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Abstract

The actor model of distributed computing imposes important re-
strictions on concurrent computations in order to be valid. In par-
ticular, an actor language implementation must provide fairness,
the property that if a system transition is infinitely often enabled,
the transition must eventually happen. Fairness is fundamental to
proving progress properties. We show that many properties of ac-
tor computation can be expressed and proved at an abstract level,
independently of the details of a particular system of actors. As
in abstract algebra, we formulate and prove theorems at the most
abstract level possible, so that they can be applied at all more
refined levels of the theory hierarchy. Our most useful abstract-
level theorems concern persistence of actors, conditional persis-
tence of messages, preservation of unique actor identifiers, mono-
tonicity properties of actor local states, guaranteed message deliv-
ery, and general consequences of fairness. We apply the general
actor theory to a concrete ticker and clock actor system, proving
several system-specific properties, including conditional invariants
and a progress theorem. We develop our framework within the
Athena proof system, in which proofs are both human-readable and
machine-checkable, and take advantage of its library of algebraic
and relational theories.

Keywords actor model, open distributed systems, fairness, persis-
tence properties, progress properties, transition induction, formal
proof, Athena

1. Introduction and motivation

The actor model [1, 13] is useful both as a theoretical framework
for reasoning about concurrent computation [2, 22] and as a prac-
tical paradigm for building distributed systems [6, 24]. An actor
is simultaneously a unit of state encapsulation and a unit of con-
currency, which makes it a natural unit of distribution, mobility,
and adaptivity in open systems [10]. Actors have unique names and
communicate via asynchronous message passing. In response to a
message, an actor may change its internal state, create new actors
with a specified behavior (including an initial state), and/or send
messages to known actors.

Actor theories formalize computation as a labeled transition
system between actor configurations, where an actor configuration
represents the potentially distributed state of a system at a single
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logical point in time. Transitions from an actor configuration spec-
ify the possible ways in which an actor computation may evolve.
The actor model imposes fairness on computation sequences in or-
der to be valid. Fairness means that if a transition (from an actor
configuration) is infinitely often enabled, the transition must even-
tually happen. Without fairness, it is not possible to reason compo-
sitionally. An actor system correctness property (e.g., a web server
always replying to a client request) would no longer hold when
composed with another system (e.g., a web crawler), since the com-
putation may evolve as a sequence of transitions that consistently
ignores the web server actors, effectively constituting a denial of
service attack. The actor model precludes such unfair computation
paths.

Actor languages can use different models for representing se-
quential computation within an actor. Agha, Mason, Smith, and
Talcott use the untyped call-by-value lambda calculus to represent
an actor’s internal behavior [2], whereas Varela and Agha use an
object’s instance and class to represent an actor’s state and its be-
havior [24]. In this paper, we define behavior within an actor with
axioms on certain functions and relations on their local states.

While local state axioms are specific to a concrete actor system,
it is desirable to describe the way that actors send and receive mes-
sages more abstractly, so that one can derive general theorems—
ones that can be applied to many different actor systems—about
properties such as actor persistence, fairness, name uniqueness, and
infinitely-often-enabled transitions.

Let us illustrate the actor model using a simple example with
two actors: Ticker, which repeatedly sends tick messages to Clock,
which, upon receipt of each tick increments an internal counter
representing a time value. The main complexity of the example
lies in the Ticker’s behavior: it keeps going by sending a continue
message to itself, sending a tick message to Clock, and receiving
the continue message, thus repeatedly moving through a sequence
of three control states. This pattern of (self-)message passing to
implement iterative behavior is typical of actor systems [13, 23].

The unbounded nondeterminism property means that messages
are eventually received but there is no bound assumed on how many
transitions may take place beforehand. In the context of the ticker-
clock example, we can rephrase unbounded nondeterminism as the
property whereby the clock may wait an arbitrarily long time (as
measured by the number of accumulated ticks) to receive a tick, but
eventually it does and therefore makes progress in incrementing its
own time value.

Fairness is critical to proving this progress property, since with-
out fairness, the ticker could keep producing tick messages indef-
initely without any of them being received by the clock. Yet, as
will be seen from the definitions of fair and infinitely-often enabled
transitions in actor systems in Section 4, we impose no bounds on
responses to messages, so unbounded nondeterminism holds.

In this paper we show how to carry out abstract reasoning about
actor systems, including issues of fairness and other key properties
such as actor persistence and preservation of uniqueness of actor
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identities, in the Athena proof language and system [4]. In Section 2
we begin the development of the actor model theory at an abstract
level. In terms of conceptual organization, our development carves
out a richly structured hierarchy of formal theories that can be
used to represent and reason about actor systems. In Section 3 we
show how to specify an actor’s local behavior, using the Ticker
and Clock actors as examples. In Sections 4 and Section 5 we
return to the abstract level, presenting the most useful theorems
we have conjectured and proved, with some discussion of their
application to the Ticker-Clock system. In Section 6, we apply
a combination of the general actor theory and the Ticker-Clock
specifics to prove several more properties of that system, including
a progress theorem that depends on fairness. Section 7 discusses
related work and Section 8 concludes with thoughts on future
extensions of this work. Appendix A describes highlights of the
Athena deduction language. Appendix B contains the full Athena
proof of a result we call actor-persistence, except that five lemmas
used in the proof are not shown, though they are briefly described in
the body of the paper. But the entire theory and proof development
can be found online [5, 19], together with tutorial material and links
to download Athena and its libraries [3].

2. Developing actor system axioms, theorems,

and proofs

Purposes of proofs about computation include (1) correctness: get-
ting it right; (2) design debugging: identifying flaws at an early
stage of development, and (3) education: better understanding of
how computations work. Although we consider the first two pur-
poses important, this work is aimed more at the third. Conse-
quently, we choose to develop proofs in a style that is not only
machine-checkable but also human-readable. This approach may
require greater human effort than when a more fully automated
prover is the main tool, but keep in mind that it is an effort invested
in education, not just correctness or debugging. To overcome some
of the difficulty, we emphasize moving theory and proofs to an ab-
stract level wherever possible, so that the abstract theory can be ap-
plied to other problems (and, often, multiple times within a single
problem). This kind of activity is much closer to traditional math-
ematical theory development than most work based on automated
theorem proving: rather than relying so much on the computational
power of automated provers, we concentrate instead on providing a
readable and well-organized theory development. A major benefit
of this approach is insight: when a proof attempt succeeds we can
study it in detail for lessons to apply in other efforts, and when it
fails we can much more easily track down what is wrong than we
can when an automated prover simply reports failure.

In this and the following sections we give an overview of our
actor theory and its application to the Ticker-Clock example. In
Section 7, we note how both the theory and the Ticker-Clock ex-
ample bear many similarities to, but some differences from, earlier
formulations by other authors. The main innovations of our work
lie in putting the theory and proofs in a machine-checkable form
that is also suitable for educational purposes.

In the rest of this section, we first build a foundation consist-
ing of a theory of configurations based on the Abelian Monoid al-
gebraic theory, a refinement of that theory into a theory of actor-
system configurations, and a theory of actor-system transitions.
Each of these theories is abstract, in the sense of being applicable
to many different cases via further refinement and/or instantiation.
Figure 1 illustrates the refinement relation between the algebraic
and relational theories and the actor theory development to be pre-
sented.
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Figure 1. Algebraic, Relational, and Actor Theories

2.1 Configurations

A configuration is essentially a “soup” of components. Formally,
we have a polymorphic structure with constructors Null, One, and
++:

s t r u c t u r e (Cfg T) :=
Null | (One T) | (++ (Cfg T) (Cfg T))

where T is any type, and Null and ++ are subsequently axiomatized
to form an Abelian Monoid; i.e., Null is the Monoid identity
element for the binary ++ operator, which is associative (a Monoid
property) and commutative (Abelian).

At this level we introduce composition theorems, which provide
for combining the information from two different views of a con-

figuration into a single, unified view. For example,1

d e f i n e Together :=
(forall ?s ?s1 ?s2 ?a ?b .
?s = ?s1 ++ One ?a &
?s = ?s2 ++ One ?b &
?a =/= ?b
==> exists ?s3 . ?s = ?s3 ++ One ?a ++ One ?b)

This and similar theorems for larger numbers of components
(Three-Together, Four-Together) are simple and intuitive, but
are crucial lemmas in proofs in the more complex theories that
follow.

1 In input to Athena, any binary function symbol, such as ++, can be written
in infix notation and is right-associative by default. Associativity and prece-
dence can be controlled with user declarations. Unary function symbols,
such as One, can be applied with or without surrounding parentheses. With
a function symbol f of arity n > 2, prefix syntax (f a1 . . . an) is used.
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2.2 Actors and actor configurations

Actors and messages are then introduced, defined as applications
of constructors of an abstract data type, Actor, parametrized by an
identifier sort, Id, and an actor local state sort, LS.

d a t a t y p e (Actor Id LS) :=
( actor ’ Id LS) | ( message ’ Id LS Id Ide)

where Ide is a predefined sort of quoted strings. Using the One
constructor of the configuration structure we coerce actor’ and

message’ values into configuration components:2

d e f i n e actor :=
lambda (id ls) (One ( actor ’ id ls))

d e f i n e message :=
lambda (fr to c) (One ( message ’ fr LS0 to c))

For example, a configuration that is possible with the Ticker-
Clock example is

s ++ (actor Ticker (ticker local3 )) ++
(actor Clock (clock local zero )) ++
(message Ticker Ticker ’continue ) ++
(message Ticker Clock ’tick )

where s denotes a configuration whose composition is unknown
but potentially contains other messages for the Ticker and Clock
actors and potentially other actors and messages that are entirely
independent of the Ticker and Clock interactions.

A unique-ids predicate is introduced for expressing the pre-
condition on a configuration that the identifiers of the actors in it are
unique. Several simple theorems about unique-ids are proved.
Uniqueness of actor identifiers is crucial; how this property is main-
tained is discussed in Section 2.4.

2.3 Transition paths

We continue with the development of a Transition-Path datatype
and theory, used to describe how configurations change in response
to transition steps—either message receiving, message sending, or
actor creation steps.

d a t a t y p e (Step Id) :=
(receive Id Id Ide )

| (send Id Id Ide )
| (create Id Id)

d a t a t y p e (TP Id LS) :=
Initial

| (then (TP Id LS) (Step Id))

d e c l a r e config :
(Id, LS) [(TP Id LS)] -> (Cfg (Actor Id LS))

d e c l a r e ready-to :
(Id, LS) [LS (Step Id)] -> Boolean

d e c l a r e next:
(Id, LS) [LS (Step Id)] -> LS

For example, we might have a transition path T0 with config T0
equal to the configuration shown above and another transition path

T1 = (T0 then (receive Clock Ticker ’tick ))

for which

config T1 =
s ++ (actor Ticker (ticker local3 )) ++

2 The local state constant LS0 is included in messages for a purely technical
reason, as explained in Appendix B.

(actor Clock (clock local (S zero ))) ++
(message Ticker Ticker ’continue )

where S is the natural number successor function. This result is
determined by a theorem in Transition-Path theory,

d e f i n e trans-receive :=
(forall ?T ?s ?id ?ls ?fr ?c .
config ?T = ?s ++ (actor ?id ?ls) ++

(message ?fr ?id ?c) &
?ls ready-to (receive ?id ?fr ?c)
==>
config (?T then (receive ?id ?fr ?c)) = ?s ++
(actor ?id (next ?ls (receive ?id ?fr ?c))))

combined with the next-state function of the Clock actor (see
Section 3, which also discusses other examples of computation in
the Ticker-Clock system).

Upon this fundamental Transition-Path theory we de-
fine a binary relation on transition paths, written T0 -->> T1;
we say T0 “directly-leads-to” T1. The resulting theory is called
Transition-Step-Relation. Transition-Path-Relation
theory then refines both Transition-Step-Relation theory and
a fundamental Transitive-Closure theory from Athena’s main
library, yielding binary relations -->>+ and -->>*, the irreflex-
ive and reflexive transitive closures of -->>, resp. One additional
axiom is adopted in this theory:

d e f i n e nothing-leads-to-Initial :=
(forall ?T . ~ (?T -- >>+ Initial ))

2.4 Proving unique-ids persistence with transition induction

The -->>+ and -->>* relations are useful for expressing theorems
about how a point in a transition path relates to a point arbitrarily
further along in the path. For example,

d e f i n e unique-ids-persistence :=
(forall ?T ?T0 .

(unique-ids config ?T0) & ?T0 -- >>* ?T
==> (unique-ids config ?T))

Maintaining uniqueness of actor identifiers is crucial for many
basic properties of actor systems, the most obvious being com-
posability. Our approach in the logic is to start with the assump-
tion of identifier uniqueness and show that it persists, by proving
the above theorem. The proof is by induction. In the basis case,
T = Initial, the assumption (T0 -->>* Initial) is divided
by the definition of -->>* into two subcases, (T0 = Initial) or
(T0 -->>+ Initial). In the = case, we get the conclusion from
the assumption (unique-ids config ?T0), and -->>+ case
cannot occur since it contradicts nothing-leads-to-Initial .

In the inductive step, send and receive transitions don’t affect
uniqueness of ids, and the create transition has as a precondition
the uniqueness of the identifiers in the configuration that includes
the new actor.

In Athena, this induction proof is encased in some preparatory
code, such as introducing the lemma from Transitive-Closure
theory:

l e t {R*L := (!lemma [ ’-- >> R*-lemma ])}

and is more detailed, but this form of induction, which we call
transition induction, is naturally expressed using Athena’s built-
in by-induction form, which adapts the basis and induction step
cases according to the relevant datatype declaration:
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b y - i n d u c t i o n unique-ids-persistence {
Initial => ...

| (T then step) =>
l e t {ind-hyp := (forall ?T0 .

( unique-ids config ?T0) &
(?T0 -- >>* T)
==> (unique-ids config T));

goal := (unique-ids
config (T then step ))}

...
}

The basis case proof reads more like program code than the in-
formal language we used above—it is program code, as Athena’s
proof language is a programming language specialized for inference—
but is nevertheless faithful to the basic line of argument:

Initial =>
p i c k - a n y T0

l e t {A1 := (unique-ids config T0);
A2 := (T0 -- >>* Initial )}

assume (A1 & A2)
l e t {B1 := (!chain-last

[A2 ==> (T0 = Initial |
T0 -- >>+ Initial )

[R*L ]])}
(!cases B1

assume C1 := (T0 = Initial )
(!chain-last
[A1 ==> (unique-ids config Initial )

[C1]])
assume C2 := (T0 -- >>+ Initial )

(!from-complements
(unique-ids config Initial )
C2
( !chain-last
[true ==> (~ C2)

[nothing-leads-to-Initial ]])))

This applies chain-last, a method—Athena’s proof-language
counterpart of a procedure—that implements implication chaining.
In general, the implication S0 ⇒ Sn can be proved by

(!chain
[S0 ⇒ S1 [J1] ⇒ S2 [J2] ⇒ · · · ⇒ Sn [Jn]])

where the Si are sentences and the Ji are justifications that prove
(Si−1 ⇒ Si), i = 1, . . . , n. If S0 has already been proved, the
variant

(!chain-last
[S0 ⇒ S1 [J1] ⇒ S2 [J2] ⇒ · · · ⇒ Sn [Jn]])

proves Sn. (The chain method also implements equality chaining
to prove equations; see Appendix B.)

The Athena proof of the induction step case is a bit too long
to include here but is available online [19, transition.ath]. The
complete proof is one of the simpler applications of transition
induction, and is thus a good first exercise for carrying out such
proofs in the proof system. A somewhat more complex proof by
transition induction is given in full in Appendix B.

3. Expressing actor local computation

Local actor behavior is expressed in our actor model using fun-def,
a function-defining mechanism in Athena with syntax similar to
function declarations in many functional languages, and particu-
larly close to ML’s fun declarations. But a fun-def is translated
by Athena into a set of equational axioms, which, together with
Athena’s built-in capabilities for equational reasoning (basically a

targeted form of term or predicate rewriting), become the basis for
reasoning about the function.

An actor’s local behavior is defined with two fun-defs, one
of a ready-to binary predicate that expresses that the actor’s lo-
cal state is ready to participate in some (perhaps more than one)
kind of transition, and the other a next function of the actor’s lo-
cal state and a transition step, producing the new local state the
actor acquires when it actually does participate in the transition.
For example, in the Ticker-Clock example, the Ticker actor has
three states: local1, local2, and local3. In state local1, it is
ready to send a “continue” message to itself, and when that tran-
sition occurs it moves into state local2. In that state, it is ready
to send a “tick” message to Clock and move into state local3.
Finally, in state local3, it is ready to receive a continue message
and return to state local1, starting the processing over. This kind
of self-message-passing looping is frequently used in actor systems
in order to avoid using loops in actor local computations (thereby
avoiding infinite loops, which would disable the actor’s participa-
tion in system transitions).

Thus, we have the following Athena fun-defs for the Ticker
actor:3

module Clock-Actors {
...
d a t a t y p e Name := Ticker | Clock
# For a more general treatment , we would use
# a d a t a t y p e with infinitely many values , like
# d a t a t y p e Name := Zeroth | (Next Name)

d a t a t y p e TLS := local1 | local2 | local3
d a t a t y p e CLS := (local N)
d a t a t y p e TCLS := (ticker TLS) | (clock CLS)
...
d e c l a r e ready-to : [TCLS (Step Name)] -> Boolean
d e c l a r e next: [TCLS Name Ide] -> TCLS

module Ticker {
a s s e r t ready-to-definition :=
(fun-def
[(? ls ready-to

(send Ticker Ticker ’continue )) -- >
(?ls = ticker local1 )

(?ls ready-to
(send Ticker Clock ’tick )) -- >

(?ls = ticker local2 )
(?ls ready-to (send Ticker ?id ?c)) -- >
[(~ (?id = Ticker & ?c = ’continue ) &

~ (?id = Clock & ?c = ’tick )) -- > false]
(?ls ready-to

(receive Ticker Ticker ’continue )) -- >
(?ls = ticker local3 )

(?ls ready-to (receive Ticker ?fr ?c)) -- >
[(~ (?fr = Ticker & ?c = ’continue ))

--> false ]
(?ls ready-to

(create ?id ? id ’ )) -- > false ])

a s s e r t next-definition :=
(fun-def
[(next (ticker local1 ) ?step) -->
[(? step = (send Ticker Ticker ’continue ))
-- > (ticker local2 )
_ --> (ticker local1 )]

(next (ticker local2 ) ?step) -->
[(? step = (send Ticker Clock ’tick ))

3 Athena modules are a syntactic construct providing separate namespaces
in a fairly standard manner: An identifier I defined in module M can be
referenced simply as I within the scope of M ; immediately outside of M
it is referenced as M.I.
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-- > (ticker local3 )
_ -- > (ticker local2 )]

(next (ticker local3 ) ?step) -- >
[(? step = (receive Ticker Ticker ’continue ))
-- > (ticker local1 )
_ -- > (ticker local3 )]])

...
} # module Ticker
...

} # module Clock-Actors

Clock’s behavior is simpler, in that there is only one control
state, but also richer in that its state contains a natural number (used
to record the number of tick messages it has received):

module Clock {
a s s e r t ready-to-definition :=
(fun-def
[(? ls ready-to (receive Clock ?fr ?c))

-- > true
(?ls ready-to (send Clock ?to ?c))

-- > false
(?ls ready-to (create Clock ? id ’ ))

-- > true])

a s s e r t next-definition :=
(fun-def
[(next (clock (local ?t))

(receive ?id ?fr ?c)) -- >
[(? id = Clock & ?fr = Ticker & ?c = ’tick )

-- > (clock (local (S ?t)))
_ --> (clock (local ?t))]

(next (clock (local ?t))
(send ?id ?to ?c)) -- >

(clock (local ?t))
(next (clock (local ?t))

(create ?id ? id ’ )) -- >
(clock (local ?t))])

...
} # module Clock

In general an actor’s behavior could combine these features of
multiple control states and data-bearing states.

3.1 Testing with specific transition paths

Before proceeding to develop theorems and proofs about the
Ticker-Clock system, we can gain some understanding by con-
structing specific transition paths and observing their effect on
actor configurations. Consider, for example, the transition path

d e f i n e P :=
(Initial then (create Clock Ticker )

then (send Ticker Ticker ’continue )
then (send Ticker Clock ’tick )
then (receive Clock Ticker ’tick )
then (receive Ticker Ticker ’continue )
then (send Ticker Ticker ’continue )
then (send Ticker Clock ’tick )
then (receive Ticker Ticker ’continue )
then (send Ticker Ticker ’continue )
then (send Ticker Clock ’tick )
then (receive Clock Ticker ’tick )))

in which actor Clock creates actor Ticker, which then sends a
continue message to itself and a tick message back to Clock;
the tick is received; the continue message is received and resent;
another tick message is sent; the continue message is received and
resent; and another tick is sent and a tick is received. Assuming
that the time value held by Clock in Initial is zero and actor
identifiers are unique, the value held at the end of the path should
be two, and there should be one tick message still to be received:

d e f i n e M :=
(One ( message ’ Ticker ls0 Clock ’tick ))

d e f i n e CM :=
(One ( message ’ Ticker ls0 Ticker ’continue ))

d e f i n e P-result :=
(config Initial =

s0 ++ (actor Clock (clock local zero) &
(unique-ids

(config Initial ) ++
(actor Ticker

(new-ls (clock local zero )))) &
(clock (local zero))

ready-to (create Clock Ticker )
==>
config P =

s0 ++ (actor Clock
(clock local (S (S zero )))) ++

(actor Ticker (ticker local3 )) ++ M ++ CM)

where new-ls is a function that creates a local state for the
new actor from the creating actor’s local state. In [19, clock-
actors run.ath], we show how to develop a proof of this specific
result based on the general transition path theory and the concrete
implementation of the Ticker-Clock system. For more general the-
orems about the actor model, we need to extend the theory further.

4. Fairness

Fairness in actor systems is basically the property that if a tran-
sition is infinitely-often enabled, it will eventually happen. To ex-
press fairness in terms we can reason about in formal logic, we need
a way of expressing eventuality in the logic. Athena’s many-sorted
first-order logic is quite expressive but offers no eventuality quan-
tifier of the kind one would have in a temporal logic [16]. But one
can easily express eventuality by indexing the points in a transition
path with natural numbers. We can then say that a transition must
eventually occur in an indexed path by saying there exists an index
position in the path, greater than or equal to the index of the current
position, at which the transition in question appears. This approach
seems quite natural, being both readable and not at all difficult to
reason about. For example, reflexivity, asymmetry, and transitivity
properties of eventuality follow easily from corresponding proper-
ties of natural numbers, which are both familiar and already present
in Athena’s library of natural number theorems and their proofs.

We first need to express “infinitely-often enabled” in first-order
logic. In terms of indexed paths, we simply say that, at any index
in a transition path at which a given transition is enabled, either it
occurs at that index or there is a greater index at which it is enabled.
Here is how this works out for a receive transition:

d e f i n e IOE-receive :=
(forall ?T ?n ?s ?id ?ls ?fr ?c .

config (itp ?T ?n) =
?s ++ (actor ?id ?ls) ++
(message ?fr ?id ?c) &

?ls ready-to (receive ?id ?fr ?c)
==> (itp ?T (S ?n)) =

(itp ?T ?n) then (receive ?id ?fr ?c)
| exists ?k ? s ’ ? ls ’ .

?k > ?n &
config (itp ?T ?k) =

? s ’ ++ (actor ?id ? ls ’ ) ++
(message ?fr ?id ?c) &

? ls ’ ready-to (receive ?id ?fr ?c))

In checking proofs of abstract level theorems we derive IOE-receive
and corresponding theorems for send and create transitions from
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a more general IOE axiom, but in working with a concrete exam-
ple we retract that axiom and derive these theorems instead from
the actor implementations. Thus in the Ticker-Clock example, we
derive them from the implementations discussed in Section 3.

The expression of fairness in our formulation is also general,
but we discuss it here only for the receive case: if a receive
transition is enabled at index n then either (1) at some index k ≥ n
the receive transition is enabled and also occurs, or (2) there is no
index k > n at which the receive transition is (again) enabled:

(forall ?T ?n ?s ?id ?ls ?fr ?c .
config (itp ?T ?n) =

?s ++ (actor ?id ?ls) ++
(message ?fr ?id ?c) &

?ls ready-to (receive ?id ?fr ?c)
==> (exists ?k .

?k >= ?n &
(itp ?T (S ?k)) =
(itp ?T ?k) then (receive ?id ?fr ?c))

| ~ exists ?k ? s ’ ? ls ’ .
?k > ?n &
config (itp ?T ?k) =

? s ’ ++ (actor ?id ? ls ’ ) ++
(message ?fr ?id ?c) &

? ls ’ ready-to (receive ?id ?fr ?c))

Under the assumption of infinitely-often-enabled, the second result
is ruled out and we only have the first result: the transition does
eventually occur:

d e f i n e fair-receive-theorem :=
(forall ?T ?n ?s ?id ?ls ?fr ?c .

config (itp ?T ?n) =
?s ++ (actor ?id ?ls) ++
(message ?fr ?id ?c) &

?ls ready-to (receive ?id ?fr ?c)
==>
exists ?k .
?k >= ?n &
(itp ?T (S ?k)) =

(itp ?T ?k) then (receive ?id ?fr ?c))

One way to view the IOE and fairness concepts is as a bargain
between actors and the overall actor system. In terms of receiving
a message (similar observations can be made in the send and
create case), an actor agrees to be, if not constantly then at
least periodically, ready to receive the message until it is actually
received. The system, on the other hand, agrees to eventually enter
a receive transition at some future point when the actor is ready.
The actor’s behavior must be specified, and correctly implemented,
to avoid infinite loops or other problems that would prevent it from
ever getting back to being ready to receive, and system scheduling
must be such than other transitions cannot preempt the message
reception forever.

5. Additional theorems at the abstract level

In this section we discuss various theorems we proved at an
abstract-level, in addition to the composition, transition, and fair-
ness theorems already discussed in previous sections. These the-
orems fall into three broad categories: persistence, monotonicity,
and progress theorems. We discuss them in turn, in some cases also
mentioning applications to the Ticker-Clock example.

5.1 Persistence theorems

We developed various “persistence” properties of actor systems.
Unique-ids persistence has already been discussed in Section 2.4.

5.1.1 Actor persistence

Actor persistence in our formalism is even more obvious than
unique-ids persistence, since in none of the available transitions
does an actor disappear. But working out the proof using transition
induction is a bit more involved, since to show that a given actor,
with identifier id0, say, persists, one must consider for a receive
transition involving actor id, two cases: one in which id = id0,
and one in which id 6= id0; and similarly for send and create
transitions. The unequal case, where some other actor is the subject
of the transition, is easiest and almost identical for all three kinds
of transitions, making it worthwhile to develop a set of lemmas
for dealing with it. These “other” lemmas have helped to shorten
not just the actor persistence proof but almost all of the transition
induction proofs in our work. See Appendix B for the Athena proof
of actor-persistence and of an “other” lemma.

5.1.2 Message persistence (conditional)

Of course, messages do disappear from a configuration when they
are received, so any claim about message persistence in a transition
path must be conditional on either it not being received in the
path or, if it is, it being subsequently restored by being resent. In
the Ticker-Clock example, we have the latter situation with the
continue message that the ticker sends itself. Upon receiving it in
state local3, it moves into state local1, and waits for a send
transition to resend it, thereupon moving into state local2, in
which it is ready to send a tick message to the clock, which will get
it back to state local3. We can thus say that the continue message
persists in the sense that the following conditional invariant is
maintained:

config ?T = ?s ++ (actor Ticker (ticker ?ls))
==>
(?ls =/= local1 ==>
exists ? s ’ .
?s = ? s ’ ++ (message Ticker Ticker ’continue )

We have proved this invariant by transition induction, but the proof
is unpleasantly long, dealing as it does with the many cases that
arise due to Ticker’s three local states, the three kinds of transi-
tions, and the possibility that a transition does or does not involve
Ticker. Even though it is much shortened by use of the “other”
lemmas (Section 5.1.1) for the transition cases that do not involve
Ticker, in the cases where it does it is not as easy to see regular-
ities that would allow them to be covered by general lemmas. But
we continue studying how to lift such theorems and proofs to an
abstract level, so that they can be applied in many different cases
with little further proof effort.

5.2 Monotonicity (of actor local states)

We might need to know that not only does an actor persist as
transition paths are traversed, but also some monotonicity property
of its local state is preserved. E.g., in the Ticker-Clock system,
it should be the case that the time value held by the clock is
nondecreasing from one point in the path to the next.

At the abstract level, we have the following theorem, in which
binary relation R is only assumed to be a preorder (reflexive and
transitive).

d e f i n e actor-monotonicity :=
(forall ?T ?T0 ?s0 ?id ?ls0 .

(forall ?ls ?step .
?ls R (next ?ls ?step ))

==>
(( unique-ids config ?T0) &
config ?T0 = ?s0 ++ (actor ?id ?ls0) &
?T0 -- >>* ?T
==>
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exists ?s ?ls .
config ?T =

?s ++ (actor ?id ?ls) & ?ls0 R ?ls))

The proof [19, monotonic-transition.ath] is again by induction
on transitions.

With R taken to be the relation between the times held in clock
local states, the preconditions of the theorem are satisfied by the
clock axioms [19, actors.ath]. We thus have

d e f i n e clock-monotonicity :=
(forall ?T ?T0 ?s0 ?t0 .

(unique-ids config ?T0) &
config ?T0 =
?s0 ++ (actor Clock (clock local ?t0)) &

?T0 -- >>* ?T
==> exists ?s ?t .

config ?T =
?s ++ (actor Clock (clock local ?t)) &

?t >= ?t0)

5.3 Progress

The main result here is a guaranteed message delivery theorem,
which states that if an actor is ready to send a message and actor
ids are unique, then the message will eventually be received by its
intended recipient.

d e f i n e
guaranteed-message-delivery :=

(forall ?T ?n0 ?s0 ?fr ?to ?ls0 ?ls1 ?c .
config (itp ?T ?n0) =

?s0 ++ (actor ?fr ?ls0) ++
(actor ?to ?ls1) &

?ls0 ready-to (send ?fr ?to ?c) &
(unique-ids config (itp ?T ?n0))
==>
exists ?n .
?n >= ?n0 &
(itp ?T (S ?n)) =

(itp ?T ?n) then (receive ?to ?fr ?c))

Stating and proving other progress theorems at the abstract level is
a subject of our ongoing research. As we have done in developing
all of the abstract-level theorems discussed above, we are working
on details in concrete examples until it becomes apparent how to
lift theorems at that level to an abstract level. In the next section we
show parts of the proofs of progress theorems in the Ticker-Clock
example.

6. Proving progress at the concrete level

d e f i n e Clock-progress :=
(forall ?t ?T ?n0 ?s0 ?t0 .

config (citp ?T ?n0) =
?s0 ++ (actor Ticker (ticker local1 )) ++
(actor Clock (clock local ?t0)) &

(unique-ids config (citp ?T ?n0))
==>
exists ?n ?s ?ls ?u .

?n >= ?n0 &
config (citp ?T ?n) =

?s ++ (actor Ticker (ticker ?ls))
++ (actor Clock (clock local ?u)) &

?u >= ?t)

This theorem states that for any arbitrarily large time t, if we start
from a configuration satisfying the given preconditions, the clock
will eventually hold a value u ≥ t. A slightly stronger version

of this theorem is proved by induction on t, i.e., ordinary natural-
number induction, not transition induction. In the inductive step,
one has to show that eventually Ticker emits a tick message, and
eventually Clock receives it and increments its internal counter.
The details are quite lengthy and depend crucially on specializa-
tions of the abstract-level persistence, fairness, and monotonicity
theorems, together with the Ticker-Clock axioms and a few lem-
mas that are specific to that system’s details. For example,

d e f i n e Ticker-eventually-ready-to-send-tick :=
(forall ?ls0 ?T ?n0 ?s0 .

config (citp ?T ?n0) =
?s0 ++ (actor Ticker (ticker ?ls0 )) &

(unique-ids config (citp ?T ?n0)) &
(?ls0 =/= local1
==> exists ?s1 . ?s0 = ?s1 ++ CM)

==>
exists ?n ?s ?ls .

?n >= ?n0 &
config (citp ?T ?n) =

?s ++ (actor Ticker ?ls) &
?ls ready-to (send Ticker Clock ’tick ))

where citp is a clock-specialized version of the abstract level itp
(indexed transition path) function and CM is the Ticker’s continue
message. Note the conditional message-persistence assumption; to
satisfy it, we conjectured and proved the invariant previously dis-
cussed in Section 5.1.2. Note also that the lemma doesn’t specify
starting in a particular local state. To prove it, therefore, we must
consider each of the three values ls0 can have: local1, local2,
and local3. To avoid repetition in the proof, we introduced three
mutually recursive methods: proof1 applies the fair-send theo-
rem to advance by sending a continue message and moving Ticker
into state (ticker local2), then calling method proof2 to fin-
ish the overall proof. State local2 is the Ticker state in which it
is ready to send a tick to Clock, so again applying the fair-send
theorem gets the job done without recursion. In state local3, the
fair-receive theorem (Section 4) is applied to show the con-
tinue message is eventually received, putting Ticker back in state
local1, so we can call upon the proof1 method to finish the proof.
See [19, fair-clocks.ath].

7. Related work

Inspiration for two aspects of our work—using abstraction in for-
mulating actor theories with subsequent specialization to concrete
systems, and manipulating configurations using AC-rewriting—
came from the work of Talcott et al. in Maude [8]. Maude’s high
level language and powerful AC rewriting are the foundation of its
system specification and model checking capabilities, but for actu-
ally developing proofs Maude is limited to what can be expressed
as equations and proved by rewriting. To express the axioms, theo-
rems, and proofs we have developed, one needs a full-fledged theo-
rem prover. Exploring fairness, for example, was done in [8] based
on a built-in “fair rewriting” capability, frewrite, a breadth-first
strategy for applying rules and equations. Our expression of fair-
ness is more fundamental and subject to many different implemen-
tation strategies.

Athena also provides general support for model checking,
which we have yet to exploit. We view it as a complementary
tool, useful for “stress-testing” specifications before attempting
full proofs. To date, we have only explored such testing in a limited
way, such as exercising the clock system as outlined in Section 3.1.
Model checking for concurrent object systems has also been ex-
plored in Creole [14], an actor-like type-safe model with an exe-
cutable operational semantics using rewriting logic in Maude. The
rewriting-based executable semantics provides a framework for in-
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terpretation and analysis, though model checking in general has to
consider the state explosion problem. Even though state-reduction
techniques such as partial order reduction [15], exploiting symme-
try, and slicing [21] have been used to model check actor systems,
proving program properties requiring unbounded nondeterminism
such as the one illustrated in this paper is beyond the scope of
model checking approaches.

Reasoning about the ticker-clock actor system to prove that the
clock actually makes progress requires application of many of the
axioms and theorems developed in this paper. Indeed, the detailed
development of much of that theory was inspired by what was
needed in the proofs about the ticker-clock system, but formulating
the needed axioms and theorems at an abstract level, as we have
done, makes them available for reasoning about many other actor
systems. Human-readability of Athena proofs makes it possible to
recognize repetitive patterns and develop methods that encapsulate
them, so that existing proofs can be shortened and future proof
development simplified.

Developing human-readable proofs has advantages and disad-
vantages in comparison with most approaches to mechanized the-
orem proving, which tend to be “black-box” to one degree or an-
other. A resolution-based prover accepts just a set of axioms and
the negation of the sentence to be proved and tries to find an in-
consistency in a vast search space, which may take excessive time
whether it succeeds or not. If it does succeed, even if the time re-
quired is minutes or hours, the human who posed the problem is re-
lieved of having to work out the proof manually. On the other hand,
the proof found by a resolution prover is virtually inaccessible to
human understanding, so there is little insight gained from it or
carry-over benefit to other proof efforts. Even in the case of proofs
developed more interactively and as expressions of computation, as
with Coq [17], HOL [12], Isabelle [20], PVS [9], and other “tactic-
based” provers, the proofs cannot really be understood without re-
playing them to obtain a transcript of the steps taken toward deriv-
ing the theorem. One partial exception is Isabelle-ISAR [26], which
does provide a much more readable proof language. It might be
possible to replicate much of our actor model and proofs in ISAR
with a similar level of readability, but some of our proofs take such
full advantage of Athena’s proof language (e.g., introducing several
mutually-recursive methods within a proof, as discussed in Sec-
tion 6) that it is not apparent to us how one could express them
nearly as easily in ISAR’s declarative style.

In Athena, one is not always restricted to writing out de-
tailed proofs. The high-level skeleton of the proof (the important
ideas) can be expressed in the language’s readable proof format,
while lower-level details may be outsourced to automated theorem
provers (ATPs). In this work we have made only minimal use of ex-
ternal ATPs (in some step cases of transition induction proofs), but
we are exploring additional ways in which they can be successfully
applied.

8. Conclusions and future work

Concurrent software is inherently harder to verify than sequential
software because of the combinatorial explosion of potential exe-
cution paths that can be produced by different schedulers. When
concurrency is combined with shared state and synchronous com-
munication, the potential for race conditions, deadlocks, and live-
locks make software verification a very challenging task. Formal
models of concurrent computation, e.g., the π calculus [18], the
actor model [1, 2], the join calculus [11], and the ambient calcu-
lus [7] make different assumptions on shared vs distributed state
and synchronous vs asynchronous communication [23]. Actor sys-
tems have significant advantages from a software development and
verification perspective: first, they assume no shared state, thereby
enabling modular reasoning; second, communication is purely

asynchronous, thereby virtually eliminating deadlocks; third, the
actor model requires fairness, helping prove application progress
properties. Finally, since actors are a unit of concurrency and state
encapsulation (i.e., actors process only one message at a time and
share no state,) the combinatorial number of potential execution
paths that need to be reasoned about to verify concurrent actor
software can be significantly reduced.

Even with all these benefits, formally proving properties of actor
systems requires significant expertise, time, and attention to detail.
Our modular approach to reasoning advocates for a hierarchy of
well-defined theories to lower the complexity of proving properties
of a concrete actor system, by creating proofs that hold true for all
actor programs (e.g., fair computation, actor name uniqueness, and
actor persistence) and reusing them or refining them for concrete
actor system instances. Furthermore, general proof methods, such
as structural induction on operational semantics transitions can be
encapsulated in theories and applied to concrete actor systems to
facilitate formal reasoning.

The results of this paper allow us to explore the interplay be-
tween different actor languages and the ability to reason about sys-
tems developed using these different languages. For example, an
actor language can limit the behavior definition of an actor to move
between the following four states:

1. Ready to receive a new message

2. Creating new actors in response to a message

3. Updating local state as a function of previous state, message
contents, and newly created actor names, and

4. Sending messages to acquaintances

Such an actor language (e.g., FeatherWeight SALSA [23]),
while still Turing-complete, requires iterations to be implemented
in terms of patterns of message passing [13], since there are no ex-
plicit looping constructs. However, the property that a transition is
infinitely-often enabled can be proved at an abstract level, that is, it
holds for all concrete actor systems implemented in such actor lan-
guage. Since infinitely often enabled transitions are a pre-requisite
for fairness to guarantee that the transition must eventually happen,
this would greatly simplify the formalization of progress proofs.
So, a general open question is: how can we restrict an actor lan-
guage to facilitate formal reasoning, yet maintaining its expressive
power?

Since Athena is both a computation and a deduction language,
it is possible to write executable actor code that can be used to
generate the axioms needed to verify its properties within the same
language framework. In future work, we intend to explore this use
of Athena as a provably correct actor software development frame-
work.
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A. Appendix: Athena

Athena [3] is interactive and programmable, with separate but in-
tertwined languages for computation and deduction. For conven-
tional programming, the built-in computational domains include

not only the usual ones of most languages—booleans, numbers,
and strings—but also those typical of symbolic computation such
as lists, terms and sentences of (first-order, multi-sorted) logic, sub-
stitutions, etc. The principal mechanism for program composition
is the procedure call. Procedures are higher-order, i.e., they may
take procedures as arguments and return procedures as results.

The principal tool for constructing proofs is the method call.
A method call represents an inference step, and can be primitive or
complex (derived). Like procedures, methods can accept arguments
of arbitrary types, including other methods and/or procedures, and
thus are also higher-order. Evaluation of a procedure call, if it does
not raise an error or diverge, can result in a value of any type, but
evaluation of a method call—again, if it does not raise an error or
diverge—can result only in a theorem: a sentence of logic that is
derived by inference from axioms and other theorems.

While there are generally many ways to express a proof, an
Athena method (or a stand-alone, “straight-line” program in the
proof language) is one such expression, and a key attribute of the
Athena proof language is that such expressions of proofs are not
only machine-checkable but also human-readable. The readability
of Athena proofs rests mainly on the naturalness with which one
can express important proof methods. In part, this is due to a
fundamental mechanism of Athena: its assumption base. When a
sentence is assumed or proved, it is entered into the assumption
base, which is a set of sentences that each of Athena’s primitive
inference methods interacts with, checking one or more of its inputs
to see if they are present in the set and/or making new entries. For
example, mp is Athena’s version of the modus ponens inference
rule: (!mp P Q) checks that both P and Q are in the assumption
base, and that P is an implication, (Q ⇒ R), with Q as its
antecedent. If these conditions are satisfied, then the consequent, R,
of the implication is established as a theorem and entered into the
assumption base. If any of the conditions fails, an error is reported.
Modus ponens is one of Athena’s built-in inference rules that form
the foundation of its reasoning capability, but in most cases users do
not need to invoke it directly. Instead, they will invoke higher-level
inference methods: equality and implication chaining, induction,
case analysis, and proof by contradiction. For a brief description of
how Athena supports each of these methods, see [3].

In Athena, one can introduce axioms and theorems at an ab-
stract level via structured theories [25]. Proofs are encapsulated
in parametrized methods that allow the proofs to serve for prov-
ing theorems that are different specializations of an abstract theo-
rem via different renamings of function symbols. A library of al-
gebraic theories that have been developed as structured theories in-
clude semigroup, monoid, group, ring, integral domain, etc. Other
theories collected in an Athena library include familiar relational
theories: binary-relation, reflexive, symmetric, transitive, preorder,
strict weak order, total order, transitive closure, etc. A few of
these well-known algebraic and relational theories serve as build-
ing blocks for actor theories. The relational theories upon which we
build actor theories (see also Figure 1) are developed as successive

structured theory refinements:4

module Binary-Relation {
d e c l a r e R: (T) [T T] -> Boolean [100]
d e f i n e Theory :=

(theory [] [] ’Binary-Relation)}
module Irreflexive {
open-module Binary-Relation
d e f i n e Irreflexive :=

(forall ?x . ~ ?x R ?x)
d e f i n e Theory :=

4 In function declarations the occurrence of a bracketed number such as
[100] specifies a precedence value. Symbol names (and program identi-
fiers) may include special symbols, so that R+ and R* are legal symbols.
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(theory [ Binary-Relation.Theory ]
[ Irreflexive ] ’Irreflexive )}

module Transitive {
open-module Binary-Relation
d e f i n e Transitive :=

(forall ?x ?y ?z .
?x R ?y & ?y R ?z ==> ?x R ?z)

d e f i n e Theory :=
(theory [Binary-Relation.Theory ]

[Transitive ] ’Transitive )}
module Strict-Partial-Order {
open-module Irreflexive
open-module Transitive

d e f i n e Theory :=
(theory [Irreflexive .Theory

Transitive .Theory ]
[] ’Strict-Partial-Order )}

module Transitive-Closure {
open-module Irreflexive
open-module Strict-Partial-Order
d e c l a r e R+, R*: (S) [S S] -> Boolean [100]
d e c l a r e R** : (S) [N S S] -> Boolean
d e f i n e R**-zero :=
(forall ?x ?y .

(R** zero ?x ?y) <==> ?x = ?y)
d e f i n e R**-nonzero :=
(forall ?x ?n ?y .
(R** (S ?n) ?x ?y) <==>
(exists ?z . (R** ?n ?x ?z) & ?z R ?y))

d e f i n e R+-definition :=
(forall ?x ?y . ?x R+ ?y <==>
(exists ?n . (R** (S ?n) ?x ?y)))

d e f i n e R*-definition :=
(forall ?x ?y . ?x R* ?y <==>

(exists ?n . (R** ?n ?x ?y)))
d e f i n e Theory :=
(theory

[Irreflexive .Theory
[ Strict-Partial-Order.Theory ’TC [R R+]]]

[R**-zero R**-nonzero R+-definition
R*-definition]

’Transitive-Closure )

For further explanation of structured theories, see [3].

B. Appendix: Proof of actor-persistence

We give a listing of the proof of the theorem

d e f i n e actor-persistence :=
(forall ?T ?T0 ?s0 ?id ?ls0 .

config ?T0 = ?s0 ++ (actor ?id ?ls0) &
?T0 -- >>* ?T
==> exists ?s ?ls .

config ?T = ?s ++ (actor ?id ?ls))

discussed in Section 5.1.1. The proof is encased in an Athena
method that has standard parameters and begins with standard def-
initions according to requirements and conventions used in theo-
rems and proofs in structured theories. The theorem parameter is
passed the theorem to be proved when this proof is returned from a
search of the theory structure (since such methods can contain the
proof of more than one theorem). The adapt parameter is passed
a function that maps function identifiers of the general theory such
as ready-to and next, to function identifiers defined in a con-
crete actor system such as the Clock and Ticker ready-to and
next functions defined in the Clock-Actors module (Section 3).
In lines 10–11, adapt is applied to identifiers that appear in the
text of the proof. (LS0 is a local state constant that is included
in message expressions only to eliminate sort-inference problems
that would otherwise occur in a few places in Athena proofs. We

do not use it to actually pass actor state values in messages, though
such information could always be passed by including a serializa-
tion of it in the Ide parameter of a message structure.) The iden-
tifier Transition-Path.Theory in lines 3 and 4 refers to a the-
ory definition within the Transition-Path module and is the en-
try point into the theory structure for searches for applicable ax-
ioms and theorems. For further explanation of these preliminaries,
see [3].

Several of the most useful higher-level inference forms and
methods supported by Athena are illustrated:

• Induction, with by-induction : lines 13–111.

• Case analysis, with cases: lines 21–27; with two-cases: lines
63–110, and with datatype-cases (like by-induction , but with
no induction hypothesis): lines 65–103.

• Implication chaining, with chain-last: lines 23–24.

• Equality chaining, with chain: lines 67–68. In general,

(!chain [t0 = t1 [J1] = t2 [J2] = · · · = tn [Jn]])

proves t0 = tn, where the justification Ji proves ti−1 =
ti, i = 1, . . . , n.

• Mixed implication/equality chaining: lines 119–130

• Proof by contradiction, with from-complements: lines 26–27.
In general

(!from-complements P Q R)

proves P , where Q and R are complementary, i.e., one is
the negation of the other. The most general form of proof by
contradiction (not illustrated) is

(!by-contradiction P
assume Q

D)

which proves P , where the assumption Q is complementary to
P and deduction D derives false using Q and other sentences
that are in the assumption base.

Finally, lines 113–144 of the listing are the proof of a lemma

d e f i n e other-step-1 :=
(forall ?T0 ?s0 ?id0 ?ls0 ?step .

config ?T0 = ?s0 ++ (actor ?id0 ?ls0) &
Enabled (?T0 then ?step) &
focus ?step =/= ?id0
==> exists ?s . config (?T0 then ?step) =

?s ++ (actor ?id0 ?ls0 ))

that is used in the proof of actor-persistence for the case in
which the focus of a transition step—i.e., the actor doing the send-
ing, receiving, or creating—is not the same as id0, the identifier
that is singled out in the configuration. This proof actually serves
merely to select and apply one of three other lemmas (not shown)
that are each specific to one type of transition step. This is accom-
plished by defining an appropriately parametrized sub-method and
then setting up a call to it via datatype-cases , illustrating another
feature of Athena’s programming-based approach to proof: one
doesn’t always have to introduce a lemma explicitly as a sentence
of the logic, associate a proof with it, and carry out the proof by ap-
plying the lemma (with, say, implication chaining). As is illustrated
here, it is sometimes more convenient just to define a parametrized
proof method and call it directly.
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1 d e f i n e actor-persistence-proof :=
2 method (theorem adapt)
3 l e t {given := lambda (P) (get-property P adapt Transition-Path.Theory );
4 lemma := method (P) (!property P adapt Transition-Path.Theory );
5 chain := method (L) (!chain-help given L ’none );
6 chain-last := method (L) (!chain-help given L ’last );
7 ++A := (given [ ’ ++ Associative ]);
8 ++C := (given [ ’ ++ Commutative ]);
9 R*L := (!lemma [ ’-- >> R*-lemma ]);

10 [LS0 next ready-to new-ls unique-ids before after config ] :=
11 (adapt [LS0 next ready-to new-ls unique-ids before after config ]);
12 [T-sort _ s-sort id-sort ls-sort ] := (map sort-of (qvars-of (adapt theorem )))}
13 b y - i n d u c t i o n (adapt theorem ) {
14 ( b i n d I Initial :T-sort ) =>
15 p i c k - a n y T0:T-sort s0:s-sort id0:id-sort ls0:ls-sort
16 l e t {A1 := (config T0 = s0 ++ (actor id0 ls0 ));
17 A2 := (T0 -->>* I)}
18 assume (A1 & A2)
19 l e t {goal := (exists ?s ?ls . config I = ?s ++ (actor id0 ?ls));
20 B1 := (!chain-last [A2 ==> (T0 = I | T0 -- >>+ I) [R*L ]])}
21 (!cases B1
22 assume B1a := (T0 = I)
23 (!chain-last [A1 ==> (config I = s0 ++ (actor id0 ls0 )) [B1a ]
24 ==> goal [existence ]])
25 assume B1b := (T0 -- >>+ I)
26 (!from-complements goal B1b
27 (!chain-last [true ==> (~ B1b ) [ nothing-leads-to-Initial ]])))
28 | (T:T-sort then step) =>
29 l e t {ind-hyp := (forall ?T0 ?s0 ?id ?ls0 .
30 config ?T0 = ?s0 ++ (actor ?id ?ls0 ) &
31 ?T0 -- >>* T
32 ==> exists ?s ?ls . config T = ?s ++ (actor ?id ?ls))}
33 p i c k - a n y T0:T-sort s0:s-sort id0:id-sort ls0:ls-sort
34 l e t {A1 := (config T0 = s0 ++ (actor id0 ls0 ));
35 A2 := (T0 -- >>* (T then step ))}
36 assume (A1 & A2)
37 l e t {B1 := ( !chain-last
38 [A2 ==> (T0 = (T then step) | T0 -- >>+ (T then step)) [R*L ]])}
39 (!cases B1
40 assume B1a := (T0 = (T then step))
41 (!chain-last [A1 ==> (config (T then step) = s0 ++ (actor id0 ls0 )) [B1a]
42 ==> (exists ?s ?ls .
43 config (T then step) = ?s ++ (actor id0 ?ls)) [existence ]])
44 assume B1b := (T0 -- >>+ (T then step ))
45 l e t {goal := (exists ?s:(Cfg (Actor ’Id ’LS )) ?ls: ’LS .
46 config (T then step) = ?s ++ (actor id0 ?ls ));
47 LT := (!lemma leads-to );
48 C := ( !chain-last
49 [B1b ==> (T0 -- >>* T & Enabled (T then step )) [LT]
50 ==> (T0 -- >>* T) [ left-and ]
51 ==> (A1 & T0 -->>* T) [augment ]
52 ==> (exists ?s1 ?ls1 .
53 config T = ?s1 ++ (actor id0 ?ls1 )) [ind-hyp ]])}
54 p i c k - w i t n e s s e s s1 ls1 f o r C C-witnessed
55 l e t {D1 := ( !chain-last
56 [B1b ==> (T0 -- >>* T & Enabled (T then step )) [LT]
57 ==> (Enabled (T then step )) [right-and ]]);
58 D2 := ( !chain-last
59 [D1 ==> (Enabled T &
60 exists ?s ?ls . (before T step ?s ?ls)) [enabled-step]])}
61 p i c k - w i t n e s s e s s ls f o r (!right-and D2) D2-witnessed
62 l e t {E1 := (!chain-last [D2-witnessed ==> (after T step s ls) [transition-step ]])}
63 ( !two-cases
64 assume F1 := (focus step = id0)
65 d a t a t y p e - c a s e s goal on step {
66 (receive id:id-sort fr:id-sort c) =>
67 l e t {G1 := (!chain [id = (focus (receive id fr c)) [focus-definition]
68 = id0 [( step = (receive id fr c)) F1 ]])}
69 ( !chain-last
70 [E1 ==> (after T (receive id fr c) s ls) [( step = (receive id fr c))]
71 ==> (config (T then (receive id fr c))
72 = s ++ (actor id (next ls (receive id fr c)))) [after.receiving ]
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73 = (s ++ (actor id0 (next ls (receive id fr c)))) [G1]
74 ==> (exists ?s ?ls .
75 config (T then (receive id fr c)) = ?s ++ (actor id0 ?ls))
76 [existence ]])
77 | (send id:id-sort to:id-sort c) =>
78 l e t {M := (One ( message ’ id LS0 to c));
79 G1 := (!chain [id = (focus (send id to c)) [focus-definition]
80 = id0 [(step = (send id to c)) F1 ]])}
81 ( !chain-last
82 [E1 ==> (after T (send id to c) s ls) [(step = (send id to c))]
83 ==> (config (T then (send id to c))
84 = s ++ (actor id (next ls (send id to c))) ++ M) [after.sending ]
85 = (s ++ (actor id0 (next ls (send id to c))) ++ M) [G1]
86 = ((s ++ M) ++ (actor id0 (next ls (send id to c)))) [++A ++C]
87 ==> (exists ?s ?ls .
88 config (T then (send id to c)) = ?s ++ (actor id0 ?ls)) [existence ]])
89 | (create id:id-sort id ’ :id-sort ) =>
90 l e t {G1 := (!chain [id = (focus (create id id ’ )) [focus-definition]
91 = id0 [( step = (create id id ’ )) F1 ]])}
92 ( !chain-last
93 [E1 ==> (after T (create id id ’ ) s ls) [(step = (create id id ’ ))]
94 ==> (config (T then (create id id ’ ))
95 = s ++ (actor id (next ls (create id id ’ )))
96 ++ (actor id ’ (new-ls ls))) [after. creating ]
97 = (s ++ (actor id0 (next ls (create id id ’ )))
98 ++ (actor id ’ (new-ls ls))) [G1]
99 = ((s ++ (actor id ’ (new-ls ls))) ++

100 (actor id0 (next ls (create id id ’ )))) [++A ++C]
101 ==> (exists ?s ?ls .
102 config (T then (create id id ’ )) = ?s ++ (actor id0 ?ls)) [existence ]])
103 } # d a t a t y p e - c a s e s
104 assume (focus step =/= id0 )
105 l e t {OS1 := (!lemma other-step-1);
106 G1 := (!chain-last [( C-witnessed & D1 & focus step =/= id0)
107 ==> (exists ?s2 . config (T then step) =
108 ?s2 ++ (actor id0 ls1 )) [OS1 ]])}
109 p i c k - w i t n e s s s2 f o r G1 G1-w
110 (!chain-last [G1-w ==> goal [existence ]])))
111 } # b y - i n d u c t i o n
112

113 d e f i n e other-step-1-proof :=
114 method (theorem adapt)
115 l e t {given := lambda (P) (get-property P adapt Theory );
116 lemma := method (P) (!property P adapt Theory );
117 chain-last := method (L) (!chain-help given L ’last );
118 config := (adapt config );
119 [T-sort s-sort id-sort ls-sort step-sort ] := (map sort-of (qvars-of (adapt theorem )))}
120 p i c k - a n y T0:T-sort s0:s-sort id0 :id-sort ls0 :ls-sort step:step-sort
121 l e t {A1 := (config T0 = s0 ++ (actor id0 ls0 ));
122 A2 := (Enabled (T0 then step ));
123 A3 := (focus step =/= id0 )}
124 assume (A1 & A2 & A3)
125 l e t {proof :=
126 method (a-step id)
127 l e t {B1 := ( !chain-last [A3 ==> (focus a-step =/= id0) [(step = a-step )]
128 ==> (id =/= id0) [ focus-definition ]]);
129 L1 := (!lemma match a-step {
130 (receive _ _ _) => other-receive-1
131 | (send _ _ _) => other-send-1
132 | (create _ _) => other-create-1
133 })}
134 (!chain-last
135 [A2 ==> (Enabled (T0 then a-step )) [(step = a-step )]
136 ==> (A1 & Enabled (T0 then a-step ) & B1) [augment ]
137 ==> (exists ?s .
138 config (T0 then a-step ) = ?s ++ (actor id0 ls0 )) [L1]])}
139 d a t a t y p e - c a s e s (exists ?s . config (T0 then step) = ?s ++ (actor id0 ls0 ))
140 on step {
141 (receive id fr c) => (!proof (receive id fr c) id)
142 | (send id to c) => (!proof (send id to c) id)
143 | (create id id ’ ) => (!proof (create id id ’ ) id)
144 }
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