATA.

Mode Error Signature
Function Constraints

Normal e = k k ∈ [−ava, ava]
Pitot tube failure e = k k ∈ [(1− a− bh)va, (1− |a− bl|)va]

GPS failure e = k k ∈ [−(a+ 1)va,−|a− 1|va]
Both failures e = k k ∈ [−(a+ bh)va,−|a− bl|va]

When a = 0.1, bl = 0.2, and bh = 0.33, the error signatures
shown in Table I are visually depicted in Figure 4.

B. PILOTS program

A PILOTS program called speedcheck implementing the
error signatures shown in Table I is presented in Figure 5. This
program checks if the wind speed, airspeed, and ground speed
are correct or not, and computes a crab angle, which is used
to adjust the direction of the aircraft to keep a desired ground
track. For this program to be applicable to a Cessna 182-RG,
we use a cruise speed of 162 knots as va. Each section of the
program is explained in order:

• inputs: All the speed and angle data required to compute
the error and crab angle are defined here with data se-
lection methods. Since heterogeneous input data streams

0.1va

e

-0.1va

0.57va

0.9va

-0.43va

-0.9va

-1.1va

tNormal

Both failures

Pitot tube failure

GPS failure

Fig. 4. Error Signatures for speed data (a = 0.1, bl = 0.2, and bh = 0.33).

of air_speed, air_angle, ground_speed and
ground_angle are defined for 2D regions and
time, euclidean(x,y) and closest(t) select data
which is closest to the current location in 2D eu-
clidean space and then closest to the current time. For
wind_speed and wind_angle, since they are defined
for 3D regions and time, interpolate(z,2) is fi-
nally used to get linearly interpolated values in the Z-
axis using two data points after euclidean(x,y) and
closest(t) are applied.

• outputs: The crab angle is computed every second.
• errors: The error function e defined in Equation (2) is

computed. The angle signs are reversed in the formu-
lae, because in mathematics, angles increase counter-
clockwise (with 0◦ representing East) while in aviation,
angles increase clockwise (with 0◦ representing North).

• signatures: There are four error signatures {S0, S1,
S2, S3} associated with the error function e. They are
all constrained by a constant k with lower and upper
bounds based on the error signatures shown in Table I.

• correct: The error modes 1 and 2, which are identified by
S1 and S2, can be corrected using the equations defined
for the airspeed and ground speed. If the error mode 3
corresponding to S3 is detected, it is not possible to
correct two variables at the same time, thus this error
is unrecoverable.

IV. EVALUATION

We apply the error signatures defined in Section III to two
sets of real flight data. The first one is a private flight using
a Cessna 182-RG identified by N756VH [6] from Albany,
NY to Fort Meade, MD on April 3rd, 2012. The other is
the Air France flight 447 using an Airbus A330-203 which
took off from Rio de Janeiro bound for Paris on June 1st,
2009. To simulate the failures mentioned in Section III, we
added corresponding errors to the N756VH Cessna flight data;
however, we used the real pitot tube failure data for the
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program speedcheck;
inputs

wind_speed, wind_angle (x,y,z,t) using
euclidean(x,y), closest(t), interpolate(z,2);

air_speed, air_angle (x,y,t) using
euclidean(x,y), closest(t);

ground_speed, ground_angle (x,y,t) using
euclidean(x,y), closest(t);

outputs
crab_angle:

arcsin(wind_speed * sin(wind_angle - air_angle) /
sqrt(air_speedˆ2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speedˆ2))
at every 1 sec;

errors
e: ground_speed -

sqrt(air_speedˆ2 + wind_speedˆ2 + 2 * air_speed *
wind_speed * cos(wind_angle - air_angle));

signatures
/* v_a = 162 knots */
S0(k): e=k, -16.2<=k, k<= 16.2 "Normal";
S1(k): e=k, 91.8<=k, k<= 145.8 "Pitot tube failure";
S2(k): e=k, -178.2<=k, k<=-145.8 "GPS failure";
S3(k): e=k, -70.2<=k, k<= -16.2 "Both failures";

correct
S1: air_speed = sqrt(ground_speedˆ2 + wind_speedˆ2 +

2 * ground_speed * wind_speed *
cos(ground_angle - wind_angle));

S2: ground_speed = sqrt(air_speedˆ2 + wind_speedˆ2 +
2 * air_speed * wind_speed *
cos(wind_angle - air_angle));

end

Fig. 5. A declarative specification of the speedcheck PILOTS program.

AF447 flight. PILOTS programs’ error detection accuracy and
response time to mode changes are evaluated.

A. Performance Metrics

• Accuracy: This metric is used to evaluate how accu-
rately the algorithm determines the true mode. Assum-
ing the true mode transition m(t) is known for t =
0, 1, 2, . . . , T , let m′(t) for t = 0, 1, 2, . . . , T be the mode
determined by the error detection algorithm. We define
accuracy(m,m′) = 1

T

∑T
t=0 p(t), where p(t) = 1 if

m(t) = m′(t) and p(t) = 0 otherwise.
• Maximum/Minimum/Average Response Time: This

metric is used to evaluate how quickly the algorithm
reacts to mode changes. Let a tuple (ti,mi) represent
a mode change point, where the mode changes to mi

at time ti. Let M = {(t1,m1), (t2,m2), . . . , (tN ,mN )}
and M ′ = {(t′1,m′

1), (t
′
2,m

′
2), . . . , (t

′
N ′ ,m′

N ′)} be the
sets of true mode changes and detected mode changes
respectively. For each i = 1 . . . N , we can find the
smallest t′j such that (ti ≤ t′j) ∧ (mi = m′

j); if not
found, let t′j be ti+1. The response time ri for the true
mode mi is given by t′j − ti. We define the maximum,
minimum, and average response times by max1≤i≤N ri,
min1≤i≤N ri, and 1

N

∑N
i=1 ri respectively.

B. Experiment 1: N756VH Cessna Flight

1) Flight data: Flight data is collected through the follow-
ing independent sources:

• ground speed: Flight track log provided by
FlightAware [6].

• airspeed: Manually recorded by the pilot.
• wind speed: Weather forecast information provided by

National Weather Service [7].
The flight duration is 1 hour 41 minutes. The collected

speed data and error computed by Equation (2) are shown
in Figure 6. Notice that the airspeed data during take off and
landing is not accurate due to the data collection mechanism.
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Fig. 6. Collected speeds and error for the N756VH 03-Apr-2012 KALB-
KFME flight (normal).

2) Experimental Settings: Using the speedcheck PI-
LOTS program shown in Figure 5, the 6060 seconds (=1
hour 41 minutes) of flight departing from Albany, NY and
landing at Fort Meade, MD are recreated. Three types of error
are simulated as shown below. In each case, all data streams
except for erroneous one(s) are actual. Defined error modes
are: −1 for unknown, 0 for normal, 1 for pitot tube failure,
2 for GPS failure, and 3 for both failures.

• Pitot tube failure: 2400 seconds after the departure, the
airspeed drops from 162 knots to 50 knots within 10
seconds and stays at 50 knots until landing. The set of
true mode changes is given by M = {(1, 0), (2401, 1)}.

• GPS failure: 2400 seconds after the departure, the ground
speed drops from 171 knots to 0 knots immediately and
stays at 0 knots until landing. The set of true mode
changes is given by M = {(1, 0), (2401, 2)}.

• Both pitot tube and GPS failures: The above two
speed changes happen simultaneously at 2400 seconds
after the departure. Both speeds remain failed until
landing. The set of true mode changes is given by
M = {(1, 0), (2401, 3)}.

To find out the effect of the window size ω and threshold
value τ on the accuracy and response time, we measure these
metrics for window sizes ω ∈ {1, 2, 4, 8, 16} and threshold
τ ∈ {0.2, 0.4, 0.6, 0.8}. Note that since there is only one error
mode change in each true mode changes set, we can get only
one response time result for each simulated error case.

3) Results: Results of the accuracy and response time are
are shown in Figure 7. For all the three cases, when ω = 1
and τ = 0.8, the best results are observed as follows: accuracy
= 0.9294 and response time = 4 seconds for the pitot tube
failure, accuracy = 0.935 and response time = 0 seconds for
the GPS failure, and accuracy = 0.9342 and response time =
5 seconds for both failures. Accuracy is not even higher due
to airspeed data during takeoff and landing which was not



collected because the pilot was busy operating the airplane,
which makes the system incorrectly detect a both failure mode.
Because the airspeed gradually drops, it takes a few seconds
to detect it as a pitot tube failure; however, a GPS failure is
immediately detected since the ground speed promptly drops
to zero when it happens. This is why the response time for the
GPS failure is better than the other two cases. Since the used
error signature sets are non-overlapping constant functions
(i.e., e = k), even though smaller window sizes are normally
noise-prone compared to bigger window sizes, past data is
not necessary to determine the correct error modes. In this
experiment, noise on the error is not big enough to jump out
of the boundaries defined by error signature sets, therefore
ω = 1 gives the best results.

In Figure 7(b-1) for the GPS failure, when τ = 0.2,
accuracy is unusually low compared to the other two failure
cases. This occurs because too low a threshold makes the
normal and GPS failure modes compete against each other
in the landing phase and thus the resulting mode falls into
unknown mode for the last 600 seconds.

The transitions of the corrected speed and detected modes
that show the best accuracy are shown in Figures 8 (pitot tube
failure), 9 (GPS failure), and 10 (both failures) respectively.
For the first 390 seconds, the error mode is detected wrongly
in all three cases; the true modes are 0 (normal mode)
whereas the detected modes are 3 (both failures) during this
period. These wrong mode detections are originated from
the erroneously recorded airspeed. Other than that, the error
detection method works pretty well for all three cases.

Detected modes go into the unknown mode for a short
period around 2401 seconds for both pitot tube failure and
both failures. Since the airspeed takes a few seconds to drop,
during that time, the normal and pitot tube failure modes are
competing against each other for the pitot tube failure case.
For the both failures case, the GPS failure and both failures
modes are competing. Unlike the other two cases, the ground
speed drops immediately for the GPS failure, and there is no
conflict with other error modes, thus the GPS failure mode is
correctly detected without going into the unknown mode.

C. Experiment 2: Air France Flight 447

1) Flight Data: The ground speed and airspeed are col-
lected based on Appendix 3 in the final report of Air France
flight 447 [1]. Note that the (true) airspeed was not recorded in
the flight data recorder so that we computed it from recorded
Mach (M ) and static air temperature (SAT ) data. The airspeed
was obtained by using the relationship: va = a0M

√
SAT/T0,

where a0 is the speed of sound at standard sea level (661.47
knots) and T0 is the temperature at standard sea level (288.15
Kelvin). Independent wind speed information was not recorded
either. According to the description from page 47 of the final
report: “(From the weather forecast) the wind and temperature
charts show that the average effective wind along the route
can be estimated at approximately ten knots tail-wind.” We
followed this description and created the wind speed data
stream as ten knots tail wind.
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Fig. 8. Corrected airspeed and detected modes for the N756VH 03-Apr-2012
KALB-KFME flight (pitot tube failure, τ = 0.8, ω = 1).
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Fig. 9. Corrected ground speed and detected modes for the N756VH 03-
Apr-2012 KALB-KFME flight (GPS failure, τ = 0.8, ω = 1).
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Fig. 10. Uncorrected speeds and detected modes for the N756VH 03-Apr-
2012 KALB-KFME flight (pitot tube and GPS failure, τ = 0.8, ω = 1).
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Fig. 7. Accuracy and response time for the N756VH 03-Apr-2012 KALB-KFME flight

2) Experimental Settings: According to the final report,
speed data was provided from 2:09:00 UTC on June 1st
2009 and it became invalid after 2:11:42 UTC on the same
day. Thus, we examine the valid 162 seconds of speed data
including a period of pitot tube failure which occurred from
2:10:03 to 2:10:36 UTC. We also use the speedcheck
PILOTS program shown in Figure 5 except for constraints
values in signatures which use va = 470 knots, the cruise
airspeed of the AF447 flight. Defined error modes are the
same as Experiment 1, so the set of true mode changes
is defined as M = {(1, 0), (64, 1), (98, 0)}. The accuracy
and average response time are investigated for window sizes
ω ∈ {1, 2, 4, 8, 16} and threshold τ ∈ {0.2, 0.4, 0.6, 0.8}.

3) Results: Results of the accuracy and maximum/mini-
mum/average response times are shown in Figure 11. Same
as Experiment 1, the best results, accuracy = 0.9631, maxi-
mum/minimum/average response times = 5/0/2.5 seconds, are
observed when ω = 1 and τ = 0.8. Overall trends of the
accuracy and response time are same as Experiment 1 because
of the nature of the error signature set.
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Fig. 11. Accuracy and response time for AF447 flight.

The transitions of the corrected speed and detected modes
that show the best accuracy with ω = 1 and τ = 0.8 are
shown in Figure 12. Looking at Figure 12(b), the pitot tube
failure is successfully detected from 69 to 97 seconds except
for the interval 64 to 69 seconds due to the slowly decreasing

airspeed. The response time for the normal to pitot tube failure
mode is 5 seconds and for the pitot tube failure to normal
mode is 0 seconds (thus the average response time is 2.5
seconds). From Figure 12(a), the airspeed successfully starts
to get corrected at 69 seconds and seamlessly transitions to
the normal airspeed when it recovers at 98 seconds.
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Fig. 12. Corrected airspeed and detected modes for AF447 flight.

V. RELATED WORK

There are several systems that combine stream processing
and data base management, i.e., Data Stream Management
Systems or DSMS, such as STREAM [8], Aurora [9], and
TelegraphCQ [10]. They are designed to execute SQL-like
queries to unbounded continuous incoming data streams and
output events of interest. Microsoft StreamInsight is a DSMS-
based system and has been extended to support spatio-
temporal streams [11]. Also, the concept of the moving object
data base (MODB) which adds support for spatio-temporal
data streaming to DSMS is discussed in [12]. These DSMS-
based spatio-temporal stream management systems support
general continuous queries for multiple moving objects. Our
streaming data analytics to detect errors based on signa-
tures and correct data on the fly is beyond the scope of a



purely declarative SQL-based query approach. Furthermore,
our domain-specific approach enables highly declarative de-
scription of input-output relationships between streams, error
functions, error signatures, and data correction functions using
the PILOTS programming language.

Distributed streaming systems have been studied in the con-
text of cloud computing [13], [14]. Our data error correction
methods could be useful for distributed settings as well by
connecting multiple distributed PILOTS programs.

VI. CONCLUSION AND FUTURE DIRECTIONS

We define a general error signature set for aviation speed
data and evaluate error detection performance of PILOTS
programs with real flight data. For this particular signature set,
we find that the accuracy and response time improve as the
threshold τ increases. The reason of this behavior is that there
are some cases in which there are two competing modes whose
likelihood values are close to each other, so the mode detection
algorithm tends to regard it as an unknown error mode. Higher
threshold values are more tolerant to multiple competing
modes, thus give better results. Unsurprisingly, there is a
positive correlation between the window size and response
times for all the threshold values. This is an intuitive result
because the less the error detection algorithm uses past data,
the more responsive it becomes to mode changes. In addition,
a faster average response time leads to a better accuracy
result since the error detection algorithm cannot predict mode
changes, but only react to them. That is, a smaller window
size implies better accuracy. This is true because our designed
error signature set produces nearly orthogonal mode likelihood
vectors. Also, it is noteworthy that our error detection and data
correction methods never correct data incorrectly.

When computing mode likelihood vectors, time to compute
distances by Equation (6) can be significant due to the expo-
nential growth of the search space as the size of the constants
set K̄ increases. To use the presented error detection and cor-
rection methods in larger-scale real-time systems, techniques
to bound the running time must be devised.

Future research directions include applying the error
signature-based error correction methods to other flight ac-
cidents, e.g., those due to fuel sensor reading errors. Also,
uncertainty quantification [15] is an important future direction
to associate confidence to data and error estimations in support
of decision making. More and more data are expected to be
available in cockpits in the near future [16], and thus auto-
mated data analysis systems will become even more crucial
to both manned and unmanned aerial vehicles. We envision
scalable smarter flight systems processing massive data in real-
time by dynamically creating and connecting multiple PILOTS
program instances. Such systems need to reason about spatial
and temporal data and constraints and give the pilots better
information to make more accurate judgments during critical
moments. The presented techniques and software can be used
as a promising starting point to develop these flight systems.
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