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Abstract
The transactor model, an extension to the actor model, spec-
ifies an operational semantics to model concurrent systems
with globally consistent distributed state. The semantics for-
malizes tracks dependencies among loosely coupled dis-
tributed components to ensure fault tolerance through a two-
phase commit protocol and to issue rollbacks in the presence
of failures or state inconsistency. In this paper, we introduce
the design of a transactor language as an extension of an ex-
isting actor language and highlight the capabilities of this
programming model. We developed our transactor language
using SALSA, an actor language developed as a dialect of
Java. We first develop a basic transactor SALSA/Java library,
which implements the fundamental semantics of the trans-
actor model following the operational semantics’ transition
rules. We then illustrate two example programs written us-
ing this library. Furthermore, we introduce a state storage
abstraction known as the Uniform Storage Locator follow-
ing the Universal Actor Name and Universal Actor Loca-
tor abstractions from SALSA that uses a storage service
to maintain checkpointed transactor states. The transactor
model guarantees safety but not progress. Therefore, to help
develop realistic transactor programs that make progress,
we introduce the Consistent Distributed State Protocol and
Ping Director that improve upon the Universal Checkpoint-
ing Protocol to aid transactor programs in reaching globally
consistent distributed states.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—concurrent
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programming structures; D.4.5 [Operating Systems]: Relia-
bility—checkpoint\restart, fault-tolerance; D.1.3 [Program-
ming Techniques]: Concurrent Programming—distributed
programming

General Terms Design, Languages, Reliability

Keywords Actor; Distributed state; SALSA; Transactor

1. Introduction
The transactor model introduced by Field and Varela is de-
fined to as a “fault tolerant programming model for compos-
ing loosely-coupled distributed components running in an
unreliable environment such as the Internet into systems that
reliably maintain globally consistent distributed state”[4, 7].
Therefore, transactors allow for guarantees about consis-
tency in a distributed system by introducing semantics on
top of the actor model that allows it to track dependency
information and establish a two phase commit protocol in
such a way that a local commit succeeds only if local state
is globally consistent. This allows a transactor to recognize
reliance on other transactors and how they directly influence
its own current state. As an extension of the actor model [1],
transactors inherit the core semantics of encapsulating state
and a thread of control to manipulate the state as well as
communication through asynchronous messaging. In addi-
tion to these, transactors introduce new semantics to explic-
itly model node failures, network failures, persistent storage,
and state immutability.

This paper presents a working implementation of the
transactor model as a step toward developing a language
to compose programs that follow an actor oriented program-
ming paradigm that inherently maintains global state [9].
To do this we used the SALSA actor language [12–14] as a
base on which we overlay transactor semantics. This is simi-
lar to how transactors naturally extend the actor model. This
allows users to build loosely coupled distributed systems
without a need for central coordination and takes into con-
sideration the high latencies of a wide area network where
node and link failures are common occurrences. Our imple-



mentation can also serve as a basis for further research on
the transactor model as well for reasoning about composing
transactor programs and fault tolerance.

The remainder of this paper is structured as follows: Sec-
tion 2 provides some background information and important
definitions from the transactor model. Section 3 describes
our implementation of transactors. Section 4 illustrates a
simple reference cell example that highlights our implemen-
tation. Section 5 describes how our implementation handles
persistent state storage. Section 6 introduces a useful trans-
actor abstraction known as the Proxy. Section 7 presents the
Consistent Distributed State Protocol and the Ping Director
that allow for creating programs that maintain globally con-
sistent state. Section 8 shows new syntax added to SALSA
that encodes the transactor semantics. Section 9 describes a
detailed house purchase program example that makes use of
our protocol. Section 10 presents related work. Finally, Sec-
tion 11 concludes with a discussion and future work.

2. Background
In this section we provide a very brief summary of the
transactor model and describe important terms used in the
rest of the paper. We refer the reader to [4, 7, 9] for a
formal definition of the model, which includes a complete
operational semantics.

A transactor is composed of three key components: state,
a thread of control that represents its behavior, and a world-
view. The state of a transactor consists of two components:
persistent and volatile. Persistent state has been committed
to stable storage and is able to survive failures. Volatile state
is vulnerable to failures until it has been committed and
holds all changes that differ from a previously committed
state. A transactor itself is said to be permanent if it has
made an initial commit to obtain a persistent state, other-
wise it is regarded as ephemeral. Ephemeral transactors are
removed on failure to ensure consistency with global per-
sistent state. A transactor’s behavior defines its response to
incoming messages. Similar to an actor, when a transactor
receives a message, it may create new transactors, send mes-
sages or modify its own state. In addition to actor primi-
tives, it also has the option to stabilize, checkpoint, and roll-
back. Stabilization is considered the first step of a two-phase
commit protocol and makes a transactor immutable until a
checkpoint or rollback occurs. The second step of the two-
phase commit is a checkpoint which, if successful, com-
mits the transactor’s current state and guarantees consistency
among peer transactors. That is, the current transactor state
does not have a dependence on any other volatile transactor
states. Lastly, rollback brings a transactor back to a previ-
ously checkpointed state.

The worldview abstracts over currently known depen-
dency information and has three components: a history map,
dependency graph, and root set. The history map is a col-
lection of mapping from transactor names to transactor his-

tories. The history of a transactor abstracts over how many
times it has checkpointed and rolled back in the past. A his-
tory has three defining properties: a volatility value, incarna-
tion value, and incarnation list. A history’s volatility value
indicates whether the current transactor is stable. Its incar-
nation value is a zero based numerical value which is incre-
mented every time a rollback occurs. A checkpoint appends
the current value to the history’s incarnation list and reset
its incarnation to maintain a record of past checkpoints and
rollbacks. A dependency graph is a set of transactor depen-
dencies represented as directed edges on transactor names.
The root set captures dependencies of message payloads.

Dependency information is tracked by passing world-
views along with messages to other transactors. On recep-
tion of a message, a worldview union algorithm is applied
to the current and received view, which reconciles these two
views into an up-to-date view. Through this algorithm, the
transactor model is able to propagate dependency informa-
tion among interacting transactors. Dependencies are inher-
ited and created by recognizing state mutations as a conse-
quence of evaluating messages and are recorded appropri-
ately by the worldview.

3. Implementation
Our language is first developed as a transactor library on
top of the actor library used by SALSA compiled pro-
grams [12]. Figure 1 shows the class hierarchy diagram
of our transactor library. A transactor is encoded in the
transactor.language.Transactor class that extends
and inherits from the salsa.language.UniversalActor

class. In addition to the semantics inherited from a SALSA
actor we create Java classes that encapsulate the semantics of
a transactor worldview and history. Each transactor instanti-
ates a Worldview but dependency semantics are meant to be
transparent to the user. Similar to how SALSA implements
a mailbox to handle message reception transparently, world-
view operations are handled internally and the user cannot
directly access such information except with supplied trans-
actor primitive operators.

3.1 Message Passing
Message sending is inherited from SALSA as potential
method invocations. We leverage the existing actor message
handling implementation and add to the payload dependency
information to accommodate the transactor model. Just as in
SALSA, message sending is asynchronous and message pro-
cessing is sequential though the ordering of messages is not
guaranteed. Message parameters are passed by value to en-
sure there is no shared memory between transactor states.
We provide two methods to the Transactor class that im-
plements transactor message handling:

void sendMsg(String method, Object[] params,

Transactor recipient)



Figure 1. Class hierarchy diagram for the transactor library

void recvMsg(Message msg, Worldview msg wv)

sendMsg(...) implements a message send by taking as
arguments a string, method, that represents the type of mes-
sage being sent which should match an appropriate message
handler on the recipient transactor and an array of message
parameters, params, which should match the arguments of
the message handler signature. With these arguments we
instantiate a salsa.language.Message object the same
way messages are created in SALSA but instead we actu-
ally create a new message that wraps this requested mes-
sage with the sender’s worldview and call the corresponding
recvMsg(...) message handler on the recipient.

On reception of a message, recvMsg(...) first evalu-
ates the message dependencies by invoking the worldview
union algorithm defined in [4, 9] on the recipient’s world-
view along with the message’s worldview. Afterward we
branch off to one of four receive transition rules [4, 9] in the
transactor model by analyzing the reconciled dependency in-
formation. Invalidation of the recipient causes a rollback, an-
nihilating it if it is ephemeral; invalidation of the message
discards the message before it is processed; and if no invali-
dations are detected the message is placed in the transactor’s
mailbox to be processed normally by the SALSA actor li-
brary. In the cases where the recipient does not become in-
validated, its worldview is updated to reflect the unionized
worldview.

3.2 State Maintenance
State mutation and retrieval is done with the following two
transactor methods:

boolean setTState(String field, Object newVal)

Object getTState(String field)

setTState(...) takes as arguments a string that repre-
sents the field being modified and the newVal to mutate
the state with. Java reflection is used to reference the appro-

priate field in its state and mutation is done by replacing the
value with the new value. State fields are therefore inher-
ently immutable so set states are actually creating new states
similar to mutating references to a Java String. Similarly
getTState(...) uses Java reflection to de-reference and
return the value of the requested field. Dependencies are
created on the current worldview root set [4, 9] if a set state
occurs and the transactor name is appended to its root set if
a get state occurs.

3.3 Transactor Creation
Transactor creation is done with the following transactor
method:

Transactor newTActor(Transactor new T)

We use this method to extend the usual call to the new key-
word in order to instantiate the newly created transactors
worldview to reflect dependence on its parent. The new T

argument is an instantiated object of the transactor class to
be created. The new transactor inherits the history map and
dependency graph of the parent augmented with the new
transactor’s name and dependencies associated with the new
transactor by the names in the parent’s root set. Both parent
and new child transactor will reflect the same history map
and dependency graph but the parent will append the new
transactor’s name in its root set while the child starts with a
fresh root set. This method returns the same reference to the
new instantiated transactor with an updated worldview. The
returned reference must then be type casted back to the con-
structed transactor class. The following code sample shows
use of this method to create a new Foo transactor:

Foo FooActor = (Foo) newTActor(new Foo())

3.4 Fault Tolerance
Stabilization, checkpointing and rollbacks are provided in
the form of the following three transactor operator methods:

void stabilize()

void checkpoint()

void rollback(boolean force, Worldview update)

stabilize() updates the transactor history volatility value
to be stable and stores the current transactor state in stable
storage if it is not already stable. checkpoint() marks the
stored stable state as persistent, overwriting previous persis-
tent states, if the transactor is independent and stable and
clears its worldview. rollback(...) performs state rever-
sion to the most recent checkpoint. The arguments force

and update are used when an implicit rollback is caused
by being invalidated by a received message. By passing a
true to the first argument we can force the transactor to
rollback under this scenario even if it is stable. The second
argument represents the updated worldview obtained by the



worldview union algorithm so the rolled back state reflects
this information.

Implementation of a state rollback is inspired by SALSA
actor migration. Each transactor is inherently a SALSA ac-
tor, which encapsulates state in a thread of control so we
handle rollbacks by halting the current thread and starting
a new thread from a preserved checkpointed state and at-
taching the transactor name to it. However, before doing so,
we create a special placeholder transactor, defined by the
transactor.language.Rollbackholder class, to buffer
incoming messages while the rollback operation is taking
place. We register this placeholder state with the current
transactor name under the SALSA naming service so mes-
sages can be routed correctly. We then read the checkpointed
state from stable storage and tell the local system to start the
transactor state as a new thread and reassign its name with
the naming service. All buffered messages from the place-
holder are then forwarded to the newly reloaded transactor’s
mailbox and normal processing resumes.

4. Reference Cell Example

behavior Cell extends Transactor {
private int data = 0;

public Cell(int data) {
super(self);

this.setTState("data", data);

}

public void set(int val) {
this.setTState("data", val);

}

public void get(Transactor customer) {
Object[] args = {((int)this.getTState("data"))};
this.sendMsg("data", args, customer);

}
}

Figure 2. Simple reference cell implementation

The example in Figures 2, 3, and 4 shows three differ-
ent implementations of a reference cell written in SALSA
using our transactor library. These three different versions
highlight the semantics of the transactor model by provid-
ing progressively more refined notions of consistent state
under different failure and interaction assumptions. It also
illustrates application of the semantics implemented in our
library. The first version (Cell) defines an unreliable refer-
ence cell that is volatile and never checkpoints so it does not
tolerate failures. Any transactor that depends on the cell’s
value will not be able to checkpoint and a failure will cause
it to be annihilated. This version of the reference cell is sim-
ply the actor implementation. The second version (PCell)
presents a persistent reference cell that performs a check-
point on initialization so it will be able to survive failures.
This cell will also stabilize and checkpoint after each set to
ensure the new value is persistent but this makes the assump-

behavior PCell extends Transactor {
private int data = 0;

public PCell(int data) {
super(self);

this.setTState("data", data);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void set(int val) {
this.setTState("data", val);

this.stabilize();

this.checkpoint(); return;

}

public void get(Transactor customer) {
this.stabilize();

Object[]args = {((int)this.getTState("data"))};
this.sendMsg("data", args, customer);

this.checkpoint(); return;

}
}

Figure 3. Persistent reference cell implementation

behavior PRCell extends Transactor {
private int data = 0;

public PRCell(int data) {
super(self);

this.setTState("data", data);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void set(int val) {
this.setTState("data", val);

if (this.isDependent()) {
this.rollback(false, null); return;

}
else {

this.stabilize();

this.checkpoint(); return;

}
}

public void get(Transactor customer) {
this.stabilize();

Object[] args = {((int)this.getTState("data"))};
this.sendMsg("data", args, customer);

this.checkpoint(); return;

}
}

Figure 4. Persistent reliable reference cell implementation



tion that the sender is stable and independent, which may not
be the case. It also stabilizes before responding to get to en-
sure no dependencies are incurred in the cell’s customer and
checkpoints to preserve the invariant of being checkpointed
and volatile. The last version (PRCell) ensures that the cell
is reliable in that it will only recognize set messages if the
sender is independent and stable so no outstanding depen-
dencies are created. A volatile sender will cause the cell to
rollback and discard any changes to its state.

5. Persistent State Storage
5.1 Uniform Storage Locator
In order to handle persistent state storage, we introduce the
Uniform Storage Locator (USL) to represent the location
where checkpoints will be made. This location can be the
local system, a remote server, or even the cloud, allowing
the user to specify the optimal location to create persistent
storage. The USL is inspired from the Universal Actor Name
(UAN) and Universal Actor Locator (UAL) in SALSA and
is a simple uniform resource identifier. Some examples of
USLs are shown below. The first USL indicates local stor-
age, the second indicates remote storage on a specified FTP
server, and the last USL specifies storage on Amazon’s Sim-
ple Storage Service (S3) cloud storage [3].

file://path/to/storage/dir/

ftp://user:pw@domain.com:123/path/to/dir/

http://s3.amazonaws.com/bucket/

Transactors are instantiated with a USL and if none is spec-
ified, checkpoints are made locally in the current directory.
Specifying a USL is similar to specifying UAN and UAL in
SALSA:

HelloWorld hwActor = new HelloWorld ()

at (new UAN("uan://nameserver/id") ,

new UAL("rmsp://host1:4040/id"),

new USL("file://path/to/storage/dir/");1

When a transactor checkpoints it will reference its USL to
serialize its state and store a <transactor-name>.ser file
at the location given by its USL. A rollback will reference
the same file at the USL location to retrieve and de-serialize
its state. The implementation of a USL also allows the possi-
bility of mobile transactors similar to how a SALSA actor’s
UAN and UAL allow it to perform migration. Separating a
transactor’s storage location makes it location independent,
allowing it to migrate as opposed to a locally checkpointing
transactor. However further research still needs to be done
on modeling mobile transactors whose state may be location
dependent.

1 This example is written with syntactic sugar which compiles to the
newTActor(Transactor new T) method.

5.2 Storage Service
Here we introduce the Transactor Storage Service, a service
class that handles performing serialization/de-serialization
of a transactor’s state and storing/retrieving it at the transac-
tor’s USL. We implement this service as an interface shown
in Figure 5. This simple interface has two methods for stor-
ing and retrieving state. We chose to create an interface to
give the user the ability to implement his or her own desired
serialization technique and USL protocol. Doing so gives the
user the flexibility to define the optimal implementation that
best caters to the given program specifications and perfor-
mance requirements. For example a user might wish to use

public interface TSTorageService {
public void store(Object state, URI USL);

public void Object get(URI USL);

}

Figure 5. Transactor storage service interface

a FTP server to handle checkpoints and will create USLs
with the ftp:// scheme and implement the store(...)

and get(...) methods to handle the FTP protocol with au-
thentication. A high performance program can implement
the use of cloud storage that has many benefits to program
performance such as data redundancy and locality. Another
high performance example is an implementation that utilizes
memory storage instead of persistent storage to achieve fast
checkpoint and rollback calls in a program that disregards
the possibility of node failures.

6. Proxy Transactors
The proxy transactor is a special transactor whose task is
to pass along messages it receives without affecting the de-
pendencies of those messages. Proxy transactors implement
a useful design pattern, but don’t introduce any new seman-
tic concepts, therefore they are special only in the sense that
they implement a special case of general transactor seman-
tics. Similar to a network proxy, a proxy transactor routes
messages to other transactors and in doing so must not intro-
duce any new dependencies on that proxy. Proxy transactors
can prove useful in order to provide privacy for a certain
resource or perform message filtering. We implement this
abstraction by creating a Proxy transactor behavior that ex-
tends the Transactor behavior. By doing so we inherit all
the semantics of a traditional transactor, however we will
override the message send and receive implementations to
prevent inserting volatile dependencies. We do so by sim-
ply issuing an explicit call to stabilize prior to sending
or processing a new message. By stabilizing before send-
ing a message, we guarantee that the recipient transactor re-
mains independent with respect to the proxy. This affects
situations where the proxy may perform a get state introduc-
ing its name to the message root set and the recipient subse-
quently performing a set state creating new dependencies on



the names in the message root set. If the recipient wishes to
perform a checkpoint in the future then its worldview would
have knowledge of the proxy being stable and therefore not
impede it from doing so. We perform stabilization before
processing a message upon reception to guarantee new de-
pendencies are not introduced to the proxy. Transactor se-
mantics have the property that any set state calls while pro-
cessing a message become no-ops and therefore the proxy
will not inherit any new dependencies from the message.
Lastly, to eliminate any transitive dependencies that stem
from a proxy, we restrict proxy creation only to transactors
who meet two conditions: the transactor must be indepen-
dent and stable and the names in the transactor’s root set
must also be independent and stable. We reason that this is
logical because any invalidation of the parent transactor or
transactors whose state resulted in the creation of the proxy
will also invalidate the proxy and possibly any recipients of
the proxy messages. This would be inconsistent with the se-
mantics of a proxy transactor.

7. Consistent Distributed State
7.1 Consistent Distributed State Protocol
To aid in composing transactor programs, we introduce the
Consistent Distributed State Protocol (CDSP)2. This proto-
col draws inspiration from the Universal Checkpointing Pro-
tocol (UCP) presented in [7]. The UCP guarantees progress
under a set of preconditions. If these preconditions are met
then global checkpoints are established through this proto-
col. However, a strict precondition of the UCP states that
no failures can occur while the UCP is taking place and no
transactors will rollback during the UCP. This assumes pre-
vious application dependent communication and a fault re-
sistant system to guarantee these conditions are met. While it
is proven that global checkpoints are possible in this type of
situation, any failure would render the UCP useless. Such
failures may halt program progress if the rest of the pro-
gram is unaware of the failure without extra communication.
Therefore we have introduced this new protocol to ensure
global consistent states can be reached even in the presence
of failures. From a theoretical perspective, the CDSP guar-
antees the same progress as the UCP under the same pre-
conditions. However, from a practical perspective, the CDSP
does not stale when a participant fails or rolls back thereby
improving over the UCP.

We abstract over a consistent distributed state (CDS) up-
date defined as a set of participating transactors communi-
cating with each other that results in a global checkpoint or
rollback. CDS updates are started by a trigger message sent
by an outside agent whose recipient is defined to be the co-
ordinator. On reception of the trigger message the message
handler behavior defined in the coordinator starts the CDS
update by starting the “conversation” among the participat-

2 In [9] this is called the Consistent Transaction Protocol.

ing transactors. During this “conversation”, states may be
altered and new dependencies might be created. Eventually
the CDS update ends when all “conversations” have been
completed and ideally we wish to reach a globally consis-
tent state by issuing a global checkpoint or a rollback in the
case of failure, to ensure consistency.

In order to reach a consistent state each participant must
be made aware of the state of the transactors it has become
dependent on and more importantly it must be made aware
of any failures that may have invalidated itself. The UCP
handles relaying this information though the use of ping

messages whose main purpose is to carry dependency in-
formation and tell the recipient to attempt a checkpoint if
it has enough information to be aware of its independence,
otherwise it is a no-op and the cycle of ping messages con-
tinue until a checkpoint can be made. These ping messages
can also be used to inform others of failure and cause roll-
backs to invalidated transactors. The UCP only permits the
use of ping messages to reach checkpoints while our pro-
tocol will also allow invalidation information to be carried
along in ping messages.

In the CDSP protocol we define 5 preconditions:

1. The transitive closure of all participants and their depen-
dencies accrued during the CDS update must be known
ahead of time and each participant must be able to receive
and issue ping messages.

2. There must be isolation of the participating transactors
during the CDS update; i.e., communication only within
the set of participants and messages may not be received
from an outside transactor that would introduce new de-
pendencies.

3. Each participant starts from a state that is independent of
any transactors other than those among the participants.
We also assume the outside agent who sends the trigger
message will not introduce any dependencies on itself or
any other outside transactors.

4. Each participant must be stable at the end of the CDS
update unless it has rolled back at some point during the
CDS update.

5. The coordinator must be able to recognize a CDS update
has come to an end and indicates start of the consistency
protocol.

Once a CDS update completes, each participant will send
ping messages to all other participants and attempt a check-
point if it is independent. On reception of a ping message,
the transactor will also attempt a checkpoint.

Since each transactor arrives at a stable state at the end of
a CDS update if it has not rolled back, a checkpoint succeeds
if it is independent or has received enough ping messages
to know it is independent. In the case of failure, a rolled
back transactor is volatile at the end of a CDS update so
all checkpoint calls will be no-ops. On the other hand, ping



messages sent out from the failed transactor will alert all
those who were dependent on it and invalidate them, caus-
ing them to also rollback. Therefore a globally consistent
state is reached at the end of the CDS update through this
protocol. This protocol also exemplifies eager evaluation of
dependencies as opposed to the natural lazy evaluation of
the transactor model. It is also important to note that the
CDSP (and its UCP precursor) illustrate one possible way
to achieve progress in transactor programs. By no means do
we claim that it is the only way, or the way with the weakest
preconditions. It may be entirely possible to create a protocol
that allows for dynamic addition of participants in an open
distributed system where knowing all involved participants
ahead of time is not possible.

7.2 Ping Director
In order to accommodate the CDSP we introduce a new ab-
straction know as the Ping Director shown in Figure 6. The
Ping Director is responsible for triggering the CDSP by re-
questing all participants to ping each other. We also extend
the transactor with a new operator:

void startCDSUpdate(Transactor[] participants,

Transactor coordinator,

String msg,

Object[] msg args);

and three additional message handlers native to all trans-
actors:

void CDSUpdateStart(String msg,

Object[] msg args,

PingDirector director);

void pingreq(Transactor[] pingreqs);

void ping();

The last two message handlers, pingreq(...) and ping(),
give transactors the ability to send and receive ping mes-
sages. pingreq(...) takes an array of transactors and is-
sues ping messages to each one, and ping() handles the
reception of ping messages to attempt a checkpoint. The
startCDSUpdate(...) method is a new transactor oper-
ator that is invoked by the outside agent who triggers the
CDS update. This method takes as arguments the array of
participants, the coordinator transactor to receive the trigger
message, the trigger message, and the trigger message argu-
ments. Internally this method will obtain an instance of the
PingDirector that will handle the current CDS update and
send a pingStart(...) message to the PingDirector

instance with the array of participants, coordinator trans-
actor reference, trigger message and its arguments. The
PingDirector will then record in its state the array of
participants and then send a CDSUpdateStart(...) mes-
sage with the trigger message and its arguments and a
reference to itself to the coordinator. The PingDirector

also sends itself a ping() message to be described later.
The CDSUpdateStart(...) message handler records the
PingDirector instance reference in its state and sends the
trigger message to itself to be processed and start the CDS
update. Since messages from the PingDirector affect the

behavior PingDirector extends Transactor {
private Transactor[] participants;

public PingDirector();

public void pingStart(Transactor[] participants,

Transactor coordinator, String msg,

Object[] msg args);

public void ping();

public void endCDSUpdate();

}

Figure 6. PingDirector

state of the coordinator, we need the PingDirector to be
independent so it will not affect the dependencies of the CDS
update. We do so by having the system create an instance
of the PingDirector through a new service known as the
CDSUpdateDirector. We access the CDSUpdateDirector
through the salsa.language.ServiceFactory and re-
quest a new instance of the PingDirector instead of ex-
plicitly creating one in the startCDSUpdate(...) method.

When the coordinator recognizes the completion of the
CDS update it will send an endCDSUpdate() message to the
PingD-irector causing the PingDirector to stabilize.
This stabilization alerts the PingDirector that the CDS up-
date is complete. The PingDirector recognizes this alert
through the ping() it sent itself at the start of the CDS up-
date. On reception of a ping() message the PingDirector
inspects its volatility value as an indicator of if the CDS
update has completed. Before the CDS update has com-
pleted, the PingDirector will be volatile so we have the
PingDirector resend the ping() message to itself until it
recognizes it has stabilized in a polling manner. At that point
the PingDirector will send pingreq messages to every
participant and pass to each one the array of participants for
them to ping.

The process of preparing and completing a CDS update
is shown in Figure 7. Fortunately, this protocol is simplified
by our abstraction and the user only needs to worry about
indicating the start and end of a CDS update. An example
of this abstraction being utilized is shown in the example in
Section 9. We also note that a proxy transactor, described in
the previous section, cannot be designated as a coordinator
since it cannot alter its state to record a reference to the
PingDirector. Semantically, proxies have no effect on the
global dependency so therefore they do not participate in
the CDSP, being that they will always be consistent with the
global state.

We note that currently the CDSP assumes that the coor-
dinator and ping director are resistant to failure. However if
one of these agents failed then the CDSP would not be able



Figure 7. Consistent distributed state protocol using the
PingDirector

to be triggered. To accommodate for this possibility we pro-
pose extending the protocol to provide fault tolerance in the
form of redundancy. This can be done by assigning multiple
coordinators where each would be able to recognize a CDS
update completion and trigger the protocol if one fails. The
same can be done with creating multiple ping directors for a
CDS update and supplying a reference to each one to the co-
ordinator. The exact details of implementing a fault tolerant
CDSP are left as future work.

8. Language Syntax
Similar to SALSA, transactor programs are written as actor
behaviors that are compiled into Java classes that extend the
transactor.language.Transactor class. Through this
inheritance chain, behaviors have access to an augmented set
of operators that include both actor and transactor primitives.
These operators can only be called by the transactor itself
and are not explicit message handlers; therefore other trans-
actors cannot directly issue a stabilize, checkpoint, or
rollback on another transactor. These operators must be
placed in message handlers inside the transactor’s behavior.
These operations are also sequential in nature, unlike mes-
sage sends, which are concurrent. We define here our pro-
posed syntax changes for our new transactor language that
extends the SALSA/Java syntax.

The following statements are added to SALSA’s syntax
along with the compiled transactor library code:

stabilize; ≡ this.stabilize();

checkpoint; ≡ this.checkpoint(); return;

rollback; ≡ this.rollback(false, null);

return;

dependent; ≡ this.dependent();

self; ≡ this.self();

behavior <Identifier>

≡ behavior <Identifier> extends Transactor

behavior proxy <Identifier>

≡ behavior <Identifier> extends Proxy

startCDSUpdate(<ArgumentList>);

≡ this.startCDSUpdate(<ArgumentList>);

endCDSUpdate;

≡ this.sendMsg("endCDSUpdate", new Object[0],

(PingDirector)this.getTState("pingDirector"));

new <Transactor-Behavior>

≡ (<Transactor-Behavior>)this.newTActor(

new <Transactor-Behavior>);

<State-Identifier>:=<Expression>;

≡ this.setTState("<State-Identifier>",

<Expression>);

~!<State-Identifier>;

≡ ((<State-Identifier-Class>)this.getTState(

"<State-Identifier>"));

9. House Purchase Example

Figure 8. House purchase scenario involving semantic fail-
ure [7]

This example simulates the subset of operations that
might be performed by a collection of web services involved
in the negotiation of a house purchase. Traditionally, a house
purchase is a complex task that involves multiple parties and
back and forth communication. Some steps required include
appraising the desired house, searching for the title, applying
for a mortgage, and making negotiations. We represent these
operations using five services: the buySrv representing the
buyer, the sellSrv representing the seller, the apprSrv

representing the appraisal service, the lendSrv represent-
ing the mortgage lender, and the srchSrv representing the



title search service. Our example defines the following steps
taken to complete a house purchase:

1. The buyer chooses a candidate house and initiates the
buySrv to manage the house purchase process.

2. The buySrv contacts the appraisal service, apprSrv, in
order to obtain the market value of the house.

3. The apprSrv contacts the sellSrv and requests basic
information about the house.

4. The apprSrv combines the house specifications with
other reference information to compute a tentative market
price. This tentative market price is only an estimate,
which is not a definite appraisal until an on-site visit is
made to the house to verify the accuracy of the original
specifications.

5. The buySrv makes an offer to the sellSrv based on
the appraisal. The buySrv also contacts the srchSrv

to perform a title search and the lendSrv to obtain a
mortgage.

6. The lendSrv contacts the apprSrv to confirm the ap-
praisal information that is given after an on-site verifica-
tion is completed.

7. The lendSrv approves the mortgage after a credit check
and the buySrv will close the house purchase once it
receives a response from the srchSrv and the sellSrv

accepts the offer.

The steps above describe a scenario where every step runs
accordingly without any semantic failures. However, one
possible way this house purchase may fail can be observed in
step 6 in the case of the verification discovering inaccurate
information. Upon this discovery the apprSrv voluntarily
rolls back its state in order to reprocess the verified specifi-
cations. This in turn causes the mortgage information to be
inconsistent with the information the buySrv has. As a re-
sult, the buySrv must also be caused to rollback due to this
invalidated dependency where it may choose to renegotiate
the sale price. Figure 8 depicts this failure scenario.

Figures 9, 10, 11, 12, 13, 14, and 15 show our implemen-
tation of this example written in our proposed language syn-
tax. Figure 12 is an implementation of the on-site verifica-
tion process and Figure 14 represents a credit database con-
tacted by the lender in order to obtain the buyers credit his-
tory used to calculate the requested mortgage. searchSrv,
verifySrv, creditDB are implemented as proxies because
they only provide access to a resource in order to obtain
information and thus will not have an effect on the global
dependency. This implementation also allows other types
of failures to occur such as an offer rejection and mortgage
denial. We make use of our Consistent Distributed State Pro-
tocol and Ping Director in this example to manage the house
purchase transaction to notify all participants of a failure or
issue a global checkpoint so we arrive at a globally consis-
tent state. This transaction is started by the following call by

an outside agent:

Transactor[] participants = {<buySrv>,
<sellSrv>,<apprSrv>,

<lendSrv>, <searchSrv>,

<verifySrv>, <creditDB>};
startCDSUpdate(participants, <buySrv>,

"newHousePurchase", <houseid>);

An important observation can be made from this example
highlighting how the transactor model tracks fine-grained
dependencies. Though the use of the CDSP promotes atom-
icity of a transaction, its primary purpose is to guarantee
consistency, as the name suggests. The atomicity aspect of
the CDSP and the transactor model only applies to partic-
ipants who are strictly invalidated by a dependency on a
failed component. In that regard, other participants, such
as the srchSrv who remains independent throughout the
transaction, will not rollback even if another participant en-
counters failure. This key feature separates the transactor
model from other traditional transaction methodologies that
have an ”all or nothing” approach. Like the srchSrv, any
participant who is semantically not affected by the overall
result of the transaction will not have its operations reverted.
This offers benefits in terms of preventing unnecessary roll-
backs and not having to redo the same task if the transaction
is attempted again allowing it to reuse results without hav-
ing to recompute them. The srchSrv is a highly simplified
implementation of an actual title search service that would
involve a much more complex process. This process locates
the required information for the title to the house, and this
result would have to be re-computed if the search service
were to rollback. If the overall transaction does fail and is
reattempted, that title information will still be persistent, al-
lowing us to reuse resources. The fact that the srchSrv is
implemented as a proxy also ensures us that it has no ef-
fect on the global dependency of the transaction and will
not incur any upon itself. Similarly, the verifySrv and
creditDB both being proxies have no effect on the rest of
the transaction and will not be caused to rollback.

10. Related Work
Though there already exists previous work that aims to sup-
port distributed state, ours is the first that provides a working
implementation of the transactor model. Other types of sys-
tems include Liskov’s Argus [10] programming language.
Argus provides an abstraction known as a guardian that is
very much akin to a SALSA actor. Like an actor, guardians
are meant to encapsulate a resource and permit access to
its resources through handlers. Fault tolerance in Argus is
provided with stable objects implemented as atomic objects,
which allocate access through the use of locks to resolve
concurrency. Similar to a transactor persistent and volatile
state, atomic objects use versioning to handle recovery from



behavior lendSrv {
buySrv buyer;

String house;

int price = 0;

creditDB creditAgency;

lendSrv() {}

void initialize() {
stabilize;

checkpoint;

}

void reqMortgage(String houseid, buySrv buyr,

int reqPrice, apprSrv appraiser,

creditDB creditHistory) {
house := houseid;

price := reqPrice;

buyer := buyr;

creditAgency := creditHistory;

appraiser<-reqPrice(self);

}

void appraisal(int newPrice) {
price := newPrice;
∼!creditAgency<-getCreditApproval(∼!house,

∼!buyer, ∼!price, self);

}

void approvalResp(String approvalid) {
if (approvalid != null) {

stabilize;
∼!buyer<-mortgageApproval(approvalid);

} else {
∼!buyer<-mortgageDeny();
rollback;

}
}

}

Figure 9. lendSrv implementation

behavior proxy searchSrv {
HashMap titlesDB;

searchSrv(HashMap titlesInfo) {
titlesDB := titlesInfo;

}

void initialize() {
checkpoint();

}

void reqSearch(String houseId,

Transactor customer) {
customer<-titleResp(∼!titlesDB.get(houseId));

}
}

Figure 10. srchSrv implementation

behavior sellSrv {
HashMap minPrices, specs;

int offeredPrice = 0;

sellSrv(HashMap specsInfo, HashMap mins) {
specs := specsInfo;

minPrices := mins;

}

void initialize() {
stabilize;

checkpoint;

}

void reqSpecs(String houseId,

Transactor customer) {
customer<-specsResp(∼!specs.get(houseId),

∼!minPrices.get(houseId));
}

void offer(String houseId,

int price, buySrv buyer) {
offeredPrice := price;

if (price >= ∼!minPrices.get(houseId)) {
stabilize;

buyer<-close();

} else {
buyer<-rejectOffer();

rollback;

}
}

}

Figure 11. sellSrv implementation

behavior proxy verifySrv {
HashMap specs, prices;

verifySrv(HashMap newSpecs, HashMap newPrices) {
specs := newSpecs;

prices := newPrices;

}

void initialize() {
checkpoint;

}

void verifySpecs(String houseid,

String reqSpecs,

Transactor customer) {
if (reqSpecs.equals(∼!specs.get(houseid))) {

customer<-verify(true, ∼!prices.get(houseid));
} else {

customer<-verify(false, ∼!prices.get(houseid));
}

}
}

Figure 12. verifySrv implementation



behavior buySrv {
searchSrv searcher;

apprSrv appraiser;

sellSrv seller;

lendSrv lender;

verifySrv verifier;

creditDB creditHistory;

int price = 0;

String title, mortgage, houseid;

buySrv(searchSrv srchr, apprSrv appr,

sellSrv sellr, lendSrv lendr,

verifySrv verifr, creditDB cHistory) {
searcher := srchr;

appraiser := appr;

seller := sellr;

lender := lendr;

verifer := verifr;

creditHistory := cHistory;

}

void initialize() {
stabilize;

checkpoint;

}

void newHousePurchase(String newHouseId) {
houseid := newHouseId;
∼!appraiser<-reqAppraisal(∼!houseid, self,

∼!seller, ∼!verifier);
}

void appraisal(int newPrice) {
price := newPrice;
∼!seller<-offer(∼!houseid, ∼!price, self);
∼!searcher<-reqSearch(∼!houseid, self);
∼!lender<-reqMortgage(∼!houseid, self,

∼!price, ∼!appraiser,
∼!creditHistory);

}

void titleResp(String newTitle) {
title := newTitle;

}

void mortgageApproval(String approvalid) {
mortgage := approvalid;

}

void close() {
if (∼!title != null && ∼!mortgage != null) {

stabilize;

endCDSUpdate;

} else {
self<-close();

}
}

void rejectOffer() {
endCDSUpdate;

rollback;

}

void mortgageDeny() {
endCDSUpdate;

rollback;

}
}

Figure 13. buySrv implementation

behavior proxy creditDB {
creditDB() {}

void initialize() {
checkpoint;

}

void getCreditApproval(String houseid,

buySrv buyer, int price,

lendSrv requester) {
requester<-approvalResp("approval-" + houseid);

}
}

Figure 14. creditDB implementation

behavior apprSrv {
String house, specs;

int price = 0;

buySrv buyer;

Transactor requester;

verifySrv verifier;

apprSrv() {}

void initialize() {
stabilize;

checkpoint;

}

void reqAppraisal(String houseid, buySrv buyr,

sellSrv seller, verifySrv verifr) {
buyer := buyr;

house := houseid;

verifier := verifr;

seller<-reqSpecs(∼!house, self);

}

void specsResp(String newSpecs, int newPrice){
specs := newSpecs;

price := newPrice;
∼!buyer<-appraisal(newPrice);

}

void reqPrice(Transactor customer) {
requester := customer;
∼!verifier<-verifySpecs(∼!house,

∼!specs,
self);

}

void verify(boolean ok, int verifiedPrice) {
if (ok) {

stabilize;
∼!requester<-appraisal(verifiedPrice);

} else {
∼!requester<-appraisal(verifiedPrice);
rollback;

}
}

}

Figure 15. apprSrv implementation



failures. Unlike transactors, Argus does not directly track de-
pendencies and takes an ”all or nothing” approach to deter-
mining if a set of operations should be committed.

Another system is Atomos [6], introduced by Carlstrom
et al. to be a transactional programming language with im-
plicit transactions, strong atomicity, and scalable multipro-
cessor implementation. Atomos relies on the transactional
memory model, which executes read and write instructions
in an atomic way. Unlike Argus, but comparable to trans-
actors, Atomos provides open nested transactions, which
immediately commit child transactions at completion. Like
transactors where independent agents of a failed transaction
can still checkpoint, the rollback of a parent transaction is
independent from completed open nested transactions.

Stabilizers [16] introduced by Ziarek et al. is a linguis-
tic abstraction that models transient failures in concurrent
threads with shared memory. These abstractions enforce
global consistency by monitoring thread interactions to com-
pute the transitive closure of dependencies. Like transactors,
any non-local action such as thread communication or thread
creation constitutes state dependency; however, these depen-
dencies are recorded even if there is no state mutation. In the
presence of transient failure, rollbacks are performed that
revert state to a point immediately preceding some non-local
action. Unlike transactors, there is no predefined concrete
checkpoint to rollback to since stabilizers perform thread
monitoring instead of state captures.

Some other relevant pieces of work worth mentioning in-
clude Orleans [5], Ken [15], and Sinfonia [2]. Orleans is an
actor framework for .Net that allows for creating distributed
transactions. Actors are known as grains and also internally
track dependencies. Similar to transactors, state can be per-
sisted to durable storage like checkpoints and a reconcilia-
tion mechanism handles lazily merging state changes. In Or-
leans, grains pass messages in a way very similar to SALSA
where a promise is returned to the sender as a pending fu-
ture result the same way tokens are used in SALSA. Trans-
actions are also isolated where one transaction cannot ac-
cess data modified by another pending transaction. Ken is a
protocol that coordinates a set of processes, which are like
actors. Fault tolerance is tackled with asynchronous local
checkpointing. When a process handles a computation, all
actions within the computation are committed as a single
atomic unit and any outbound messages are buffered until
the computation succeeds. Messages are re-transmitted un-
til an ACK is received which indicates receipt and success
of the resulting computation at the recipient end. This guar-
antees all computations and their consequences can tolerate
failure. Lastly, Sinfonia is a service that seeks to mitigate the
complexity of two phase commit protocols. In a manner sim-
ilar to the CDSP, Sinfonia reasons that the two-phase proto-
col can be made more efficient by piggybacking actions on
the first phase. This has some similarity to transactor stabi-

lization at the end of its actions (following the CDSP) with-
out waiting for an explicit trigger to start the first phase.

Transactions that are modeled under object-oriented
paradi-gms with concurrent threads usually interact through
shared memory. As a result, maintaining the integrity of a
transaction has largely relied on issuing locks on objects to
prevent race conditions. However the biggest problem with
such techniques is the possibility of deadlock causing it to
be relatively difficult to compose transactional programs cor-
rectly. One remedy to this problem is introduced in the Soft-
ware Transactional Memory [11] model which logs reads
and writes within a thread that accesses shared memory.
Transactions are then validated once complete and commit-
ted or aborted. This is a similar alternative to the transactor
model but still assumes a shared memory model whereas
transactors assume a distributed memory model with mes-
sage passing. Therefore, STM model operates on a different
domain whose semantics are somewhat orthogonal to that
of transactors. The message passing and state encapsulating
nature of actors allows them to naturally model atomicity
and isolation of message execution, thereby eliminating the
need for object-level locks. The semantics of the transactor
model provides a much cleaner and more robust building
block to model transactions.

11. Discussion and Future Work
A reliable transaction is commonly defined by its ACID
properties. While the transactor model only guarantees con-
sistency and durability, transactors break down a transaction
into its fundamental elements. Atomicity and isolation can
be coded into the model if desired, however as shown in our
example, transactors provide a looser form of atomicity that
we call selective rollback. This means that we only undo
what is known to be inconsistent. Full isolation is also not
a strict requirement for transactor programs as stated in one
of the preconditions of the CDSP that requires that obtaining
new dependencies on outside transactors not be allowed. We
refer to this as selective state access. State accesses that cre-
ate backward dependencies are perfectly legal since it does
not prevent the participating transactor from checkpointing.
Therefore, lack of full ACID properties is a design feature
allowing for the creation of lightweight and modular trans-
actions.

Though our language is currently a working implemen-
tation of the transactor model, it is still in a developmental
stage and there is much work yet to be done. As a conse-
quence of its development it also opens up new directions in
the study of transactors. Our next objective would be to de-
velop a compiler similar to the SALSA compiler to produce
SALSA/Java code that can be compiled and run on a JVM.
This compiler would greatly simplify writing transactor pro-
grams with the proposed syntax, which inherits much of the
familiar SALSA and Java grammar.



Another key future goal is implementing node failure
semantics. Following the transition rules of the transactor
model, a transactor system needs to be able to recognize
node failures and reload transactors from persistent stor-
age. A record of previously running transactors on the node
would be required, perhaps as an extension of the naming
service. The program would then proceed normally as if a
rollback has occurred. This also opens up concerns on how
to bootstrap programs and restart the network of messages.
Along with bootstrapping programs there is an open ques-
tion of whether to initially checkpoint the startup transactor
to prevent total program annihilation if the startup node fails
before it becomes persistent.

An improvement can also be made to the CDSP to guar-
antee full isolation among participants and satisfy one of
its preconditions. One possible technique is to apply a two-
phase CDS update initialization protocol similar to the two-
phase commit protocol. The necessity of a two-phase pro-
cess is due to the message passing nature of transactors
where there is no guarantee of when messages will arrive
or even be received. Such a protocol could involve the use of
synchronization constraints such as Synchronizers [8] that
handle message dispatching to disable messages arriving
from outside transactors. Achieving isolation would be valu-
able so the user would only have to reason about the specifics
of a CDS update rather than consider its reliability.

A future direction to the study of transactors is modeling
migration. SALSA has built in support for actor migration
and our transactor language allows transactors to be initial-
ized in different SALSA theaters. However, there are con-
cerns over whether location is represented by a transactor’s
state where an implementation would have to perform re-
verse migrations should a transactor ever rollback. Migration
also becomes a factor in implementing node failure where
each node would have to track which transactors would have
to be recovered. Transactor USL was developed to permit
the possibility of mobile transactors so persistent state stor-
age would not become a limiting factor.

Lastly, interaction between transactors can be simpli-
fied by implementing continuations. Currently, in order to
retrieve information from another transactor, the sender’s
name nee-ds to be passed along with the message so the re-
cipient knows where to send a reply. Continuations would
make it easier to compose transactor programs by emulat-
ing serialized execution among asynchronous transactors.
SALSA provides this in the form of tokens. However, re-
search needs to be done to consider how to model tokens in
the τ calculus which formalizes the transactor model so that
dependencies can be maintained correctly.

References
[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, MA, USA,
1986.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. SIGOPS Oper. Syst. Rev.,
41(6):159–174, Oct. 2007.

[3] Amazon Web Services. Amazon simple storage service
documentation. http://aws.amazon.com/documentation/s3/.

[4] B. Boodman. Implementing and verifying the safety of the
transactor model. Master’s thesis, Rensselaer Polytechnic
Institute, May 2008.

[5] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin. Orleans: Cloud computing for everyone.
In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 16:1–16:14, New York, NY,
USA, 2011. ACM.

[6] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C.
Minh, C. Kozyrakis, and K. Olukotun. The Atomos
transactional programming language. SIGPLAN Not.,
41(6):1–13, June 2006.

[7] J. Field and C. A. Varela. Transactors: A programming
model for maintaining globally consistent distributed state in
unreliable environments. SIGPLAN Not., 40(1):195–208, Jan.
2005.

[8] S. Frølund. Coordinating Distributed Objects: An Actor-
based Approach to Synchronization. MIT Press, Cambridge,
MA, USA, 1996.

[9] P. Kuang. Implementation of the transactor model: Fault
tolerant distributed computing using asynchronous local
checkpointing. Master’s thesis, Rensselaer Polytechnic
Institute, July 2014.

[10] B. Liskov. Distributed programming in Argus. Commun.
ACM, 31(3):300–312, Mar. 1988.

[11] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’95, pages
204–213, New York, NY, USA, 1995. ACM.

[12] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with SALSA. SIGPLAN Not., 36(12):20–
34, Dec. 2001.

[13] C. A. Varela. Programming Distributed Computing Systems:
A Foundational Approach. The MIT Press, 2013.

[14] C. A. Varela, G. Agha, W. Wang, T. Desell, K. E. Maghraoui,
J. LaPorte, and A. Stephens. The SALSA programming
language: 1.1.2 release tutorial. Technical Report 07-12,
Dept. of Computer Science, R.P.I., Feb. 2007.

[15] S. Yoo, C. Killian, T. Kelly, H. K. Cho, and S. Plite. Com-
posable reliability for asynchronous systems. In Proceedings
of the 2012 USENIX Conference on Annual Technical Con-
ference, USENIX ATC’12, pages 3–3, Berkeley, CA, USA,
2012. USENIX Association.

[16] L. Ziarek, P. Schatz, and S. Jagannathan. Stabilizers: A
modular checkpointing abstraction for concurrent functional
programs. SIGPLAN Not., 41(9):136–147, Sept. 2006.


