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Abstract

The concept of an a-shape of a finite set of points
with weights in R? is defined and illustrated. It is
a polytope uniquely determined by the points, their
weights, and a parameter « that controls the desired
level of detail. Software that computes such shapes in
dimensions 2 and 3 is available via anonymous ftp at
ftp.ncsa.uiuc.edu.

1 Introduction

The a-shape of a finite point set is a polytope that is
uniquely determined by the set and a parameter a. It
expresses the intuitive notion of the shape of the point
set. and « controls the level of detail reflected by the
polytope. The original paper on a-shapes [6] defines
the concept in R*. An extension to R3 together with an
implementation is reported in [8]. In both papers the
relationship between a-shapes and Delaunay simplicial
complexes [1] is described in detail and used as the basis
of an algorithm for constructing alpha shapes.
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These algorithms have been implemented and soft-
ware for 2 and 3 dimensions, complete with graphics in-
terface is publically available. The respective packages
can be obtained via ftp at ftp.ncsa.uiuc. edu from di-
rectory Visualization/Alpha-shape. The availability
of these implementations, in particular the one in R3,
has led to applications in various areas of science and
engineering. Some of these applications are briefly de-
scribed in [8]. A question that was repeatedly asked in
the past is whether it is possible to construct a shape
that represents different levels of detail in different parts
of space. This is indeed possible by assigning a weight to
each point. Intuitively, a large weight favors and a small
weight discourages connections to neighboring points.
We refer to the resulting concept as the weighted alpha
shape. If all weights are zero it is the same as the orig-
inal. unweighted alpha shape. The available software is
general enough to handle weights. and this document
makes no distinction between weighted and unweighted
alpha shapes. unless such a distinction is important.

VWhat are the applications where weights can be ben-
eficial?

(1) A common computational task in biology is mod-
eling molecular structures. It is natural to use a-
shapes for this purpose as they are precise duals
of the popular sphere models obtained by taking
unions of balls. see e.g. [13]. The weights are the
radii (e.g. van der Waals radii) of the atoms.

(i1) In reconstructing a surface from scattered point
data. it is rarely the case that the points are uni-
formly dense everywhere on the (unknown) surface:
Indeed, the density often varies with the curvature.
The assignment of large weights in sparse regions
and of small weights in dense regions can be used
to counteract the effects resulting from uneven den-
sity distributions.

(i11) Another goal that can be achieved by assigning
weights is to enforce certain edges or faces. These
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might be given as part of the input, but they can-
not be processed directly since alpha shapes are
defined only for finite point sets and not for other
geometric objects.

Outline. Section 2 introduces complexes and shapes
via Voronoi decompositions of spherical ball unions.
Section 3 defines alpha shapes and their relationship to
the (weighted) Delaunay simplicial complex. Section 4
discusses metric. combinatorial, and topological proper-
ties computed by the software. Section 5 reviews some
of the essential design decisions in the implementations.

2 Complex and Shape

Up front two remarks to avoid any confusion and mis-
conceptions. First, it is more cumbersome to distin-
guish between d = 2 and d = 3 dimensions than to
phrase all definitions in R¢, for some arbitrary but fixed
positive integer d. Second. we use square roots of real
numbers as weights. Since negative weight squares do
- make sense. we choose R? as the domain for all point
weights. This is the set of all (positive) square roots of
real numbers. and it inherits its linear order from R.

A point p' € R? with weight p” € R%, is interpreted
as a spherical ball

p=(p.p") = {z€R*||zp'? = p"* < O},

where |yz| is the Euclidean distance between points y
and =. p’ is the center and p” is the radius of the ball.
All points with non-real weight correspond to empty
balls. The shape of a finite set B C RY x R of weighted
points is defined in terms of a decomposition of the
union of balls. | JB. into convex sets. see figures 1 and
2. The (weighted) Voronoi cell of aballp€ B is

V, = {ceR?||zpP - p” < 12¢'|* - ¢"*.q € B}.

It is a convex polvhedron, and its intersection with the
ball union is convex because | JBN V, = pN V. Note
that the convex cells have pairwise disjoint interiors, but
some of them overlap along common boundary pieces.
These pieces of overlap are instrumental in the construc-
tion of a set system closed under the subset operation.
In topology. such a system is referred to as an abstract
simplicial compler. Specifically. we define the nerve of
C={pnl,|p€B}as

NvC={XCCI[}Y#0}
Assuming general position of the points or balls. the

largest set in Nrv C is of size d + 1 a triple in R? and
a quadruple in R®. Under this assumption. Nrv C has

a natural geometric realization by mapping each cell
pnV, € C to the point s(pNV;) = p' € RY. This
realization is a (geometric) simplicial complex, Cpx B,
see e.g. [10]. Each set X € NrvC is represented by the
convex hul of the corresponding points: the points are
the images of the cells in X and their convex hull is a
simplex of dimension one less than the cardinality of X.
Formally,

Cpx B = {conve(X) | X € Nrv C}.

We refer to this complex as the dual complez of | JB, and
to its underlying space. | JCpx B = U, ecpx 8 9 s the
dual shape. Examples of a ball union, the decomposition
into convex cells, and the dual complex in R* are shown
in figures 1 through 3.

Figure 2: The decomposition of the union using the
Voronoi cells of the disks.

Figure 3: The dual complex of the disk union.

Among the most useful properties of Cpx B are the
homotopy equivalence between | JCpx B and |JB, and
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the fact B can be expressed as the alternating sum of
common ball intersections, with one term per simplex
in Cpx B. This implies short inclusion-exclusion formu-
las for the d-dimensional volume and other measures of

UB, see [5].

3 Filter and Filtration

Suppose we grow all balls p € B simultaneously without
changing Voronoi cells. In this case all cells of the de-
composition C of [ JB can only grow, and the dual com-
plex can only get larger. The result is a one-parametric
family of simplicial complexes.

More formally, let a € R3, p, = (p', /P2 +2),
and By = {po | p € B}. For a = 0 the radius of
Pa is its weight, and for p” = 0 the radius is a. By
construction, the Voronoi cell of p, in B, is the same
as the Voronoi cell of p in B. The a-complez, Cpx . B,
is the dual complex of | JB,. The a-skape is | JCpx . B.
By monotonicity of the cells p, N 1},_, we have

Cpzy, BCCpx,, B

whenever @ < a2. For sufficiently large «. Cpx , B geo-
metrically realizes the nerve of the collection of Voronoi
cell. We refer to this complex as the (weighted) Delau-
nay simplicial complez, Del B, of B. All Cpx B are
subcomplexes of Del B.

Since Del B is a finite complex, there are only finitely
many subcomplexes, and the ones we are interested in
are naturally ordered by inclusion. We index the com-
plexes from 0 through s, and define K; as the ith com-
plex after the trivial complex. Ko = {0}. The last com-
plex is £, = Del B.

The linear structure is essential in obtaining algo-
rithms that efficiently deal with the entire family of al-
pha complexes and shapes. As a consequence, the most
important step in the computation is the construction
of Del B. Many efficient algorithms have been described
in the literature. The implementation provided as part
of our software distribution builds Del B incrementally,
adding each point by a sequence of flips [9]. The points
are added in random order.

The linear sequence of alpha complexes can be under-
stood as assembling Del B one simplex at a time. This
is not quite correct because X, and K;,; may differ by
more than only one simplex. In such a case. we can add
the simplices in K, —K; one by one, lower dimensions
fiest. The resulting sequence of simplices.

Lj = {00,01,...,0j},is a filtration. Foreach0 < i < s,
there isa j > i and an a with K; = £; = Cpx, B.

4 Signatures

The filter of Del B implicitly represents all alpha com-
plexes defined by B as prefixes. The availability of
this simplex sequence favors incremental algorithms for
computing properties of alpha shapes. The software
considers metric properties:

volume, area, and length (defined below),
combinatorial properties:

number of tetrahedra, triangles, edges. and ver-
tices, distinguishing between simplices on the
boundary and in the interior,

and topological properties:

number of components. independent tunnels, and
voids, as expressed by the three betti numbers. Jg,
Ji. Ja.

As shown in [11]. every additive and continuous map
from the set of convex bodies to R invariant under rigid
motion is a linear combination of quermassintegrals,
see also [14. chapter 4]. In R?, the quermassintegrals
are basically volume, area, mean width. and the Eu-
ler number. Length is defined as an extension of the
mean width to non-convex bodies. Specifically, length
is the sum of edge lengths. each weighted by the (possi-
bly negative) complementary angle. The Euler number
sy =34y — 3 + 5.

Each property defines a signature f : [s] — R. where
[8l = {1.2.:, s}. Signatures are useful in studying
shapes and convenient in quickly identifying the “in-
teresting” ones in the typically huge family of alpha
shapes.

The signatures expressing the above metric and com-
binatorial properties are straightforward to compute:
scan the filter from 0 through n and increment or decre-
ment the current value depending on the next simplex.
Such a strategy also works for the three betti numbers,
but is less obvious [2].

5 Data Structures

The main two data structures built and used by our
software are the Delaunay simplicial complex. Del B.
and a filter whose filtration contains all alpha com-
plexes. The filter is accessible through a linear list
and an interval tree. The list supports the computa-
tion of signatures. and the tree provides fast access to



individual shapes. We restrict the discussion to d = 3
dimensions.

In R3, DelB is represented by a triangle-based
pointer structure [3]. Each triangle is stored with a
pointer each to the 6 neighboring triangles sharing an
edge. Following appropriate pointers, each in constant
time, it is possible to traverse the triangles around a
given edge, or the triangles opposite a given vertex, or
all triangles on the convex hull boundary. Further de-
tails can be found in [12].

An important ingredient in the construction of Del B,
which is synonymous to constructing its triangle-based
pointer structure, is the use of exact arithmetic and
symbolic computation. The input coordinates and
weights are restricted to integers or fixed-point reals.!
All geometric tests are performed in exact arithmetic so
that degenerate cases can be identified without ambi-
guity. Such degeneracies include 4 points on a common
plane, and 5 balls with common orthogonal sphere. All
possible degeneracies are reduced to the general case
by the use of a simulated perturbation (7). In the pres-
ence of coplanar point on the convex hull boundary,
the perturbation results in the construction of infinites-
imally thin tetrahedra. As a fortunate consequence of
the perturbation scheme in [7] no infinitesimally thin
tetrahedra can occur in the interior of the convex hull.
The artifacts at the boundary are removed in a post-
processing step.

The linear list representation of the filter contains
slightly more information than just the sequence of sim-
plices as they enter the alpha complex. Each simplex
occurs up to three times: first when it enters the al-
pha complex. second when the first simplex containing
it as a face enters the alpha complex. and third when
it becomes completely surrounded by simplices. After
the first occurrence the simplex is singular, after the sec-
ond it is regular. and after the third it is intertor. Quite
commonly some of the occtrrences coincide or vanish.
For example. a simplex on the convex hull boundary
is never interior. and an entering tetrahedron is right
away considered interior.

The additional information available through the
multiple occurrences is e.g. useful in selecting the sim-
plices needed for a graphical representation. Only the
boundary triangles (singular and regular). the singular
edges. and the singular vertices need to be drawn. A
triangle belongs to the boundary of all shapes between
its first and its third occurrence. Each triangle thus
gives rise to an interval of indices in the filtration, and
given an index. the corresponding shape is drawn by
recovering all triangles whose intervals cover the index.
These triangles are located using the interval tree [4]

VA negative weight. —uw. is interpreted as u+/~1.

storing their intervals. Except for an additive logarith-
mic overhead term, it enumerates the desired triangles
in constant time each. The same mechanism applies to
singular edges and vertices.
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