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ABSTRACT
This paper presents a newly developed implementation of
remote message passing, remote actor creation and actor
migration in SALSA Lite. The new runtime and protocols
are implemented using SALSA Lite’s lightweight actors and
asynchronous message passing, and provide significant per-
formance improvements over SALSA version 1.1.5. Actors
in SALSA Lite can now be local, the default lightweight ac-
tor implementation; remote, actors which can be referenced
remotely and send remote messages, but cannot migrate; or
mobile, actors that can be remotely referenced, send remote
messages and migrate to different locations. Remote mes-
sage passing in SALSA Lite is twice as fast, actor migration
is over 17 times as fast, and remote actor creation is two or-
ders of magnitude faster. Two new benchmarks for remote
message passing and migration show this implementation
has strong scalability in terms of concurrent actor message
passing and migration. The costs of using remote and mo-
bile actors are also investigated. For local message passing,
remote actors resulted in no overhead, and mobile actors re-
sulted in 30% overhead. Local creation of remote and mobile
actors was more expensive with 54% overhead for remote ac-
tors and 438% for mobile actors. In distributed scenarios,
creating mobile actors remotely was only 6% slower than cre-
ating remote actors remotely, and passing messages between
mobile actors on different theaters was only 5.55% slower
than passing messages between remote actors. These results
highlight the benefits of our approach in implementing the
distributed runtime over a core set of efficient lightweight
actors, as well as provide insights into the costs of imple-
menting remote message passing and actor mobility.
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As programming environments continue to increase in par-
allelism in terms of numbers of processors and cores, the
need for efficient and effective concurrent and distributed
programming languages becomes ever more important. In
many ways, the common method of using object, threads
and communication over synchronous sockets is not well
suited to these environments, as evidenced by the large body
of work on detecting, preventing and avoiding deadlocks and
other race conditions [23, 28, 18, 49, 27, 31, 16, 1, 26, 17].
Many of these issues arise due to the fact that objects do
not encapsulate their state, so member fields must be pro-
tected with mutexes or other blocking synchronization con-
structs to prevent concurrent access. This blocking behav-
ior, coupled with the blocking behavior of using sockets syn-
chronously makes it quite easy for deadlocks and other race
conditions to occur.

As threads move from object to object, without any pro-
grammatic way of knowing where they came from, in many
ways they present a harmful situation similar to the much
maligned GOTO statement [15, 42]. As Dijkstra eloquently
stated, “The unbridled use of the go to statement has an
immediate consequence that it becomes terribly hard to find
a meaningful set of coordinates in which to describe the pro-
cess progress.” In many ways, the unbridled use of threads
presents a similar situation where it becomes terribly hard
to find a meaningful set of coordinates in which to describe
a threads progress.

The Actor model, formalized over 40 years ago [22, 21]
and later extended to open distributed systems [2], provides
a strong alternative model without these pitfalls. Actors are
independent, concurrent entities that communicate by ex-
changing messages. Each actor encapsulates a state with a
logical thread of control which manipulates it. Communica-
tion between actors is purely asynchronous. The actor model
assumes guaranteed message delivery and fair scheduling of
computation. Actors only process information in reaction to
messages. While processing a message, an actor can carry
out any of three basic operations: altering its state, cre-
ating new actors, or sending messages to other actors (see
Figure 1). Actors are therefore inherently independent, con-
current and autonomous which enables efficiency in parallel
execution [32] and facilitates mobility [3, 44]. In the actor
model, a thread of control only operates on a single actor,
and activity passes through the system via asynchronous
messages, which have sources and targets that enable an eas-
ier understanding of program flow. This model, if strictly
adhered to, actually makes it challenging to program a sys-
tem which deadlocks and completely prevents concurrent



Figure 1: Actors are reactive entities. In response to
a message, an actor can (1) change its internal state,
(2) create new actors, and/or (3) send messages to
other actors (image from [43]).

memory access issues.
Many of the early implementations of actor languages in-

volved heavyweight actors, such as Erlang [7], Scala [19]
and SALSA [44, 4], where each actor had an actual thread
of control. This type of actor has a fair bit of overhead over
objects, and also has low limits on how many actors can ex-
ist imposed by the operating system and hardware on how
many threads are allowed. Because of this, languages like
SALSA, Scala, and Kilim [38] allow the use of both objects
and actors, which can unfortunately lead to potential vio-
lations of the actor model [14] and the use of a mixture of
concurrency models [40].

In part due to these issues, and in part due to a desire
to seek higher levels of performance in actor languages, sys-
tems using lightweight actors have been developed and are
of high interest. In Java based actor libraries and languages,
Kilim utilizes lightweight threads [38] and Scala also allows
actors to run using a thread pool [19] or as lightweight ac-
tors using the Akka framework [5, 9]. Charm++ [29] pro-
vides a lightweight actor inspired library based on C++ for
use in cluster computing environments, and more recently
libcppa [12], has evolved into the C++ Actor Framework
(CAF) which utilizes lightweight actors and also enables
GPGPU computing [10, 11].

SALSA Lite follows in this path by rebuilding SALSA
from the ground up using lightweight actors with a strong
emphasis on performance. Previous work has evaluated the
performance of SALSA Lite in non-distributed concurrent
settings [14]. This work presents how these lightweight ac-
tors have been used to develop an efficient distributed com-
puting runtime that enables both remote and mobile actors.
Few actor languages and libraries support transparent dis-

tribution of actors, and even fewer support mobility. To
the authors’ knowledge, only the ActorFoundry [8] (based
on Kilim), ActorNet [34, 33] (an actor platform for wire-
less sensor networks), JavAct [6], Actor Architecture [25],
SALSA and now SALSA Lite provide transparent actor mo-
bility [30].

2. APPROACH
The design philosophy of SALSA Lite is in essence to prac-

tice what we preach in regards to the benefits of the Actor
model, i.e., the language should be built using the Actor
model as opposed to objects and threads. Further, to bor-
row from Unix, the common case should be executed fast.
As such, SALSA Lite has been rebuilt from the ground up to
provide a core of lightweight actors which can send messages
and be created extremely quickly. Using this simple efficient
core, language semantics and runtime services are then built
using these actors as opposed to objects and threads. Other
results have shown the efficiency of SALSA Lite actors in
concurrent non-distributed settings [14, 11], providing justi-
fication for using them as a foundation for the language.

This lightweight actor implementation has been built in
a novel way based on hashing to eliminate any synchroniza-
tion bottlenecks [14]. For example, if actors or messages
need a unique identifier, a common way to generate that is
to take the host, port and start time of the theater and ap-
pend a counter. However, that counter needs to be accessed
atomically which makes it a singular point of synchroniza-
tion. This can lead to applications which appear concurrent,
but actually are operating sequentially based on those syn-
chronization bottlenecks. SALSA Lite avoids this by using
the hashcode of the actor requesting a service and selecting
one of N copies of a service by the hashcode modulo the
number of services. Collisions are not an issue as mutliple
actors are expected to use the limited number of N services.
The number of the various services can be specified at run-
time, allowing SALSA Lite applications to easily scale to the
number of cores available.

Instead of developing a runtime and services for remote
and mobile actors using objects and threads, as done in the
previous implementation of SALSA, the lightweight core of
actors has been used to develop a distributed computing
environment which utilizes the Actor model to eliminate
deadlocks and achieve high levels of concurrency and per-
formance. Lastly, as SALSA Lite is being developed with
performance in mind, we have decided to allow program-
mers to specify if an actor will be local, remote or mobile,
as adding this functionality does come at a cost. This al-
lows programmers to use the type of actor with the best
performance for the task at hand.

3. IMPLEMENTATION
SALSA Lite’s runtime is based on the concept of stages

(see Figure 2), which essentially act as a unified mailbox
and thread of control for groups of actors assigned to them.
This allows local actors to be implemented as simple Java
objects with only a reference to the stage they are “per-
forming” on. When a message is sent to an actor, the mes-
sage is placed in its stage’s mailbox using this reference and
the stage’s putMessageInMailbox method. While to the au-
thors’ knowledge, SALSA Lite is the only actor langauge
to utilize this type of runtime, however others such as E’s



Figure 2: The SALSA Lite runtime environment.
Heavyweight actors called stages are used to process
messages on multiple lightweight actors, simulating
their concurrent execution. A stage will repeatedly
get the first message from its mailbox and process
that message on the message’s target actor. Every
actor is assigned to a stage. A Message sent to an
actor is placed at the end of its assigned stage’s mail-
box (image from [14]).

vats [36, 35] and SEDA [48, 37] use a similar approach for
high efficiency. With this design in mind, remote and mobile
actors were implemented in a way to not impact or degrade
the performance of these local actors.

3.1 Theaters
Distributed computing in SALSA is done using the con-

cept of theaters. Each theater serves as a separate process in
which multiple actors perform on a set of stages. The num-
ber of stages in a theater can be dynamically specified at
runtime, and actors can either be automatically assigned to
stages, have new stages generated for them, or be assigned
to particular stages programatically (see [14] for further de-
tails). Theaters listen on a particular port for incoming con-
nections to other theaters which can be distributed over local
area networks or the Internet.

Each theater has a TheaterActor repeatedly listening for
incoming socket connections. When one occurs, it spawns
a IncomingTheaterConnection actor who handles receiv-
ing messages and migrating actors from that theater. Mes-
sages and migrating actors are sent via a theater’s Trans-

portService which has a set of static methods which put
messages in the appropriate OutgoingTheaterConnection

mailboxes and create new OutgoingTheaterConnection ac-
tors when necessary. The TheaterActor, IncomingTheater-
Connection and OutgoingTheaterConnection actors are all
heavyweight, each running on their own stage as to not block
the execution of other actors when they are blocked listening
for connections or waiting to receive data over a socket.

The IncomingTheaterConnection actors put messages in
the appropriate stage’s mailbox as they are received. Mak-
ing sure references to actors are correctly kept as messages
are serialized and de-serialized is described in Section 3.2.1.

1 : //Create a remote actor at the local theater
2 : MyRemoteActor a = new MyRemoteActor ( )
3 : called ("a" ) ;

4 : //Create a remote actor at a remote theater
5 : MyRemoteActor b = new MyRemoteActor ( )
6 : called ("b" ) at ( host , port ) ;

7 : //Create a name server
8 : NameServer ns = new NameServer ( )
9 : called ("my_nameserver" ) ;

10 : //Create a mobile actor at the local theater
11 : MyMobileActor c = new MyMobileActor ( )
12 : called ("c" ) using ( ns ) ;

13 : //Create a mobile actor at a remote theater
14 : MyMobileActor c = new MyMobileActor ( )
15 : called ("c" ) using ( ns )
16 : at ( host , port ) ;

Figure 3: SALSA Lite has simplified syntax for cre-
ating remote and mobile actors. Unique names are
specified with the called keyword, the host and port
of the theater the actor is created on are specified
with the at keyword, and the name server actor a
mobile actor is registered at is specified with the
using keyword.

The OutgoingTheaterConnection actors simply send mes-
sages and actors across a socket to the IncomingTheater-

Connection actor they are paired with. As described in Sec-
tion 3.3.1, implementing these services as actors also allows
for the easy implementation of a protocol to update remote
references to mobile actors as they migrate around a set of
theaters.

3.2 Remote Actors
As remote actors do not migrate, it is always the case that

a reference to a remote actor refers to the actual actor when
it is present at the same theater, or that it is a reference to a
remote actor on another theater. In the first case, implemen-
tation of remote actors is identical to that of a local actor,
with the exception that the remote actor needs a unique
name so that it can be referred to and looked up by other
actors. Figure 3 presents the syntax for creating the various
types of actors in SALSA Lite and Figure 4 presents the
syntax for generating references to actors using their name
and location. The remote actor also needs to be added to a
RemoteActorRegistry which is a HashMap of names to the
actual remote actor lightweight actor object, so incoming
messages can be directed towards it accordingly. This adds
some overhead to the creation of a remote actor, while send-
ing messages to it locally can be performed the same as with
local actors as the other actors simply have a reference to
the actual remote actor.

In the second case, where it is a reference to a remote actor
on another theater, when a message is invoked on that refer-
ence (implemented as a local actor), it instead uses SALSA
Lite’s transport service to put it in the mailbox of the ap-
propriate OutgoingTheaterConnection actor, which sends
it over a socket to the appropriate theater. When the mes-



1 : //Reference a remote actor at the local theater
2 : MyRemoteActor a = reference
3 : MyRemoteActor called ("a" ) ;

4 : //Reference a remote actor at a remote theater
5 : MyRemoteActor b = reference
6 : MyRemoteActor called ("b" )
7 : at ( host , port ) ;

8 : //Get a reference to a remote name server
9 : NameServer ns = reference NameServer

10 : called ("my_nameserver" )
11 : at ( host , port ) ;

12 : //Reference a mobile actor registered at
13 : //that name server
14 : token MyMobileActor c = reference
15 : MyMobileActor called ("c" )
16 : using ( ns ) ;

Figure 4: SALSA Lite has also simplified syntax for
referencing remote and mobile actors. Instead of the
new keyword, the reference keyword is used. The ac-
tor’s names are specified with the called keyword,
the host and port of the theater the actor is cre-
ated on are specified with the at keyword, and the
name server actor a mobile actor is registered at is
specified with the using keyword.

sage is received by the target theater’s IncomingTheater-

Connection, the actual remote actor is looked up in the
RemoteActorRegistry and the message is sent to it.

3.2.1 Actor Reference Propagation
Some challenges arise in that a message sent to a remote

actor on another theater can contain references to other local
or remote actors. If these messages were blindly serialized
while being sent to the other theater, this would result in
unintended copies of these actors. To overcome this, SALSA
Lite uses Java’s readResolve() and writeReplace() meth-
ods instead of default object serialization. When a local
or mobile actor is serialized, its writeReplace() method is
called, which creates a serialized reference only containing
the hashcode, host and port in the case of a local actor, or
the unique name, host and port in the case of a remote ac-
tor. For local actors, a reference to the local actor is also
placed in a LocalActorRegistry so it can be looked up if
messages are sent to it from another theater. This also can
drastically reduce the size of the messages being sent as only
the minimum amount of data required to lookup the ac-
tor or generate a reference is sent. It should be noted that
the implementation of local actors has remained completely
unchanged, apart from now providing readResolve() and
writeReplace() methods for serialization when references
to them propagate to remote theaters.

When the serialized reference is received by a theater, the
readResolve() method is called on the serialized reference.
This performs a lookup in either the LocalActorRegistry or
RemoteActorRegistry. If the actor is present, the readRe-

solve() method returns the actual reference to that actor,
otherwise it returns a remote reference object which sends
messages to the OutgoingTheaterConnection actor instead
of actually processing them. This prevents copies of actors

from occurring, and also ensures that there is only one re-
mote reference to an actor at any one theater (which will
aid in implementing distributed garbage collection). These
registries have been implemented using the hashing strat-
egy described in Section 2, so multiple copies can be made
which are selected by the actor’s hashcode, preventing the
registries from acting as a singular bottleneck.

3.3 Mobile Actors
Unlike local and remote actors, there are significant chal-

lenges in implementing mobile actors as a single object (ei-
ther as a remote reference or the actual actor), as migration
would then involve having to update the references to it held
by all other actors every time it migrates. Keeping track
of these reverse references can lead to significant memory
and performance overhead. Similar to how actors are imple-
mented in SALSA, in SALSA Lite, mobile actors are divided
into reference and state objects. When a mobile actor is
created, its state is placed in a MobileActorStateRegistry,
which is the only object with a reference to the actor’s state.
The reference acts in the place of a lightweight actor on a
stage. When a message is invoked on the reference, it per-
forms a lookup in the MobileActorStateRegistry which in-
vokes the message on the state if the actor is present. When
the actor migrates, the state object is put in a message to
the OutgoingTheaterConnection it is being sent over, and
the state object is removed from the MobileActorRegistry

and is replaced with a reference to the OutgoingTheater-

Connection actor that sends messages to the theater the
actor migrated to. If the lookup returns the connection,
the message is placed in the OutgoingTheaterConnection’s
mailbox to be sent to that theater. In this way, the only time
the mobile actor’s state is serialized is when it migrates.

This also allows references to mobile actors to propagate
in a manner similar to local and remote actors. This prop-
agation is handled the same way by using readResolve(),
writeReplace(), a serialized reference and MobileActor-

ReferenceRegistries.
Note that every time a message is invoked on a mobile

actor, a lookup in a MobileActorStateRegistry needs to
be performed, which adds overhead to message passing.

3.3.1 Finding Mobile Actors
In addition to mobile actors requiring a unique name, host

and port in their reference and state, mobile actors also need
to be registered at a name server. The name server is used
as a lookup service for getting a reference to a mobile actor
(see Figure 4). When the mobile actor is created, it sends
a PUT message asynchronously to the name server it will be
registered at. When the actor migrates, it sends an asyn-
chronous UPDATE message to the name server, which updates
its location on the name server. When another actor wants
to get a reference to a mobile actor, it can contact the name
server with a GET message which will return a reference to
that actor. This is done transparently when the reference

keyword is used.
In contrast with SALSA, where name servers are run as

standalone daemons, in SALSA Lite, name servers are im-
plemented using remote actors and are first class entities
within the runtime (see Figure 3 and 4). This makes the use
of name servers much easier, as they can be easily created
within SALSA Lite programs, and also allows them to use
SALSA Lite’s remote message sending infrastructure.



Another major difference is that in SALSA Lite, name
servers operate asynchronously. In SALSA, whenever an ac-
tor migrates, it synchronously performs an UPDATE on the
name server and only migrates after it completes, as name
servers are used synchronously within the protocol for look-
ing up actors if a message arrives at a theater and the actor
had migrated away in the meantime. In SALSA Lite, name
servers only asynchronously provide a reference to the ac-
tor and the run time updates itself as to where the actor is
located.

This is done with the following protocol: if a message re-
ceived by an IncomingTheaterConnection actor has mobile
actor as its target, and that mobile actor is not present at the
theater, it performs a lookup as to where the actor had mi-
grated using the MobileActorStateRegistry. It sends the
message on to the theater the actor had migrated to, but
also sends an updateActorLocation message to the theater
actor at the source of the message. It keeps a list of actors
it has sent updateActorLocation messages to and has not
yet heard an acknowledgement back from yet, to prevent
spamming the source theater with multiple updateActor-

Location messages. In this way, as an actor migrates and
messages are sent to it, the theaters update their Mobile-

ActorStateRegistry with references to where the mobile
actors have moved to.

All these messages are sent asynchronously using SALSA
Lite’s remote messaging, to prevent deadlocks and improve
performance. Also, this means that the name server re-
sponds with a reference to an incorrect theater, as an actor
had completed migration before the UPDATE message was
processed, that reference will be updated to the actor’s cur-
rent location using this protocol without requiring any fur-
ther calls to the name server.

4. RESULTS
For reproducibility, source code for SALSA Lite is freely

available on GitHub.1 The benchmarks used can be found
in the benchmarks directory of the repository. This section
presents a performance analysis of the newly developed re-
mote and mobile actors and compares them to local actors
in SALSA Lite as well as SALSA version 1.1.5.

4.1 Runtime Environment
All results were gathered using a small Beowulf HPC clus-

ter with 4 dual quad-core compute nodes (for a total of
32 processing cores). Each compute node has 64GBs of
1600MHz RAM, two mirrored RAID 146GB 15K RPM SAS
drives, two quad-core E5-2643 Intel processors which op-
erate at 3.3Ghz, and run the Red Hat Enterprise Linux
(RHEL) 6.2 operating system. All 32 nodes within the clus-
ter are linked by a private 56 gigabit (Gb) InfiniBand (IB)
FDR 1-to-1 network. Java version 1.6.0 26 was used, with
the Java(TM) SE Runtime Environment (build 1.6.0 26-
b03) and the Java HotSpot(TM) 64-Bit Server VM (build
20.1-b02, mixed mode). Runs were performed 10 times
each, each with freshly created theaters and name servers,
so startup times are included, and the various figures dis-
play the mean runtime as well as the standard deviation
of the different runs. Runs done with SALSA version 1.1.5
were done with garbage collection turned off by using the
-Dnogc system property for a more accurate comparison as

1https://github.com/travisdesell/salsa lite

distributed garbage collection in SALSA Lite remains an
area of future work. This is in part due to challenges in
correctly and efficiently implementing distributed garbage
collection that can also handle pathological cases such as
distributed circular references.

4.2 Local Message Passing Performance
Figure 5 shows the performance of local, remote and mo-

bile actors in SALSA Lite, with all actors running on a sin-
gle stage.2 The ThreadRing benchmark was identical for all
three, except that actors either were local, or extended the
RemoteActor or MobileActor behaviors. One stage was used
to avoid introducing effects from thread scheduling which
could significantly impact performance. 31 actors were cre-
ated (as typical for the benchmark) and 500,000 to 1,000,000
messages were passed around the ring.

While this figure shows a fair amount of overhead for us-
ing remote and mobile actors, this is mostly due to increased
startup times. Remote actors require a theater to be cre-
ated, which opens a socket and listens for incoming commu-
nication from other theaters, mobile actors require this in
addition to a name server which they are registered with.
A linear regression was performed for each of these runs,
with r-values (correlation coefficients) greater than 0.999 for
all three actor types. Figure 5 shows the slope and inter-
cept for these regressions, showing that remote actors have
a ∼2.5x increase in startup costs and that mobile actors have
a ∼3.26x increase over purely local actors. Apart from the
increased startup costs, the performance of actual message
sending is quite good, with local and remote actors having
practically identical message passing performance, and mo-
bile actors having ∼30% overhead.

4.3 Local Actor Creation Performance
Figure 6 shows the performance of creating local, remote

and mobile actors using a simple actor creation micro bench-
mark. As in the previous benchmark, only one stage was
used to avoid introducing effects from thread scheduling.
The benchmark created between 100,000 and 600,000 ac-
tors, with each actor responding to the master actor with
an acknowledgement message that it had been created. Af-
ter an acknowledgement had been received for each actor,
the benchmark would terminate. Here, in addition to the
startup costs seen in the ThreadRing benchmark, there is
significantly more overhead for creating remote and mobile
actors.

Linear regression on these runs produced an r-value above
0.999 for the local actors, and r-values above 0.977 for re-
mote and mobile actors. Creation of remote actors resulted
in ∼54% overhead, while mobile actors had ∼438% over-
head. This was expected however, as in SALSA Lite, local
actors are little more than objects with a reference to the
stage they are running on, while remote actors also need to

2Previous results have compared SALSA Lite to SALSA for
the ThreadRing benchmark, along with a set of other actor
based programming languages [14] (Kilim, Scala, and Er-
lang). SALSA Lite has been found to be three times faster
than Kilim and an order of magnitude faster than Erlang,
Scala and SALSA on this benchmark. This performance has
also been recently reproduced by Charousset et al. [11]. As
this paper focuses on the performance of remote and mobile
actors in SALSA Lite, we refer the reader to those works
for further performance comparisons between different ac-
tor languages.



Figure 5: This figure shows the performance of the
ThreadRing benchmark for local, remote and mobile
actors in SALSA Lite. This serves as a measure of
the basic amount of overhead in message passing and
theater startup costs for using remote and mobile
actors. In each benchmark, 31 actors were created
and 500,000 to 1,000,000 messages were sent around
the ring. The mean and standard deviation of 10
runs for each data point are shown.

have a name, host and port. In addition to that, mobile ac-
tors also require a reference to a name server, and also send
a PUT message to register at the name server when they
are created. Further, both also need to be stored in their
respective registries. As the actors created in this micro-
benchmark only have a reference to the master actor that
created them, these costs can represent significant overhead.

4.4 Remote Actor Creation Performance
Figure 7 shows the performance of creating both remote

and mobile actors at a remote theater. Additionally, the
cost of creating an actor locally and then migrating it to
the remote theater is presented. Only one stage was used,
however the theater actors are created on their own stages,
so some of the performance differences could be attributed
to thread context switching.

This micro-benchmark is identical to the previous local
version except for the actors being created on the remote
theater. For the version with migration, the acknowledge-
ment message to the master was only sent after the migra-
tion had completed. For these tests, 1000 to 5000 actors
were created. Linear regression produced r-values greater
than 0.994 for the local actors, 0.979 for the remote actors,
and 0.983 for the mobile actors. Interestingly, creating the
mobile actors locally and migrating them performed better
than creating them remotely, however this makes some sense
in that creating the mobile actors remotely returns a token
(similar to a future) which must be received by a TokenDi-

rector actor created by the runtime, so it entails the cre-
ation of an extra actor and two extra messages (one from the
remote theater to the TokenDirector at local theater and
another from the TokenDirector to any actor which wants
to use the reference to the remotely created actor). Even so,

Figure 6: This figure shows the performance of a ac-
tor creation micro-benchmark in SALSA Lite. This
serves as another measure of theater startup costs,
as well as the overhead of creating remote and mo-
bile actors. 100,000 to 600,000 actors were created,
each sending an acknowledgement to a master ac-
tor. The mean and standard deviation of 10 runs
for each data point are shown.

remote creation of mobile actors was only ∼6% slower than
remote creation of remote actors.

It is also worth mentioning that while local creation and
migration performed faster than remote creation of mobile
actors, in general this is probably not the case. For ex-
ample, if an actor generates any large amount of data in its
constructor, creating it locally and migrating it could be sig-
nificantly more expensive due to extra bandwidth required.
As such, it is good to be able to have the option to use either
method.

Results were also gathered using SALSA version 1.1.5
however these were not added to the figures as for above
100 actors deadlocks as well as issues with reaching a limit
on the number of threads available occurred. However, for
100 actors, remote creation took an average of 1.84 seconds
with a standard deviation of 0.033 over 10 runs, and local
creation and migration took on average 1.24 seconds with
a standard deviation of 0.0092 seconds. This is an order of
magnitude slower than the time taken for SALSA Lite to
create 1,000 actors; so the new implementation shows sig-
nificant performance gains over SALSA version 1.1.5.

4.5 Remote Message Passing Performance
Figure 8 presents results for a new benchmark called The-

aterRings which examines the performance of remote mes-
sage sending. This benchmark operates similarly to the
ThreadRing benchmark, except in this case a single actor
is created at each theater. Additionally, multiple rings of
actors are created which send messages concurrently. All
messages hop around the ring of actors in the same direc-
tion. For this benchmark, 1 to 320 rings were generated,
with each ring sending 1000 messages. Each ring had one
actor created on one of the four nodes in the Beowulf clus-
ter. Each theater had one stage for these actors, however



Figure 7: This figure shows the costs of creating re-
mote and mobile actors at a remote theater, along
with creating mobile actors locally and migrating
them to the remote theater. After each actor was
created remotely, or completed its migration, it sent
an acknowledgement message back to the master ac-
tor. The mean and standard deviation of 10 runs for
each data point are shown.

other stages were created for actors in the theater runtime.
Figure 8a shows results for 1 to 10 rings, and Figure 8b
shows results calculated with 10, 20, 40, 80, 160, and 320
rings. Results were gathered using remote and mobile actors
in SALSA Lite, as well as actors in SALSA version 1.1.5.

From 1 to 10 rings some rather interesting behavior oc-
curred. First, once SALSA reached 7 rings, the runtime
started varying dramatically and deadlocks started to occur,
as is shown by the large increase in the standard deviation
of the runtime. Additionally, for 1 and 2 rings, mobile ac-
tors exhibited some very poor performance, running almost
5 times slower than remote actors and SALSA. Also, for all
three, runtime generally decreased as more rings were added.
Performance was the fastest for SALSA and remote actors
at 6 rings, with an average runtime of 2.001 and 1.518 sec-
onds, respectively, and mobile actors were the fastest at 20
rings, with an average runtime of 1.971 seconds.

For SALSA, after 10 rings, deadlocks occurred even more
frequently, however the runtime stabilized for the runs which
completed (the times shown are the average runtime of runs
which completed). Presumably, from 7 to 9 rings, the is-
sue causing the deadlock could resolve itself resulting in the
larger span of run times, however with 10 or more rings
the issue was not resolvable. After 10 rings, the runtime
increased quite linearly, with the linear regression having r-
values of greater than 0.999, 0.998 and 0.999 for remote, mo-
bile and SALSA actors, respectively. Using the values from
the linear regression from 10 to 320 stages, mobile actors
were ∼5.55% slower than remote actors (similar to results
from the remote actor creation micro-benchmark). Further,
both remote and mobile actors were around twice as fast as
SALSA (not counting SALSA deadlocks).

Given these results, it seems that the TheaterRings bench-
mark presents a pathological case for mobile actors when

there are 1 or 2 rings. These results are somewhat similar
to the case of the ThreadRing benchmark where each ac-
tor is given their own stage (i.e., their own thread), where
SALSA Lite performs similarly to SALSA, at about an or-
der of magnitude slower than having the ThreadRing actors
entirely on one stage. Because of this, the poor performance
seems to be due to the cost of context switching between
the stage of the IncomingTheaterConnection and the stage
of the TheaterRingWorker. When there is only one message
being passed around, the thread of each stage wakes up from
a notification when the message is placed in its mailbox, and
after processing the message the thread goes back to sleep
waiting for the next message as its mailbox is empty. This
behavior would explain how increasing the number of rings
improved performance, as this would further reduce context
switching time. After 10 or so rings, the latency and band-
width between theaters became the bottleneck, resulting in
the linear performance from there as more rings were added.

4.6 Actor Migration Performance
Figure 9 presents results for another new benchmark called

MigrationRings, which examines the performance of mi-
grating actors in a distributed system. The benchmark cre-
ates N actors, and each are given the same list of theaters
in the system. Each actor starts at the same origin theater,
and then migrates around the theaters in a ring until M
migrations have been performed. For this benchmark, 1 to
320 actors were created with results being measured for 10,
20, 40, 80, 160 and 320 actors. Each actor performed 1000
migrations. These actors migrated around four theaters,
one on each node in the Beowulf cluster. Each theater was
created with one stage for these actors, however additional
stages were created for the theater runtime actors. After
each actor completed the given number of migrations, an
acknowledgement is sent to the master actor, which termi-
nates when it receives an acknowledgement for each actor.
Results were gathered using both SALSA version 1.1.5 and
mobile actors in SALSA Lite.

Similar to the results for the TheaterRings benchmark,
mobile actors show weak performance with a single actor,
however with more than one ring performance is very good.
Additionally, these results also show a similar decrease in
runtime when more concurrency is added, presumably due
to less context switching. It should also be noted that un-
like the remote creation and TheaterRings benchmarks, no
deadlocks were detected in SALSA version 1.1.5 for these
runs. Using the linear regression from results with 10 to 320
actors, with r-values greater than 0.999 for mobile actors
and 0.984 for SALSA have mobile actors migrating 17.88
times faster than SALSA, which is a dramatic improvement
in performance.

There are many factors in regards to this large perfor-
mance improvement. First, SALSA actors are heavyweight,
each with their own thread, so migration involves starting up
and destroying threads as the actor migrates between the-
aters. Additionally, while the name server in SALSA Lite is
used asynchronously as a boot strapping method, in SALSA,
migration involves synchronously updating the actor’s entry
in the name server before performing migration. In many
ways, this makes the name server a synchronous bottleneck
to performance. While this can be somewhat alleviated by
having multiple name servers, it is still a significant perfor-
mance hit.



(a) 1 to 10 Rings (b) 10 to 320 Rings

Figure 8: This figure shows results from the TheaterRings benchmark. 1 to 320 rings of actors were created,
one actor per theater, and each ring sent 1000 messages around similar to the ThreadRing benchmark. Each
ring operated concurrently. Results were gathered using SALSA version 1.1.5 as well as remote and mobile
actors in SALSA Lite. The mean and standard deviation of 10 runs for each data point are shown.

(a) 1 to 10 Rings (b) 10 to 320 Rings

Figure 9: This figure shows results from the MigrationRings benchmark. 1 to 320 actors were created, and
each migrated 1000 times around four theaters. Results were gathered using SALSA version 1.1.5 and with
mobile actors in SALSA Lite. The mean and standard deviation of 10 runs for each data point are shown.

5. CONCLUSIONS AND FUTURE WORK
This paper presents a new distributed runtime to enable

remote and mobile actors in SALSA lite. This runtime is
built using SALSA Lite’s lightweight actors as a foundation
to enable high performance and scalability. Performance
improvements over SALSA version 1.1.5 are significant: re-
mote message passing in SALSA Lite is 1.94 times faster for
mobile actors, and 2.05 times faster for remote actors; mi-
gration of mobile actors in SALSA Lite is 17.88 times faster
than SALSA; and remote creation of mobile and remote ac-
tors in SALSA Lite is two orders of magnitude faster. Addi-
tionally, with two new benchmarks, SALSA Lite is shown to
have strong scalability in terms of concurrent actor execu-
tion. Further, in some of the more complicated benchmarks

with lots of actor concurrency, SALSA version 1.1.5 suffered
from deadlocks, while SALSA Lite did not, adding more jus-
tification for building the runtime using lightweight actors.

The performance overhead of using remote and mobile
actors was also compared to SALSA Lite’s local actor im-
plementation. For message passing within a theater, remote
actors resulted in 0% overhead, and mobile actors resulted in
30% overhead. Local creation of remote and mobile actors
was more expensive with 54% overhead for remote actors
and 438% for mobile actors. In distributed scenarios, creat-
ing mobile actors remotely was only 6% slower than creating
remote actors remotely, and passing messages between mo-
bile actors on different theaters was only 5.55% slower than
passing messages between remote actors. In general, this
overhead is found to be fairly low given the requirements of



remote and mobile actors.
This investigation opens up many avenues for future work

and analysis. In particular, some pathological cases for
message passing were found in SALSA Lite when the cost
of thread context switching becomes quite high. SALSA
Lite uses Java’s LinkedList class along Java’s synchronized
keyword to make access to it thread safe.3 These patholog-
ical cases could be potentially eliminated by using lock-free
data structures as used by CAF [10], or thread pools as in
Scala [20] and Akka [9, 5]. Another potential area for im-
proved performance would be the use of an asynchronous IO
framework such as Netty [41] instead of Java’s synchronous
sockets, which could allow the IncomingTheaterConnection

and OutgoingTheaterConnection actors to be lightweight
instead of heavyweight.

Additionally, for a more in depth investigation of SALSA
Lite’s performance and comparison to other Actor program-
ming languages, we intend to fully implement the Savina
benchmark suite [24] which can potentially uncover other
areas where performance can be improved and compare the
performance remote messaging and actor migration to other
modern implementations. Further, it would be beneficial
to extend this suite with more benchmarks such as the Mi-

grationRings benchmark discussed in this paper which can
more fully test and evaluate the performance of actor mi-
gration. The syntax for remote actor referencing described
in Section 3 can potentially be simplified even further us-
ing syntax described in [45]. Lastly, as touched on in Sec-
tion 3.2.1, using Java’s readResolve() and writeReplace()

methods for serialization lays groundwork for investigating
efficient implementations of distributed actor garbage col-
lection [47, 13, 46, 39].
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