
Towards a Middleware Framework for Dynamically Reconfigurable

Scientific Computing

Kaoutar El Maghraouia, Travis Desella, Boleslaw K. Szymanskia, James D. Terescob,
and Carlos A. Varelaa

aDepartment of Computer Science, Rensselaer Polytechnic Institute,
110 8th Street, Troy, NY 12180-3590, USA

bDepartment of Computer Science, Williams College,
47 Lab Campus Drive, Williamstown, MA 01267, USA

Computational grids are appealing platforms for the execution of large scale applications
among the scientific and engineering communities. However, designing new applications
and deploying existing ones with the capability of exploiting this potential still remains
a challenge. Computational grids are characterized by their dynamic, non-dedicated, and
heterogeneous nature. Novel application-level and middleware-level techniques are needed
to allow applications to reconfigure themselves and adapt automatically to their underly-
ing execution environments. In this paper, we introduce a new software framework that
enhances the performance of Message Passing Interface (MPI) applications through an
adaptive middleware for load balancing that includes process checkpointing and migra-
tion. Fields as diverse as fluid dynamics, materials science, biomechanics, and ecology
make use of parallel adaptive computation. Target architectures have traditionally been
supercomputers and tightly coupled clusters. This framework is a first step in allowing
these computations to use computational grids efficiently.

1. Introduction

Computational grids [1] have become very attractive platforms for high performance
distributed applications due to their high availability, scalability, and computational
power. However, nodes in grid environments (e.g., uniprocessors, symmetric multiproces-
sors (SMPs), or clusters) are not necessarily dedicated to a single parallel or distributed
application. They experience constantly changing processing loads and communication
demands. Achieving the desired high performance requires augmenting applications with
appropriate support for reconfiguration and adaptability to the dynamic nature of compu-
tational grids. Since they span a wider range of geographical locations and involve large
numbers of computational nodes, the potential for failures and load fluctuations increases
significantly.

Computationally-demanding scientific and engineering applications that arise in diverse
disciplines such as fluid dynamics, materials science, and biomechanics often involve solv-
ing or simulating multi-scale problems with dynamic behavior. Solution procedures use

Bolek
Text Box
Grid Computing: New Frontiers of High Performance Computing, Elsevier, 2005

2 K. El Maghraoui et al.

sophisticated adaptive methods underlying data structures (e.g., meshes) and numerical
methods to achieve specified levels of solution accuracy [2]. This adaptivity, when used
for parallel solution procedures, introduces load imbalance which can be corrected using
application-level dynamic load balancing techniques [3]. These applications generally deal
with huge amounts of data and require extensive computational resources, but they usually
assume a fixed number of cooperating processes running in a dedicated and mostly ho-
mogeneous computing environment. Running such applications on computational grids,
with their dynamic, heterogeneous, and non-dedicated resources, makes it difficult for
application-level load balancing alone to take full advantage of available resources and to
maintain high performance. Application-level load-balancing approaches have a limited
view of the external world where the application is competing for resources with several
other applications. Middleware is a more appropriate location where to place resource
management and load balancing capabilities since it has a more global view about the
execution environment, and can benefit a large number of applications.

MPI [4] has been widely adopted as the de-facto standard to implement single-program
multiple-data (SPMD) parallel applications. Extensive development effort has produced
many very large software systems using MPI for parallelization. It’s wide availability has
enabled portability of applications among a variety of parallel computing environments.
However, the issues of scalability, adaptability and load balancing still remain a challenge.
Most existing MPI implementations assume a static network environment. MPI imple-
mentations that support the MPI-2 standard [5,6] provide partial support for dynamic
process management, but still require complex application development from end-users:
process management needs to be handled explicitly at the application level, which requires
the developer to deal with issues such as resource discovery and allocation, scheduling,
load balancing, etc. Additional middleware-support for application reconfiguration is
therefore needed to relieve application developers from such concerns. Augmenting MPI
applications with automated process migration capabilities is a necessary step to enable
dynamic reconfiguration through load balancing of MPI processes among geographically
distributed nodes. We initially address dynamic reconfiguration through process migra-
tion for the class of iterative applications since a large number of legacy MPI applications
have this property.

The purpose of this paper is two-fold: first we demonstrate how we achieve process
migration in applications that follow the MPI programming model. Our strategy doesn’t
require modifying existing MPI implementations. Second we introduce the design of a
middleware infrastructure that enhances existing MPI applications with automatic re-
configuration in a dynamic setting. The Internet Operating System (IOS) [7,8] is a dis-
tributed middleware framework that provides opportunistic load balancing capabilities
through resource-level profiling and application-level profiling. MPI/IOS is a system that
integrates IOS middleware strategies with existing MPI applications. MPI/IOS adopts a
semi-transparent checkpointing mechanism, where the user needs only to specify the data
structures that must be saved and restored to allow process migration. This approach
does not require extensive code modifications. Legacy MPI applications can benefit from
load balancing features by inserting just a small number of calls to a simple application
programming interface. In shared environments where many applications are running,
having application-level resource management is not enough to balance the load of the

Middleware for Reconfigurable Scientific Computing 3

entire system efficiently. A middleware layer is the natural place to manage the resources
of several distributed applications running simultaneously.

Providing simple application programmer interfaces (APIs) and delegating most of the
load distribution and balancing to middleware will allow smooth and easy migration of
MPI applications from static and dedicated clusters to highly dynamic computational
grids. Our framework is more beneficial for long running applications involving large
numbers of machines, where the probability of load fluctuations is high. In such situations,
it will be helpful for the running application to have means by which to evaluate its
performance continuously, discover new resources, and be able to migrate some or all
of the application’s cooperating processes to better nodes. We target initially highly
synchronized iterative applications that have the unfortunate property of running as slow
as the slowest process. Eliminating the slowest processor from the computation results or
migrating its work to a faster processor can, in many cases, lead to a significant overall
performance improvement.

The remainder of the paper is organized as follows. Section 2 presents application mo-
tivating scenarios for reconfigurable execution. Section 3 discusses the requirements and
benefits of dynamically reconfigurable parallel and distributed applications. In Section 4,
we describe our methodology for enabling reconfiguration of distributed and parallel ap-
plications using the MPI programming model. We then present IOS resource model and
load balancing strategies in Section 5. Section 6 details the architecture of the MPI/IOS
framework and presents experimental results. Section 7 presents related work. We con-
clude with discussion and future work in Section 8.

2. Dynamically Changing Computations

In a grid environments, one of the following scenarios might happen:

1. The application can predicate initially its resource requirements and the allocated
resources’ utilization and availability do not change drastically over time.

2. The application has a dynamic nature. The initial resource requirements of the
application are hard to predicts or the application’s problem size might grow or
shrink in time.

3. The execution environment is dynamic. This is usually the case of dynamic grid
environments where resource are shared. Resources experience varying loads and
availability.

In the first case, a good initial resource allocation might suffice to provide the desired
performance throughout the lifetime of the application. However in the second and third
cases, adaptive execution is needed to either cope with the dynamic nature of the appli-
cation or to adapt to the dynamic nature of the execution environment. The last two
scenarios are expected to be the rule and not the exception in dynamic grids. There-
fore, providing the necessary support for reconfiguration is indispensable. The rest of
this section describes the characteristics of mesh-based adaptive scientific computation, a
motivating application scenario for reconfigurable applications.

4 K. El Maghraoui et al.

Adaptive scientific computation is dynamic by nature. A typical simulation begins
with a small initial mesh, and adaptive refinement produces finer meshes (i.e., meshes
with larger number of elements) in regions where interesting solution features are present,
and does this as part of the simulation process. As these solution features arise and
dissipate or move through the domain, some of the refined mesh may be coarsened. Thus,
the locations in the domain where the finer mesh is needed as well as the total mesh size
change throughout the computation.

When using the traditional MPI model, the computing resources are allocated initially
and simulations begin with a partitioning of the (small) initial mesh and dynamic load
balancing procedures are applied periodically to redistribute the mesh among the coop-
erating processes on the allocated processors. The computing resources assigned to the
problem remain the same throughout, but the workload is redistributed among them.
Even when the problem size is small and the solution would be more efficient on fewer
processors (because of reduced communication volume), all of the allocated processors are
used, in part because it is difficult to add or remove processes using the MPI model.

In the more dynamic environments we target and that the middleware described herein
is intended to support, resources may be added to or removed from the computation as
the simulation proceeds. This sort of reconfiguration may be in response to the changing
computational needs of the simulations or to the changing availability of resources. Parts
of the computation that can be executed more efficiently on fewer processors may do so,
leaving other resources available for other purposes. Additional resources can be requested
and the computation can be reconfigured to take advantage of those resources when the
computation grows sufficiently large.

3. Reconfigurable Distributed and Parallel Applications

Grid computing thrives to provide mechanisms and tools to allow decentralized collabo-
ration of geographically distributed resources across various organizations in the Internet.
One of its main goals is to maximize the use of underutilized resources and hence offer
efficient and low cost paradigms for efficiently executing distributed applications. Grid
environments are highly dynamic, shared, and heterogeneous. Running distributed or
parallel applications on such platforms is not a trivial task. Applications need to be
able to adapt to the various dynamics of the underlying resources through dynamic re-
configuration mechanisms. Dynamic reconfiguration implies the ability to modify the
application’s structure and/or modify the mapping between physical resources and appli-
cation’s components while the application continues to operate without any disruption of
service.

Grid applications have several needs:

• Availability: The ability of the application to be resilient to failures.

• Scalability: The ability of the application to use new resources while the computa-
tion is taking place.

• High Performance: The ability to adapt to load fluctuations, which results in high
performing applications.

Middleware for Reconfigurable Scientific Computing 5

Several resource management requirements need to be addressed to satisfy applications’
demands in grid environments such as: 1) resource allocation, 2) reallocation or reconfig-
uration of these resources, and 3) resource profiling to provide an optimal reconfiguration.
All of these resource management issues are beyond the scope of applications and should
be embodied in smart middleware that is capable of harnessing available resources and
allocating them properly to running applications.

3.1. Resource Allocation and Reallocation
Resource discovery and allocation have been some of the paramount issues in the grid

community. Several applications may be competing of resources. Some sort of admission
control needs to be established to ensure sufficient resources exist before admitting any
new resource requests. The initial allocation of resources may not be the final configu-
ration to achieve the desired performance. The dynamic nature of grids necessitates a
constant evaluation of the application needs, of the resource availability, and an efficient
reallocation strategy.

Being able to change the mapping of applications’ components to physical resources
requires having the ability to migrate whole or parts of the application’s processes or
data at runtime. Process migration requires being able to save the current state of the
running application, ensuring no loss of messages while migration is in progress, and then
restoring the state. Data migration, on the other hand, requires programming support
from developers. Migration is an expensive procedure and should be performed only if
it will yield gains in the overall performance of the running application. Process or data
migration capabilities allow also load balancing.

3.2. Resource Profiling
Understanding the behavior of the application’s topology helps to provide a good par-

titioning and an optimal placement of its components over decentralized heterogeneous
resources. One of the important characteristics of distributed/parallel applications are
the communication patterns between their several components. Applications can range
from highly synchronized where components communicate frequently to massively par-
allel. An optimal mapping of application’s components to physical resources must try
to maximize the utilization of resources (CPU, memory, storage, etc.) while minimizing
communication delays across links.

Changing effectively the configuration of running applications entails understanding
the computational and communication requirements of their various components. One
approach is to infer this information statically from performance models supplied by the
users. The problem with this approach is that it may not very accurate. Additionally
several applications do not render themselves nicely to mathematical models due to their
complexity. One way to address this issue is by learning the topology of the application
at runtime through application-level profiling. This approach requires modifying existing
applications to include profiling and might incur some overhead.

4. Dynamically Reconfigurable MPI Applications

Traditional MPI programs are designed with dedicated resources in mind. Develop-
ers need to know initially what resources are available and how to assign them to MPI

6 K. El Maghraoui et al.

processes. To permit a smooth migration of existing MPI applications to dynamic grid
environments, MPI runtime environments should be augmented with middleware tools
that free application developers from concerns about what resources are available and
when to use them. Simply acquiring the resources is not enough to achieve peak MPI
performance. Effective scheduling and load balancing decisions need to be performed
continuously during the lifetime of a parallel application. This requires the ability to
profile application behavior, monitor the underlying resources, and perform appropriate
load balancing of MPI processes through process migration.

Process migration is a key requirement to enable malleable applications. We describe in
what follows how we achieve MPI process migration. We then introduce our middleware-
triggered reconfiguration.

4.1. Application Support: MPI Process Migration
MPI processes periodically get notified by the middleware of migration or reconfigura-

tion requests. When a process receives a migration notification, it initiates checkpointing
of its local data in the next synchronization point. Checkpointing is achieved through
library calls that are inserted by the programmer in specific places in the application
code. Iterative applications exhibit natural locations (at the beginning of each iteration)
to place polling, checkpointing and resumption calls. When the process is first started,
it checks whether it is a fresh process or it has been migrated. In the second case, it
proceeds to data and process interconnectivity restoration.

In MPI, any communication between processes needs to be done as part of a communi-

cator. An MPI communicator is an opaque object with a number of attributes, together
with simple functions that govern its creation, use and destruction. An intracommuni-

cator delineates a communication domain which can be used for point-to-point commu-
nications as well as collective communication among the members of the domain. While
an intercommunicator allows communication between processes belonging to disjoint in-
tracommunicators. MPI process migration requires careful update of any communicator
that involves the migrating process. A migration request forces all running MPI pro-
cesses to enter a reconfiguration phase where they all cooperate to update their shared
communicators. The migrating process spawns a new process in the target location and
sends it its local checkpointed data. Figure 1 describes the steps involved in managing
the MPI communicators for a sample process migration. In the original communicator,
communicator 1, P7 has received a migration request. P7 cooperates with the processes
of communicator 1 to spawn the new process, P0 in communicator 2, which will replace
it. The intercommunicator that results from this spawning is merged into one global
communicator. Later, the migrating process is removed from the old communicator and
the new process is assigned rank 7. The new process restores the checkpointed data from
its local daemon and regains the same state of the migrating process. All processes then
get a handle to the new communicator and the application resumes its normal execution.

4.2. Middleware-triggered Reconfiguration
Although MPI processes are augmented with the ability to migrate, middleware support

is still needed to guide the application as to when it is appropriate to migrate processes
and where to migrate them. IOS middleware analyzes both the underlying physical net-
work resources and the application communication patterns to decide how applications

Middleware for Reconfigurable Scientific Computing 7

 by removing the spawning process and

 assigning its rank to the newly created

 process.

3) Reconfiguring the created communicator

1) Intercommunicator between the spawning

 application and the spawned process.

0

0

8 9 10 11

1 2 3

4 5 6 7

0

0

Merging the intercommunicator

8 9 10 11

1 2 3

4 5 6 7

0

7

2) Merging the intercommunicator into

 one communicator

8 9 10 11

Communicator 2

Spawning a new
process

1 2 3

4 5 6 7

0

0

Communicator 1

10

Figure 1. Steps involved in communicator handling to achieve MPI process migration.

should be reconfigured to accomplish load balancing through process migration and other
non-functional concerns such as fault tolerance through process replication. Resource pro-
filing and reconfiguration decisions are embodied into middleware agents whose behavior
can be modularly modified to implement different resource management models. Figure 2
shows the architecture of an IOS agent and how it interacts with applications. Every
agent has a profiling component that gathers both application and resource profiled infor-
mation, a decision component that predicts based on the profiled information when and
where to migrate application entities, and a protocol component that allows inter-agent
communication. Application entities refer to application components. In the case of MPI
applications, they refer to MPI processes.

The middleware agents form a virtual network. When new nodes join the network or
existing nodes become idle, their corresponding agents contact peers to steal work [9].
We have shown that considering the application topology in the load balancing decision
procedures dramatically improves throughput over purely random work stealing [7]. IOS
supports two load-balancing protocols: 1) application topology sensitive load balancing
and 2) network topology sensitive load balancing [7,8]. More details about IOS virtual
network topologies and its load balancing strategies are presented in Section 5.

Applications communicate with the IOS middleware through clearly defined interfaces
that permit the exchange of profiled information and reconfiguration requests. Applica-

8 K. El Maghraoui et al.

Figure 2. Architecture of a node in the Internet Operating System middleware (IOS). An agent
collects profiling information and makes decisions on how to reconfigure the application based
on its decisions, protocol, and profiling components.

tions need to support migration to react to IOS reconfiguration requests.

5. Middleware-level Load Balancing Policies

The IOS architecture has a decentralized architecture to ensure robustness, scalability
and efficiency. Each IOS-ready node is equipped with a middleware agent. Agents or-
ganize themselves in various virtual network topologies to sense the underlying physical
environment and trigger accordingly applications’ reconfiguration. Decision components
are embodied in each agent to evaluate the surrounding environment and decide based on a
resource sensitive model (RSM) how to balance the resource consumption of application’s
entities in the physical layer. RSM provides a normalized measure of the improvement
in resource availability an entity would receive by migrating between nodes (see Figure 3
for details). The RSM uses the profiled information about applications’ entities to decide
which ones are the most beneficial to migrate. In what follows we describe the different
virtual topologies of the IOS agents and the various load balancing policies implemented
as part of the the IOS framework.

5.1. Virtual Network Topologies
We are considering network sensitive virtual network topologies which adjust them-

selves according to the underlying network topologies and conditions. We present two
types of representative topologies: a peer-to-peer (p2p) topology and a cluster-to-cluster

Middleware for Reconfigurable Scientific Computing 9

Notation Explanation

A A group of application entities.
Ar,f The amount of available resource r at node f .
Ur,l,A The amount of resource r used by A at node l.
R The set of all resources to be considered

by the resource sensitive model.
wr A weight for a given resource r,

where
∑

wr = 1
Cl,f,A The cost of migrating the set of application entities A

from l to f

EA The average life expectancy of the set of application entities A,

where 0 ≤ (
Cl,f,A

(10+log(EA))
) ≤ 1

∆r,l,f,A The overall improvement in performance the application
would receive in terms of resource r by
migrating the set of entities A from node l to node f ,
where ∆r,l,f,A is normalized between -1 and 1.

∆r,l,f,A =
Ar,f−Ur,l,A

Ar,f +Ur,l,A

gain(l, f, A) A normalized measure of the overall improvement gained
by migrating a set of entities A from local
node l to foreign node f .

gain(l, f, A) = (
∑

r wr ∗ ∆r,l,f,A) − (
Cl,f,A

(10+log(EA))
)

Figure 3. The resource sensitive model (RSM) used by the IOS decision component to
determine which entities to migrate between nodes.

(c2c) topology. The p2p topology consists of several heterogeneous nodes inter-connected
in a peer-to-peer fashion while the c2c topology imposes more structure on the virtual
network by grouping homogeneous nodes with low inter-network latencies into clusters.

A Network Sensitive Peer-to-Peer Topology (NSp2p)

Agents initially connect to the IOS virtual network either through other known agents or
through a peer server. Peer servers act as registries for agent discovery. Upon contacting
a peer server, an agent registers itself and receives a list of other agents (peers) in the
virtual network. Peer servers simply aid in discovering peers in a virtual network and are
not a single point of failure. They operate similarly to gnutella-hosts in Gnutella peer-to-
peer networks [10]. After an agent has connected to the virtual network, it can discover
new peers as information gets passed across peers. Agents can also dynamically leave the
virtual network. Previous work discusses dynamic addition and removal of nodes in the
IOS middleware [7].

10 K. El Maghraoui et al.

Figure 4. The peer-to-peer virtual network topology. Middleware agents represent heteroge-
neous nodes, and communicates with groups or peer agents. Information is propagated through
the virtual network via these communication links.

Figure 5. The cluster-to-cluster virtual network topology. Homogeneous agents elect a cluster
manager to perform intra and inter cluster load balancing. Clusters are dynamically created
and readjusted as agents join and leave the virtual network.

Middleware for Reconfigurable Scientific Computing 11

A Network Sensitive Cluster-to-Cluster Topology (NSc2c)

In NSc2c, agents are organized into groups of virtual clusters (VCs), as shown in Fig-
ure 5. Each VC elects one agent to act as the cluster manager. VCs may reconfigure
themselves as necessary by splitting or merging depending on the overall performance
of the running applications. Cluster managers view each other as peers and organize
themselves as a NSp2p virtual network topology.

5.2. Autonomous Load Balancing Strategies
IOS adopts two load balancing strategies depending on the kind of virtual topology

used by the middleware agents.

Peer-to-peer Load Balancing

Peer-to-peer load balancing is based on a simple but effective work stealing algorithm
described by [9]. Agents configuring themselves in the NSp2p topology keep a list of peers
and arrange these peers into four groups based on communication latency [11]: 1) local
(0 to 10 ms), 2) regional (11 to 100 ms), 3) national (101 to 250 ms), and 4) global (251
ms and higher).

Agents on nodes which are lightly loaded (have more resources available than are cur-
rently being utilized) will periodically send reconfiguration request packets (RRPs) con-
taining locally profiled information to a random peer in the local group. The decision
component will then decide if it is beneficial to migrate entities to the source of the RRP
according to the RSM. If it decides not to migrate any entities, the RRP is propagated
to a local peer of the current agent. This progresses until the RRP’s time to live has
elapsed, or the desired entities have been migrated. If no migration happens, the source
of the RRP will send another RRP to a regional peer, and if no migration occurs again,
an RRP is sent nationally, then globally. As reconfiguration is only triggered by lightly
loaded nodes, no overhead is incurred when the network is fully loaded, and thus this
approach is stable [12].

Cluster-to-cluster Load Balancing

The cluster-to-cluster strategy attempts to utilize central coordination within VCs in
order to obtain an overall picture of the applications’ communication patterns and resource
consumption as well as the physical network of the VC. A cluster manager acts as the
central coordinator for a VC and utilizes this relatively global information to provide both
intra- and inter-VC reconfiguration.

Every cluster manager sends periodic profiling requests to the agents in its respective
VC. Every agent responds with information from its profiling component about the local
entities and their resource consumption. The cluster manager uses this information to
determine which entities should be migrated from the node with the least available re-
sources to the node with the most available resources. Let n1 and n2 be the number of
entities running on two nodes, and ri,j be the availability of resource i on node j with
a resource weight wi. The intra-cluster load balancing continuously attempts to achieve
the relative equality of application’s entities on nodes according to their relative resource

availability: n1

n2

=
∑

wiri,1∑
wiri,2

.

12 K. El Maghraoui et al.

For inter-cluster load balancing, NSc2c uses the same strategy as peer-to-peer load
balancing, except that each cluster manager is seen as a peer in the network. The cluster
managers decision component compares the heaviest loaded node to the lightest loaded
node at the source of the RRP to determine which entities to migrate.

Migration Granularity

Our resource model supports both single migration and group migration of application
entities. In single migration, the model is applied to determine an estimation of the
gain that would be achieved from migrating an entity from one theater to another. If
the gain will be achieved by migrating a group of entities, single migration attempts to
migration one entity at a time while group migration strategy will migrate a group of
entities simultaneously. One advantage of group migration is that it helps to speed up
the load balancing. However it might cause trashing behavior if the load of the nodes
fluctuates very frequently.

5.3. Experimental Evaluation
We have evaluated IOS different load balancing strategies using benchmarks that rep-

resent various degrees of computation to communication ratios. The benchmarks have
been developed using Java and SALSA [13], a dialect of Java with high level program-
ming abstractions for universal naming, asynchronous message passing, and coordination
strategies. Both hypercube and tree application topologies represent applications that
have a high communication to computation ratio. While the sparse and tree application
topologies represent applications with a low communication to computation ratio.

The experiments were evaluated using two different physical environments to model
Internet-like networks and Grid-like networks. The first physical network consists of 20
machines running Solaris and Windows operating systems with different processing power
and different latencies to model the heterogeneity of Internet computing environments.
The second physical network consists of 5 clusters with different inter-cluster network
latencies. Each cluster consists of 5 homogeneous SUN Solaris machines. Machines in
different clusters have different processing power.

Figures 6 and 7 show that the p2p topology performs better in Internet-like environ-
ments that lack structure for highly synchronized parallel and distributed applications,
while the c2c topology is more suitable for grid-like environments that have a rather
hierarchical structure.

For a more thorough evaluation of IOS load balancing strategies, readers are referred
to [8].

6. MPI Process Migration and Integration with IOS Middleware

MPI/IOS is implemented as a set of middleware services that interact with running
applications through an MPI wrapper. The MPI wrapper uses a Process Checkpointing
and Migration (PCM) library [14]. The MPI/IOS runtime architecture consists of the fol-
lowing components (see Figure 8): 1) the PCM-enabled MPI applications, 2) the wrapped
MPI that includes the PCM API, the PCM library, and wrappers for all MPI native calls,
3) the MPI library, and 4) the IOS runtime components.

Middleware for Reconfigurable Scientific Computing 13

Figure 6. Message throughput for the hypercube application topology on Internet- and Grid-like
environments.

6.1. Process Checkpointing and Migration API
PCM is a user-level process checkpointing and migration library that acts on top of

native MPI implementations and hides several of the issues involved in handling MPI
communicators and updating them when new nodes join or leave the computation. This
work does not alter existing MPI implementations and hence, allows MPI applications to
continue to benefit from the various implementations and optimizations while being able
to adapt to changing loads when triggered by IOS middleware load balancing agents.

MPI/IOS improves performance by allowing running processes to migrate to the pro-
cessors with the best performance and collocating frequently communicating processes
within small network latencies. The MPI-1 standard does not allow dynamic addition
and removal of processes from MPI communicators. MPI-2 supports this feature; how-
ever existing applications need extensive modification to benefit from dynamic process
management. In addition, application developers need to explicitly handle load balanc-
ing issues or interact with existing schedulers. The PCM runtime system utilizes MPI-2
dynamic features, however it hides how and when reconfiguration is done. We provide
a semi-transparent solution to MPI applications in the sense that developers need to in-
clude only a few calls to the PCM API to guide the underlying middleware in performing

14 K. El Maghraoui et al.

Figure 7. Message throughput for the tree application topology on Internet- and Grid-like
environments.

process migration. Figures 10 and 11 show a skeleton of an MPI program and its modified
version with the PCM calls to interface with IOS middleware.

Existing MPI applications interact with the PCM library and the native MPI imple-
mentation through a wrapper as shown in Figure 8. The wrapper MPI functions are
provided to perform MPI-level profiling of process communication patterns. This profiled
information is sent periodically to the IOS middleware agent through the PCM runtime
daemon.

6.2. The PCM Library
Figure 9 shows an MPI/IOS computational node running MPI processes. A PCM

daemon (PCMD) interacts with the IOS middleware and MPI applications. A PCMD is
started in every node that actively participates in an application. A PCM dispatcher is
used to start PCMDs in various nodes and used to discover existing ones. The application
initially registers all MPI processes with their local daemons. The port number of a
daemon is passed as an argument to mpiexec or read from a configuration file that resides
in the same host.

Every PCMD has a corresponding IOS agent. There can be more than one MPI process

Middleware for Reconfigurable Scientific Computing 15

Figure 8. The layered design of MPI/IOS which includes the MPI wrapper, the PCM runtime
layer, and the IOS runtime layer.

in each node. The daemon consists of various services used to achieve process communi-
cation profiling, checkpointing and migration. The MPI wrapper calls record information
pertaining to how many messages have been sent and received and their source and tar-
get process ranks. The profiled communication information is passed to the IOS profiling
component. IOS agents keep monitoring their underlying resources and exchanging infor-
mation about their respective loads.

When a node’s available resources fall below a predefined threshold or a new idle node
joins the computation, a work steal packet is propagated among the actively running
nodes. The IOS agent of a node responds to work stealing requests if it becomes overloaded
and its decision component decides according to the resource management model which
process(es) need(s) to be migrated. Otherwise, it forwards the request to an IOS agent
in its set of peers. The decision component then notifies the reconfiguration service in
the PCMD, which then sends a migration request to the desired process(es). At this
point, all active PCMDs in the system are notified about the event of a reconfiguration.
This causes all processes to cooperate in the next iteration until migration is completed
and application communicators have been properly updated. Although this mechanism
imposes some synchronization delay, it ensures that no messages are being exchanged while
process migration is taking place and avoids incorrect behaviors of MPI communicators.

16 K. El Maghraoui et al.

Figure 9. Architecture of a node running MPI/IOS enabled applications.

6.3. Experimental Results
We have used an MPI program that computes a two-dimensional heat distribution ma-

trix to evaluate the performance of process migration. This application models iterative
parallel applications that are highly synchronized and therefore require frequent com-
munication between the boundaries of the MPI processes. The original MPI code was
manually instrumented by inserting PCM API calls to enable PCM checkpointing. It took
10 lines of PCM library calls to instrument this application, which consists originally of
350 lines of code.

The experimental test-bed consists of a multi-user cluster that consists of a heteroge-
neous collection of Sun computers running Solaris. We used a cluster of 20 nodes that
consist of 4 dual-processor SUN Blade 1000 machines with 750 MHz per processor and
2 GB of memory, and 16 single-processor SUN Ultra 10 machines with 400MHz and 256

Middleware for Reconfigurable Scientific Computing 17

'

&

$

%

#include <mpi.h>
...

int main(int argc, char **argv) {
//Declarations
....

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &totalProcessors);

current_iteration = 0;

//Determine the number of columns for each processor.
dataWidth = (WIDTH-2) / totalProcessors;

//Initialize and Distribute data among processors
...

for(iterations=current_iteration; iterations<TOTAL_ITERATIONS; iterations++){

// Data Computation.
...

//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()
...

}

// Data Collection
...
MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();
return 0;

}

Figure 10. Skeleton of the original MPI code of a heat diffusion problem.

MB of memory. We used MPICH2 [15], a freely available implementation of the MPI-2
standard. Most of the experiments conducted try to demonstrate the usefulness of pro-
cess migration when the allocated resources’ load varies during the lifetime of the running
application.

The goal of the first experiment was to determine the overhead incurred by the PCM
API. The heat distribution program was executed using both MPICH2 and MPI/IOS
with several numbers of nodes. We run both tests under a controlled load environment to
make sure that the machine load is somehow balanced and no migration will be triggered
by the middleware. Both implementations demonstrated similar performance. Figure 12
shows that the overhead of the PCM library is less than 5% for several sizes of the cluster.

The second experiment aims at evaluating the impact of process migration. The cluster
of 4 dual-processor nodes was used. Figures 13 and 14 show the breakdown of the itera-
tions’ execution time of the heat application using MPICH2 and MPI/IOS respectively.
The load of the participating nodes was controlled to provide the same execution envi-
ronment for both runs. The application was allowed to run for a few minutes, after which
the load of one of the nodes was artificially increased substantially. In Figure 13, the
overall execution time of the application’s iterations increased. The highly synchronized

18 K. El Maghraoui et al.

'

&

$

%

#include "pcm.h"
...

MPI_Comm PCM_COMM_WORLD;

int main(int argc, char **argv) {
//Declarations
....
int spawnrank=-1, current_iteration;
PCM_Status pcm_status;
MPI_Init(&argc, &argv);
PCM_COMM_WORLD = MPI_COMM_WORLD;
PCM_Init(PCM_COMM_WORLD);

MPI_Comm_rank(PCM_COMM_WORLD, &rank);
MPI_Comm_size(PCM_COMM_WORLD, &totalProcessors);

spawnrank = PCM_Process_Status();

if(spawnrank <= 0){
current_iteration = 0;

//Determine the number of columns for each processor.
dataWidth = (WIDTH-2) / totalProcessors;

//Initialize and Distribute data among processors
...

}
else{

PCM_Load(spawnrank, "iterator",¤t_iteration);
PCM_Load(spawnrank, "datawidth", &dataWidth);
prevData = (double *)calloc((dataWidth+2)*WIDTH,sizeof(double));
PCM_Load(spawnrank, "myArray",prevData);

}

for(iterations=current_iteration; iterations<TOTAL_ITERATIONS; iterations++){
pcm_status = PCM_Status(PCM_COMM_WORLD);
if(pcm_status == PCM_MIGRATE){

PCM_Store(rank, "iterator", &iterations, PCM_INT, 1);
PCM_Store(rank, "datawidth", &dataWidth, PCM_INT, 1);
PCM_Store(rank,"myArray", prevData, PCM_DOUBLE, (dataWidth+2)*WIDTH);

PCM_COMM_WORLD = PCM_Reconfigure(PCM_COMM_WORLD,"mpiheat");

}
else if(pcm_status == PCM_RECONFIGURE)
{

PCM_COMM_WORLD = PCM_Reconfigure(PCM_COMM_WORLD,"mpiheat");
MPI_Comm_rank(PCM_COMM_WORLD, &rank);

}

// Data Computation.
...

//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()
...

}

// Data Collection
...
MPI_Barrier(PCM_COMM_WORLD);

PCM_Finalize(PCM_COMM_WORLD);
MPI_Finalize();
return 0;

}

Figure 11. Skeleton of the instrumented MPI code of a heat diffusion problem with PCM
calls.

Middleware for Reconfigurable Scientific Computing 19

Figure 12. Overhead of the PCM library: Execution time of the heat application using different
numbers of nodes with and without the PCM layer.

nature of this application forces all the processes to become as slow as the one assigned
to the slowest processor. The application took 203.97 seconds to finish. Figure 14 shows
the behavior of the same application under the same load conditions using MPI/IOS.
At iteration 260, a new node joined the computation. This resulted in migration of an
MPI process from the overloaded node to the available new node. Figure 14 shows how
migration corrected the load imbalance. The application took 115.27 seconds to finish in
this case, which is almost a 43% improvement over the non-adaptive MPICH2 run.

In a third experiment, we evaluated the adaptation of the heat application to changing
loads. Figure 15 shows the behavior of the application’s throughput during its lifetime.The
total number of iterations per second gives a good estimate of how good the application
is performing for the class of highly synchronized applications. We run the heat program
using the 4 dual-processor cluster and increased the load in one of the participating nodes.
MPI/IOS helped the application to adapt by migrating the process from the slow node

20 K. El Maghraoui et al.

Figure 13. Breakdown of execution time of two-dimensional heat application iterations on a
4-node cluster using MPICH2.

Figure 14. Breakdown of execution time of two-dimensional heat application iterations on a
4-node cluster using MPI/IOS prototype.

to one of the cooperating nodes. The application was using only 3 nodes after migration;
however, its overall throughput improved substantially. The application execution time
improved with 33% compared to MPICH2 under the same load conditions. In Figure 16,
we evaluated the impact of migration when a new node joins the computation. In this
experiment, we used 3 fast machines and a slow machine. We increased the load of
the slow machine while the application was running. The throughput of the application

Middleware for Reconfigurable Scientific Computing 21

Figure 15. Measured throughput of the two-dimensional heat application using MPICH2 and
MPI/IOS. The applications adapted to the load change by migrating the affected process to one
of the participating nodes in the case of MPI/IOS.

increased dramatically when the slow process migrated to a fast machine that joined
the IOS network. The performance of the program improved with 79% compared with
MPICH2.

To evaluate the cost of reconfiguration, we varied the problem data size and measured
the overhead of reconfiguration in each case. In the conducted experiments, we started the
application on a local cluster. We then introduced artificial load in one of the participating
machines. One execution was allowed to reconfigure by migrating the suffering process
to an available node that belongs to a different cluster, while the second execution was
not allowed to reconfigure itself. The experiments in Figure 17 show that in the studied
cases, reconfiguration overhead was negligible. In all cases, it accounted for less than 1%
of the total execution time. The application studied is not data-intensive. We also used
an experimental testbed that consisted of 2 clusters that belong to the same institution.
So the network latencies were not significant. The reconfiguration overhead is expected
to increase with larger latencies and larger data sizes. However, reconfiguration will still
be beneficial in the case of large-scale long-running applications. Figure 18 shows the
breakdown of the reconfiguration cost. It consists of checkpointing, loading checkpoints,
and re-arranging the communicators in the case of MPI-based applications.

7. Related Work

There are a number of conditions that can introduce computational load imbalances
during the lifetime of an application: 1) the application may have irregular or unpre-
dictable workloads from, e.g., adaptive refinement, 2) the execution environment may be
shared among multiple users and applications, and/or 3) the execution environment may

22 K. El Maghraoui et al.

Figure 16. Measured throughput of the two-dimensional heat application using MPICH2 and
MPI/IOS. The applications adapted to the load change by migrating the affected process to a
fast machine that joined the computation in the case of MPI/IOS.

Figure 17. Execution time for a reconfigurable and non-reconfigurable execution scenarios
for different problem data sizes. The graph shows also the reconfiguration overhead for each
problem size.

Middleware for Reconfigurable Scientific Computing 23

Figure 18. Breakdown of the reconfiguration overhead for the experiment of Figure 17.

be heterogeneous, providing a wide range of processor speeds, network bandwidth and
latencies, and memory capacity. Dynamic load balancing (DLB) is necessary to achieve a
good parallel performance when such imbalances occur. Most DLB research has targeted
the application level (e.g., [3,16,17]), where the application itself continuously measures
and detects load imbalances and tries to correct them by redistributing the data, or
changing the granularity of the problem through domain repartitioning. Although such
approaches have proved beneficial, they suffer from several limitations. First they are not
transparent to application programmers. They require complex programming and are
domain specific. Second, they require applications to be amenable to data partitioning,
and therefore will not be applicable in areas that require rigid data partitioning. Lastly,
when these applications are run on the more dynamic grid, application-level techniques
which have been applied successfully to heterogeneous clusters [16,18] may fall short in
coping with the high fluctuations in resource availability and usage. Our research tar-
gets middleware-level DLB which allows a separation of concerns: load balancing and
resource management are transparently dealt with by the middleware, while application
programmers deal with higher level domain specific issues.

Several recent efforts have focused on middleware-level technologies for the emerg-
ing computational grids. Adaptive MPI (AMPI) [19,20] is an implementation of MPI
on top of light-weight threads that balances the load transparently based on a parallel
object-oriented language with object migration support. Load balancing in AMPI is done
through migrating user-level threads that MPI processes are executed on. This approach
limits the portability of process migration across different architectures since it relies

24 K. El Maghraoui et al.

on thread migration. Process swapping [21] is an enhancement to MPI that uses over-
allocation of resources and improves performance of MPI applications by allowing them
to execute on the best performing nodes. Our approach is different in that we do not need
to over-allocate resources initially. Such a strategy, though potentially very useful, may
be impractical in grid environments where resources join and leave and where an initial
over-allocation may not be possible. We allow new nodes that become available to join
the computational grid to improve the performance of running applications during their
execution.

Other efforts have focused on process checkpointing and restart as a mechanism to
allow applications to adapt to changing environments. Examples include CoCheck [22],
starFish [23], and the SRS library [24]. Both CoCheck and starFish support checkpoint-
ing for fault-tolerance, while we provide this feature to allow process migration and hence
load balancing. SRS supports this feature to allow application stop and restart. Our
work differs in the sense that we support migration at a finer granularity. Process check-
pointing is a non-functional concern that is needed to allow dynamic reconfiguration. To
be able to migrate MPI processes to better performing nodes, processes need to save
their state, migrate, and restart from where they left off. Application-transparent process
checkpointing is not a trivial task and can be very expensive, as it requires saving the
entire process state. Semi-transparent checkpointing provides a simple solution that has
been proved useful for iterative applications [21,24]. API calls are inserted in the MPI
program that informs the middleware of the important data structures to save. This is
an attractive solution that can benefit a wide range of applications and does not incur
significant overhead since only relevant state is saved.

8. Discussion and Future Work

This paper introduced several enhancements to MPI to allow for application reconfig-
uration through middleware-triggered dynamic load balancing. MPI/IOS improves MPI
runtime systems with a library that allows process-level checkpointing and migration.
This library is integrated with an adaptive middleware that triggers dynamic reconfig-
uration based on profiled resource usage and availability. The PCM library has been
initially introduced in previous work [14]. We have made major redesign and improve-
ments over the previous work, where the PCM architecture was centralized and supported
only application-level migration. The new results show major improvements in scalability
and performance. Our approach is portable and suitable for grid environments with no
need to modify existing MPI implementations. Application developers need only insert a
small number of API calls in MPI applications.

Our preliminary version of MPI/IOS has shown that process migration and middle-
ware support are necessary to improve application performance over dynamic networks.
MPI/IOS is a first step in improving MPI runtime environments with the support of
dynamic reconfiguration. Our implementation of MPI process migration can be used on
top of any implementation that supports the MPI-2 standard. It could also be easily
integrated with grid-enabled implementations such as MPICH-G2 [25] once they become
MPI-2 compliant. Our load balancing middleware could be combined with several ad-
vanced checkpointing techniques (e.g., [22,26–28]) to provide a better integrated software

Middleware for Reconfigurable Scientific Computing 25

support for MPI application reconfiguration.
MPI/IOS is still a work in progress. Future work includes: 1) using the MPI profiling

interface to discover communication patterns in order to provide a better mapping be-
tween application topologies and environment topologies, 2) evaluating different resource
management models and load balancing decision procedures, 3) extending our approach
to support non-iterative applications, 4) changing the granularity of reconfiguration units
through middleware-triggered splitting and merging of executing processes, and 5) tar-
geting more complex applications.

9. Acknowledgments

The authors would like to acknowledge the members of the Worldwide Computing Labo-
ratory at Rensselaer Polytechnic Institute. In particular, our special thanks go to Joseph
Chabarek, and WeiJen Wang for their careful readings and comments. The machines
used in our experiments have been partially supported by the IBM SUR 2003 Award.
Any errors or omissions remain our own. This work has been partially supported by NSF
CAREER Award No. CNS-0448407.

REFERENCES

1. I. T. Foster, The anatomy of the grid: Enabling scalable virtual organizations, in:
Euro-Par ’01: Proceedings of the 7th International Euro-Par Conference Manchester
on Parallel Processing, Springer-Verlag, 2001, pp. 1–4.

2. K. Clark, J. E. Flaherty, M. S. Shephard, Appl. Numer. Math., special ed. on Adaptive
Methods for Partial Differential Equations 14.

3. J. D. Teresco, K. D. Devine, J. E. Flaherty, Numerical Solution of Partial Differ-
ential Equations on Parallel Computers, Springer-Verlag, 2005, Ch. Partitioning and
Dynamic Load Balancing for the Numerical Solution of Partial Differential Equations.

4. Message Passing Interface Forum, MPI: A message-passing interface standard, The In-
ternational Journal of Supercomputer Applications and High Performance Computing
8 (3/4) (1994) 159–416.

5. W. Gropp, E. Lusk, Dynamic process management in an MPI setting, in: Proceedings
of the 7th IEEE Symposium on Parallel and Distributeed Processing, IEEE Computer
Society, 1995.

6. Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface
(1996).
URL citeseer.ist.psu.edu/396449.html

7. T. Desell, K. E. Maghraoui, C. Varela, Load balancing of autonomous actors over
dynamic networks, in: Hawaii International Conference on System Sciences, HICSS-
37 Software Technology Track, Hawaii, 2004.

8. K. E. Maghraoui, T. Desell, C. Varela, Network sensitive reconfiguration of distributed
applications, Tech. Rep. CS-05-03, Rensselaer Polytechnic Institute (2005).

9. R. D. Blumofe, C. E. Leiserson, Scheduling Multithreaded Computations by Work
Stealing, in: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science (FOCS ’94), Santa Fe, New Mexico, 1994, pp. 356–368.

26 K. El Maghraoui et al.

10. Clip2.com, The Gnutella protocol specification v0.4 (2000).
URL http://www9.limewire.com/developer/gnutella_protocol_0.%4.pdf

11. T. T. Kwan, D. A. Reed, Performance of an infrastructure for worldwide parallel com-
puting, in: 13th International Parallel Processing Symposium and 10th Symposium
on Parallel and Distributed Processing, San Juan, Puerto Rico, 1999, p. 379.

12. N. G. Shivratri, P. Kreuger, M. Ginghal, Load distributing for locally distributed
systems, IEEE Computer 25 (92) 33–34.

13. C. Varela, G. Agha, Programming dynamically reconfigurable open systems with
SALSA, ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Pro-
ceedings 36 (12) (2001) 20–34, http://www.cs.rpi.edu/~cvarela/oopsla2001.pdf.

14. K. E. Maghraoui, J. E. Flaherty, B. K. Szymanski, J. D. Teresco, C. Varela, Adaptive
computation over dynamic and heterogeneous networks, in: R. Wyrzykowski, J. Don-
garra, M. Paprzycki, J. Wasniewski (Eds.), Proc. Fifth International Conference on
Parallel Processing and Applied Mathematics (PPAM 2003), Vol. 3019 of Lecture
Notes in Computer Science, Springer Verlag, Czestochowa, 2004, pp. 1083–1090.

15. Argone National Laboratory, MPICH2, http://www-unix.mcs.anl.gov/mpi/

mpich2.
16. R. Elsasser, B. Monien, R. Preis, Diffusive load balancing schemes on heterogeneous

networks, in: Proceedings of the twelfth annual ACM symposium on Parallel algo-
rithms and architectures, ACM Press, 2000, pp. 30–38.

17. J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, L. H. Ziantz, Parallel structures and dynamic load balancing for adaptive
finite element computation, Applied Numerical Mathematics 26 (1998) 241–263.

18. J. D. Teresco, J. Faik, J. E. Flaherty, Resource-aware scientific computation on a
heterogeneous cluster, Computing in Science & Engineering 7 (2) (2005) 40–50.

19. M. A. Bhandarkar, L. V. Kaleé;, E. de Sturler, J. Hoeflinger, Adaptive load balancing
for MPI programs, in: Proceedings of the International Conference on Computational
Science-Part II, Springer-Verlag, 2001, pp. 108–117.

20. C. Huang, O. Lawlor, L. V. Kaleé, Adaptive MPI, in: Proceedings of the 16th Inter-
national Workshop on Languages and Compilers for Parallel Computing (LCPC 03),
College Station, Texas, 2003.

21. O. Sievert, H. Casanova, A simple MPI process swapping architecture for iterative ap-
plications, International Journal of High Performance Computing Applications 18 (3)
(2004) 341–352.

22. G. Stellner, Cocheck: Checkpointing and process migration for MPI, in: Proceedings
of the 10th International Parallel Processing Symposium, IEEE Computer Society,
1996, pp. 526–531.

23. A. Agbaria, R. Friedman, Starfish: Fault-tolerant dynamic MPI programs on clusters
of workstations, in: Proceedings of the The Eighth IEEE International Symposium
on High Performance Distributed Computing, IEEE Computer Society, 1999, p. 31.

24. S. S. Vadhiyar, J. J. Dongarra, SRS - a framework for developing malleable and mi-
gratable parallel applications for distributed systems, in: Parallel Processing Letters,
Vol. 13, 2003, pp. 291–312.

25. N. T. Karonis, B. Toonen, I. Foster, MPICH-G2: a grid-enabled implementation of
the Message Passing Interface, J. Parallel Distrib. Comput. 63 (5) (2003) 551–563.

Middleware for Reconfigurable Scientific Computing 27

26. R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Neelamegam, Y. Dandass, M. Apte,
MPI/FTTM: Architecture and taxonomies for fault-tolerant, message-passing mid-
dleware for performance-portable parallel computing, in: Proceedings of the 1st In-
ternational Symposium on Cluster Computing and the Grid, IEEE Computer Society,
2001, p. 26.

27. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, A. Selikhov, MPICH-V: toward
a scalable fault tolerant mpi for volatile nodes, in: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, IEEE Computer Society Press, 2002, pp. 1–18.

28. G. E. Fagg, J. Dongarra, FT-MPI: Fault tolerant MPI, supporting dynamic appli-
cations in a dynamic world, in: Proceedings of the 7th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Springer-Verlag, 2000, pp. 346–353.

