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a b s t r a c t

Big data analytics (BDA) applications use machine learning algorithms to extract valuable insights from
large, fast, and heterogeneous data sources. New software engineering challenges for BDA applications
include ensuring performance levels of data-driven algorithms even in the presence of large data
volume, velocity, and variety (3Vs). BDA software complexity frequently leads to delayed deployments,
longer development cycles, and challenging performance assessment. This paper proposes a Domain-
Specific Model (DSM), and DevOps practices to design, deploy, and monitor performance metrics in
BDA applications. Our proposal includes a design process, and a framework to define architectural
inputs, software components, and deployment strategies through integrated high-level abstractions
to enable QS monitoring. We evaluate our approach with four use cases from different domains to
demonstrate a high level of generalization. Our results show a shorter deployment and monitoring
times, and a higher gain factor per iteration compared to similar approaches.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Big data analytics (BDA) applications use Machine Learning
ML) algorithms to extract valuable insights from large, fast,
nd heterogeneous data. These BDA applications require complex
oftware design, development, and deployment to deal with big
ata characteristics: volume, variety, and velocity (3Vs), to main-
ain expected performance levels. Specifically, BDA processing
akes advantage of cutting-edge technologies and infrastructures
hat enable distributed stream computing. But the complexity
nvolved in BDA application development frequently leads to
elayed deployments (Chen et al., 2016) and hinders perfor-
ance monitoring (e.g. throughput or latency) (Ranjan, 2014).
egarding the 3Vs, a BDA solution can be constrained to different
erformance metrics. For instance, real-time stream analytics
pplications require low latency and flexible scalability based on
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data volume fluctuation. On the other hand, heavy workloads,
which imply batch processing over big data, demand high scal-
ability and fault tolerance to achieve a particular deadline. One
of the key goals of software architecture is the design of the
system’s structures and their relationships to achieve expected
quality properties.

The development of BDA solutions involves three knowledge
domains: business, analytics, and technology. In the business do-
main, business experts have to define business goals and quality
scenarios (QS) to drive analytics projects. In the analytics domain,
these business goals are translated into specific analytics tasks by
data scientists. Finally, in the technology domain, software archi-
tects make decisions in terms of tactics, patterns, and deployment
considerations keeping in mind quality attributes. Stakeholders
from different domains face heterogeneous concerns and differ-
ent abstraction levels. Due to the lack of techniques, and tools
to enable articulation and integration of such domains, BDA solu-
tions development presents a high cost and error-prone transition
between development and production environments (Chen et al.,
2016; Wegener and Rüping, 2010). Though there is a growing
interest of companies in big data adoption, real deployments are
still scarce (‘‘Deployment Gap’’ phenomenon) (Chen et al., 2017).

In the same vein, previous surveys (Rexer, 2013; Rexer et al.,
2016; Castellanos et al., 2019) have reported low deployment fre-
quency and delayed deployment procedures caused by analytics
model translation, lack of tools’ interoperability and stakehold-

ers’ communication. These pitfalls could be the result of the
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raditional approach of BDA development where the data sci-
ntist produces the models as source code implemented using
achine learning-oriented tools which are focused on analytics
erspectives within a controlled environment (data lab). On the
ther hand, software architects have to translate these models
nto software products which usually implies rewriting code to
btain productive software components deployed on specific IT
nfrastructures.

This paper proposes ACCORDANT (An exeCutable arChitecture
Odel foR big Data ANalyTics), a DevOps and Domain-Specific
odel (DSM) approach to develop, deploy, and monitor BDA
olutions bridging the gap between analytics and IT domains.
CCORDANT allows to design BDA applications using QS, func-
ional, and deployment views. A QS specifies a quality attribute
equirement for a software artifact to support design and quality
ssessment. Functional view defines the architectural elements
hat deliver the application’s functionality. Deployment view de-
cribes how software is assigned to hardware-processing and
ommunication elements. Our deployment strategy incorporates
ontainerization since it offers consistent modularity to facilitate
ortability, continuous integration, and delivery.
ACCORDANT is validated using four use cases from different

omains by designing functional and deployment models, and
ssessing performance QS. This validation aims to reduce the time
f design, deployment, and QS monitoring of BDA solutions. These
se cases range from public transportation and avionics safety to
eather forecasting, and they include distributed batch, micro-
atch, and stream processing. Our results indicate improvements
n design and (re)deployment times to achieve the expected
erformance metrics. In summary, the contributions of this paper
re as follows:

• A DSM framework to formalize and accelerate iteratively the
development and deployment of BDA solutions by specify-
ing architectural functional, and deployment views aligned
to QS.

• Three integrated domain-specific languages (DSLs) to spec-
ify architectural inputs, component-connector models, and
deployments, thus accelerating BDA deployment cycle.

• A containerization approach to promote automation deliv-
ery and performance metrics monitoring for BDA applica-
tions aligned to QS.

• The evaluation of this proposal applied to four use cases
from diverse domains, and using different deployment
strategies and QS.

The rest of this paper is organized as follows. In Section 2,
e describe the background on DSM, big data analytics, and
evOps. Section 3 reviews related work. Section 4 presents our
ethodology and proposal overview. Section 5 presents the use
ases for experimentation. Section 6 illustrates the steps followed
o validate this proposal. Section 7 presents and discusses the
btained results. Finally, Section 8 summarizes the conclusions
nd future work.

. Background

This section describes the core concepts in which this proposal
s supported: domain-specific modeling, software architecture,
ig data analytics, and DevOps.

.1. Domain-Specific Modeling (DSM) and software architecture

Domain-Specific Modeling enables the software to be modu-
ar and resilient to changes through the separation of concerns
SoC) principle by specifying technology-agnostic concepts, re-
ationships, and constraints within the domain. An important
2

advantage of DSM is the close mapping problem and solution
domains to provide code generation. Moreover, DSM can speed
up and optimize the code generated for the specific platform
improving productivity. In order to enable code generation, the
domain model requires to be narrow, and it is constrained by a
language specification, the metamodel. Furthermore, due to the
narrow metamodel’s scope, the models can be read, checked,
validated, and interpreted to generate specific implementations.
Regarding representations, DSM can be expressed in graphical,
textual, or mixed notation according to the domain context. It
is possible to embed multiple views or aspects (for example,
analytics, software components, and deployment) using different
representations that share elements or mappings.

An architecture description language enables architects to ex-
press high-level system structure by describing its coarse-grained
components and connections among them. These descriptions
are contained in architectural views to address different concerns,
and these views are built based on collection of patterns, tem-
plates, and conventions called Viewpoints (Rozanski and Woods,
2005). The architectural design is driven by quality scenarios
and primary functional requirements through a systematic design
method, such as the Attribute-Driven Design method (ADD, Cer-
vantes and Kazman, 2016). ADD starts identifying inputs: QS,
functional requirements, and constraints. In each ADD iteration,
a design goal is defined from these inputs, and the selection of
architectural structures, tactics, patterns, and their application
described across views, aims at achieving such goal. A pattern is
a standard, known and reusable solution to a common problem
in software architecture. Tactics are design primitives to achieve
a response for particular quality attributes. Previous studies have
collected both patterns (Erl et al., 2016; Marz and Warren, 2015)
and tactics (Gorton and Klein, 2014; Ullah and Babar, 2019) to be
applied in the BDA domain.

2.2. Big data analytics

In BDA context, data processing models aim at specific appli-
cation requirements: batch to process large stored datasets all
at once with high performance, and stream processing for an
unbounded data flow in (near) real-time. Due to the complexity
of deploying and operating BDA solutions integrating a myr-
iad of technologies, complex analytics models, and distributed
infrastructure, some research has been done to tackle such com-
plexity by raising the level of abstraction (Gribaudo et al., 2017;
Guerriero et al., 2016; Huang et al., 2015).

Due to the wide range of BDA technologies, portability plays
a key role to deploy, operate, and evolve BDA applications, and
this is where portable standards appear such as Predictive Model
Markup Language (PMML)1 or Portable Format for Analytics
(PFA).2 PMML is the de facto standard proposed by the Data Min-
ing Group that enables portability of analytics models through
neutral-technology XML format. PMML allows specifying a set of
machine learning models and data transformations along with
their metadata.

2.3. DevOps and IaC

According to Bass et al. (2015), DevOps is a set of prac-
tices aims to reduce the time from software development to
production environment, ensuring high quality. DevOps includes
activities as deploy, operate, and monitor applications, with the
goals of improve deployment frequency and speed up the time

1 http://dmg.org/pmml/v4-3/GeneralStructure.html
2 http://dmg.org/pfa/

http://dmg.org/pmml/v4-3/GeneralStructure.html
http://dmg.org/pfa/
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o market what is aligned to our proposal’s objectives. Infras-
ructure as Code (IaC) arises from the necessity to handle the
nfrastructure setup, evolution, and monitoring in an automated
nd replicable way through executable specifications. IaC pro-
otes the reduction of cost, time, and risk of IT infrastructure
rovision by offering languages and tools which allow to spec-
fy concrete environments (bare-metal servers, virtual machines,
perative systems, middleware, and configuration resources) and
llocate them automatically. In this context, technologies such as
ubernetes,3 an open source for automating deployment, scaling,
nd management of container clusters which offers to decouple
pplication containers from the infrastructure details.

. Related work

Several works have proposed frameworks to build and deploy
DA applications. We review and compare some of the most
elevant works, that comprise building blocks to construct and
eploy BDA pipelines. Indeed, some works have tackled DSM to
escribe functional and deployment viewpoints involving DevOps
ractices. We summarize and compare the related work reviewed
n Table 1, addressing the identified problem and our vision of
sing separation of concerns (SoC), domain-specific modeling and
evOps to deal with the deployment gap.
Table 1 details in each column some features we identify

n the related work as follows. SoC is a key design principle
or us, since the knowledge domains involved in BDA (business,
nalytics, and IT) have to be tackled from different perspectives
i.e. viewpoints). In terms of analytics domain, cross-industry
CI), and technology-neutral models (TNM) promote applicability,
nd BDA portability respectively. Regarding software architecture
oncepts, QS specification (QSS), functional (FV ), and deployment
DV ) views allow us to describe orthogonal concerns such as
uality scenarios, components-and-connector, and deployment
odels. Architectural tactics (AT ) are design decisions that in-

luence the control of a QS response. A target-technology as-
ignment (TTA) complements DSM approaches by supporting a
redefined technologies set (P) or extensible code generators (C).
inally, considering the DevOps practices, deployment specifica-
ion column (DS) defines if only a number of instances (I) per
omponent or a whole deployment diagram (D) can be described.
dditional practices that facilitate the deployment and opera-
ion processes are considered: continuous deployment (CD), QS
onitoring (QSM), and self-adaptation (SA).
Some works have presented DSM to model analytics functions,

owever, they do not tackle architecture concepts and deploy-
ent considerations because they are only focused on functional
efinitions. Lechevalier et al. (2015) introduce a DSM framework
or predictive analytics of manufacturing data using artificial neu-
al networks to generate analytics models. Sujeeth et al. (2011)
ptiML, a DSL for machine learning which describes analytics
unctions using a statistical model which cover a subset of ML al-
orithms, this analytics functions are analyzed and optimized be-
ore the code generation. CloverDX (0000) is a commercial tool to
esign data transformations and analytics workflows in a visual
ay integrating external APIs, and including parallel processing

n multiple nodes. CloverDX’s functional view includes readers,
rocessors, and writers for a predefined set of technologies, but
eployment view is not available and distributed processing must
e defined with specific parallel nodes in the functional view,
hich prevents to use the same functional definition in different
eployment strategies. Finally, technology-neutral models, per-
ormance scenario specifications, and architectural tactics are not
upported.

3 https://kubernetes.io/
3

In contrast, we found another group of studies interested in
infrastructure concerns of BDA applications leaving aside their
functional components. Gribaudo et al. (2017) propose a mod-
eling framework based on graph-based language to evaluate the
system’s performance of running applications which follow the
lambda architecture pattern. This modeling framework allows
users to define stream, batch, storage, and computation nodes
along with performance indices to be simulated and evaluated,
but neither functional BDA application nor real infrastructure
provision are provided as a result. Huang et al. (2015) introduce a
model to design, deploy, and configure Hadoop clusters through
architecture metamodel and rules, which describe BDA infras-
tructure and deploy automation. Their work is focused on design,
deployment, and evaluation of BDA technology infrastructures.
However, it leaves out functional analytics models to get an
integrated BDA solution.

QualiMaster (Alrifai et al., 2014) focuses on the processing of
online data streams for real-time applications such as the risk
analysis of financial markets regarding metrics of time behavior
and resource utilization. The aim of QualiMaster is to maximize
the throughput of a given processing pipeline. Similarly, our
proposal generates software for BDA applications, but taking as
input the analytics specification of a predictive model, and the
performance metrics to be achieved. Unlike Qualimaster, our
proposal is technology-neutral and cross-industry which enables
a more widespread application.

Fastscore (Open Data Group) is a commercial framework to de-
sign and deploy analytics models. Analytics components are con-
ventionally developed using a determined programming language
or using a PMML file, and once imported to the platform, they
can be connected to data inputs and outputs. Quality scenarios
cannot be specified, but performance metrics can be visualized.
Deployment is realized through engines (containers) where mod-
els are executed, and the deployment design is limited to engine
replication factor to increase the concurrency of analytics models.

SpringXD (Anandan et al., 2015) is a unified, distributed, and
extensible system for data ingestion, analytics, processing, and
export to simplify BDA development and deployment. In
SpringXD, modules are data processing units of one of three
types: source, processor, or sink, and they can be connected using
messaging abstractions called message bus to build BDA pipelines.
Modules run over a cluster of containers which can be replicated
to a fixed number and monitored to observe performance be-
havior, although these metrics are not application-oriented, but
infrastructure-oriented (e.g. CPU and memory use). Similar to
our approach, analytics processor can be defined through PMML
models, but target technologies are limited to a set of predefined
options.

DICE project in Guerriero et al. (2016) and Artac et al. (2018)
presents a DSM offering big data design which comprises data,
computation, technology-frameworks, and deployment concepts
to design and deploy data-intensive applications. DICE proposes a
model-driven engineering approach to develop application mod-
els which are automatically transformed into IaC. In addition,
DICE includes quality of service requirements associated to el-
ements within the application, which are analogous to QS. Perez-
Palacin et al. (2019) presented a profile to enable performance
and reliability assessment. DICE supports configuration man-
agement, service provisioning, and application deployment, but
technology-neutral models and architectural tactics are not con-
sidered which could hinder portability and design decision trac-
ing. Due to its focus, DICE requires design at very detailed level,
specifying different constructs regarding target technologies, but
in our proposal, the technology-specific generators transform
functional and deployment artifacts to code.

To summarize, the related work approaches reviewed tackle
the BDA applications design, but they are not concern about

https://kubernetes.io/
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elated work.

Work SoC Business (Analytics) Software architecture DevOps

CI TNM QSS FV DV AT TTA DS CD QSM SA

Lechevalier et al. (2015) ✓ ✓ ✓
Gribaudo et al. (2017), Huang et al. (2015) ✓ ✓ D ✓
CloverDX (0000) ✓ ✓ I ✓ ✓
OptiML (Sujeeth et al., 2011) ✓ ✓ ✓ C ✓
Qualimaster (Alrifai et al., 2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FastScore (Open Data Group) ✓ ✓ ✓ ✓ C I ✓ ✓
SpringXD (Anandan et al., 2015) ✓ ✓ ✓ ✓ P I ✓ ✓ ✓
DICE (Guerriero et al., 2016; Artac et al., 2018; Perez-Palacin et al., 2019) ✓ ✓ ✓ ✓ ✓ C D ✓ ✓ ✓

ACCORDANT ✓ ✓ ✓ ✓ ✓ ✓ ✓ C D ✓ ✓
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deployment architectural decisions. Specifically, only four pro-
posals follow the SoC principle (Alrifai et al., 2014; Open Data
Group; Anandan et al., 2015; Guerriero et al., 2016), and among
them, only Qualimaster and DICE (Guerriero et al., 2016) offer a
deployment viewpoint. From the architecture perspective, tactics
and QS specifications are scarcely ever considered. Based on these
findings, we argue that our proposal aims to bridge such gaps.

4. ACCORDANT: A DevOps and domain-specific model approach

This proposal aims at offering a high-level approach to de-
ign BDA solutions starting from architectural artifacts, instead
f source code. Specifically, we propose ACCORDANT (An ex-
Cutable arChitecture mOdel foR big Data ANalyTics) to deal
ith functional, infrastructure and QS requirements. Our proposal
omprises: a design and deployment process, and a DSM frame-
ork to support such process. This paper extends metamodel
roposed in Castellanos et al. (2018) by aligning ACCORDANT
rocess to ADD, and including architectural inputs, containeriza-
ion and serverless deployments in DV. Fig. 1 depicts the AC-
ORDANT’s process, which adapts and integrates an architecture
esign method (ADD) and analytics methodologies.
The steps performed using ACCORDANT modeling framework

re framed in solid lines, while the steps made with external
ools are represented by dotted lines. ACCORDANT process is
terative and, it is composed of seven steps: the business user
efines (1.1) business goals and (1.2) QS which will guide the next
teps. (2) The data scientist develops data transformations, build
nd evaluates analytics models. The resulting analytics models
re exported as PMML files. (3) Architect design the software
rchitecture using ACCORDANT Metamodel in terms of Functional
iewpoint (FV) and Deployment Viewpoint (DV). FV model makes
se of PMML models to specify the software behavior. (4) FV and
V models are interweaved to obtain an integrated model. (5)
ode generation of software and infrastructure is performed from
ntegrated models. (6) The code generated in the previous step
s executed to provision infrastructure and install the software.
7) QS are monitored in operation to be validated, and design
djustments can be made to achieve QS, if necessary.

.1. Architectural inputs

According to architecture design methods such as Attribute-
riven Design (ADD) (Wojcik et al., 2006), architecture design
s driven by predefined quality scenarios (QS) which must be
chieved through design decisions compiled in well-known cat-
logs of architectural patterns and tactics. Both QS and tactics
re inputs of the architecture design, therefore we include these
nitial building blocks in the ACCORDANT metamodel along with
ther concepts defined in ADD. Fig. 2 details the main input
uilding blocks grouped by the architectural input package (In-
utPackage) which contains the elements required to start the
rchitectural design: Quality Scenario (QScenario), Analyzed QS
4

(AnalyzedQS), SentivityPoint and Tactic. A QScenario determines a
quality attribute requirement (i.e. latency, availability, scalability,
etc.) for a specific Artifact. Thus, for instance, a QScenario could
be defined as ‘‘latency <= 3 seconds for an artifact X ’’, where
rtifact X corresponds to a software component or connector. A
S is analyzed through a AnalyzedQS, and sensitivity points. A
ensitivityPoint is a property of a decision (a set of elements and
heir relationships within an architectural view) that is critical
or achieving the QS, and that such decision is the application
f a tactic to a specific application context. Finally, Tactic ele-
ents synthesize BDA tactics found in Gorton and Klein (2014)
nd Ullah and Babar (2019) to be applied in an architecture
nstance, e.g.: dynamic resource allocation, health monitoring,
arallel processing, feature selection, etc.
Once QScenarios, AnalyzedQS, and SensitivityPoints are defined

n the step 1.2 of ACCORDANT process, the software architecture
s designed in step 3 and expressed on the views instantiating
actics in a concrete application. These decisions are associated
ia SensitivityPoints, and they will be evaluated against the initial
S to validated whether the architecture is achieving its goal.

.2. Functional viewpoint (FV)

FV allows us to design analytics pipelines in terms of in-
estion, preparation, analysis, and exporting building blocks. FV
pecifies functional requirements of the analytics solution, and
he constructs are described in a technology-neutral way as de-
ailed in the metamodel depicted in Fig. 3. FV is expressed in
component-connector structure. Sensitivity points, from archi-
ectural inputs, can be associated to components and connectors
o represent where architectural decisions have impact regard-
ng the QS. Component metaclasses are specialized in Ingestors,
ransformers, Estimators, and Sinks. Estimators and Transformers

are the software component realizations of PMML data model and
data transformer respectively, and the PMML file defines their
behavior. A Component exposes required and provided Port.

Connectors metaclasses transfer data or control flow among
components through an input or output Roles. A set of connector
types are defined based on the connector’s classification proposed
by Taylor et al. (2010): Procedure Call, Event, Stream, Adaptor,
Distributor, and Arbitrator. A Procedure Call connector models the
flow control and communication through invocations. Similarly,
an Event connector affects the control flow and provides data
transfer, but it is subject to the occurrence of events to notify all
interested parts. A Stream connector is used to perform transfer
of large amounts of data that is continuously generated. Adaptors
enable interaction between components that have not designed
to interoperate providing conversion features. Distributor con-
nectors identify interaction paths and communication routing.
An Arbitrator streamlines system operation and resolves conflicts
thus offering intermediary services.
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Fig. 1. ACCORDANT process overview.

Fig. 2. Excerpt of architecture inputs metamodel.

Fig. 3. Excerpt of functional viewpoint of ACCORDANT metamodel.
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Fig. 4. Excerpt of deployment viewpoint metamodel.
4.3. Deployment viewpoint (DV)

The Deployment viewpoint integrates DevOps practices in-
cluding containerization, IaC, and serverless computing. The DV
specifies how software artifacts (components and connectors) are
deployed on a set of computation nodes. The main metaclasses
are detailed in Fig. 4. DV metamodel comprises Pod, ExposedPort,
and Deployment metaclasses to operationalize BDA applications
in a specific technology. It is noteworthy that a FV model can be
deployed in different DV models either to use a different strategy,
or to test the fulfillment of predefined QScenarios.

DV contains Devices, Services, Deployments, serverless envi-
ronments (ServerlessEnv), and Artifacts. Sensitivity points can be
assigned to Deployments and Artifacts to map critical architec-
tural decisions in the DV. A Device is a worker machine (physical
or virtual) on which the Pods are deployed. A Pod is a group of one
or more execution environments (ExecEnvironment) which can
share storage and network. An ExecEnvironment represents a con-
tainer with a Docker image, and specific resources requirements
(CPU, memory). A Deployment specifies the desired state for a
Pod’s group and its deployment strategy, including the number of
replicas. Services and ExposedPorts define the policies, addresses,
ports, and protocols by which to access to Pods from outside
the cluster network. A ServerlessEnv element describes a com-
puting environment in which a cloud provider runs the server,
and dynamically manages the allocation of machine resources, as
opposition to ExecEnvironment where physical resources have to
be defined and managed. Artifacts correspond to executable or de-
ployable representations of functional elements (i.e. components
and connectors from functional view) which can be deployed on
either execution or serverless environments.

Once PMML, FV and DV models are designed and integrated,
code generation takes place by means of model-to-text transfor-
mations. Code generation is twofold: software and infrastructure
(IaC) code. On the software side, each component and connector
is assigned to a specific technology regarding its constraints spec-
ified in the model (processing model, ML algorithm, delivery type,
sync type, etc.). Such assignment enables us to generate code
for target technology restricted to these constraints. For instance,
near real-time analytics requires stream or micro-batch process-
ing offered by Apache Storm or Spark respectively, and Event
connectors such as Apache Kafka or RabbitMQ. Regarding the
6

QS monitoring, code generators include specific machinery to log
metrics at an application level. It allows us to collect specific-QS
from a high-level abstraction, saving the cost of adding code for
logging metrics for each application and target technology. On the
IaC side, DV model is transformed into Kubernetes’ configuration
files (in YAML format) used to create and configure infrastructure
over Kubernetes cluster. Kubernetes files contain Nodes, Pods,
Deployments, and Services which are executed through Kubectl.

In the last step, the performance metrics of the BDA applica-
tion are gathered to be compared to initial QS and evaluate the
fulfillment of quality requirements. In this step, the architect has
to check the outputs, and to make decisions in the architectural
views, if QS is not achieved. This process can take several itera-
tions, and this is the whole cycle that we expect to accelerate and
using ACCORDANT.

5. Evaluation with four BDA use cases

Our experimentation aims to compare development and de-
ployment time for each iteration using ACCORDANT and other
two frameworks reviewed in Section 3: FastScore and SpringXD.
We chose these frameworks because they are the closest to our
approach, and they support portable analytics models (PMML or
PFA). We validated our proposal in different domains through
four use cases: UC1) Transport delay prediction, UC2) Near mid-
air collision detection, UC3) Near mid-air collision risk analysis,
and UC4) El Nino/Southern Oscillation cycles. Table 2 summarizes
the use cases, domains, processing models, and quality attributes.
These use cases are applied to analytics models, they also illus-
trate BDA facets as streaming and micro-batch to deal with the
velocity aspect, and batch processing is focused on volume, in
terms of data size and computation complexity. Fig. 5 details
the component-connector model for each use case to illustrate
the functional building blocks, and their composition as BDA
pipelines. The ACCORDANT specification of these use cases is pub-
licly available,4 and the use cases description will be presented
below.

4 http://github.com/kmilo-castellanos/accordant-usecases

http://github.com/kmilo-castellanos/accordant-usecases
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Table 2
Use Cases.
Use case Description Domain Analytics

model
Processing
model

QS metric

UC1 Transport delay
prediction

Transportation Regression tree Stream Update time,
latency

UC2 NMAC risk
analysis

Avionics K-means Batch Deadline

UC3 NMAC detection Avionics Decision tree Micro-batch Latency
UC4 El Nino/Southern

oscillation
Weather Polynomial

regression
Batch Deadline
Fig. 5. Component diagrams of Use Cases.
q
h
i
o
J

.1. Use case 1 (UC1)

The first use case was presented in Castellanos et al. (2018),
nd it deals with delay prediction of public transportation in
ancouver. Bus trips data is collected in real-time from Vancouver
ransport Operator, and it contains bus stops, routes, and time.
regression tree model to predict bus delays (in seconds) is

uilt, evaluated, and exported to PMML. The pipeline, described
n Fig. 5a, starts with an ingestor component which receives
TTP request and put it into an event connector (message bro-
er), then the request message is consumed by the estimator
o predict the delay time, and queue it, to be stored into a No-
QL database (hierarchical). The PMML model is deployed into
roductive environment as a delay predictor service, using Open-
coring, and Kafka message broker, and MongoDB writer as target
echnologies. The QS were defined in terms of performance and
odifiability attributes. The QS specifies that users make 1000

equests to delay prediction service under operations without
7

load, and the responses must have an average latency lower than
2 s. Second QS states that when data scientist produces a new
version of the predictive model (new PMML file), it must be
updated at runtime within 10 s.

5.2. Use case 2 (UC2)

UC2 was applied in aviation safety to detect near mid-air
collisions (NMAC) on different air space ranges with different de-
ployment models while performance QS are monitored. This use
case is described in Fig. 5(b), and it was presented in Castellanos
et al. (2019). NMAC detection comprises a pairwise comparison of
flights: C2

n ), where n is the number of flights. Each comparison re-
uires to calculate distance and time based on location, speed and
eading to determine the risk level of NMAC, which implies an
ntensive computation of quadratic time complexity. Eight-hours
f data were stored in a distributed file system to be loaded by
SON reader component. This ingestor calls NMAC detector which
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omputes the alert level. Once an alerting level is calculated for
ach flight pair, the results are sent to the clustering estimator
o be associated with a specific cluster. NMACs are stored back
n the file system. To compare different data size magnitudes,
e collected flight data for three air space ranges in nautical
iles (nmi): 2 nmi, 20 nmi, 200 nmi, and 1500 nmi around John
. Kennedy Airport. These ranges represent different application
copes to attend various demand levels: local, metropolitan, and
egional areas. The largest dataset (1500 nmi) is 1.4 GB of JSON
iles. This use case did not have real-time requirements due to
ts heavy workload nature, and therefore a performance QS for
eadlines lower than one hour was defined.

.3. Use case 3 (UC3)

UC3 is a real-time application to detect NMAC within an air
pace range, and its architecture is described in Fig. 5(c). The
ngestor component consumed data through direct REST service.
light data was pushed in a message queue to be consumed by
he NMAC detector component which performed the potential
ollision detection to be finally stored in a relational DB through a
essage broker connector. It is worth mentioning that the NMAC
stimator of UC2 and UC3 are the same, since its inputs, out-
uts, and behavior are identical, so we can reuse such functional
omponent definition, in spite of its deployment can be different
egarding the QS constraints. Given the near real-time nature of
his application, latency is the critical quality attribute, and we
valuated this metric in two ranges of air space around John F.
ennedy Airport: 2 nmi and 200 nmi, which demand different
omputation resources.

.4. Use case 4 (UC4)

In this last use case, we used a public available data and PMML
odel (polynomial regression) of El Nino/Southern Oscillation

ENSO)5 to implement a batch oriented pipeline, see Fig. 5d.
The El Nino/Southern Oscillation (ENSO) cycle, was the strongest
of the century which produced many problems throughout the
world affecting South and North America countries with de-
structive flooding in some areas and strong drought in other
areas. Data for this use case contains oceanographic and surface
meteorological readings (geolocation, humidity, surface winds,
sea surface temperatures, and subsurface temperatures) are taken
from a series of buoys positioned throughout the equatorial Pa-
cific. This data is expected to help with the understanding and
prediction of ENSO cycles. We read the historic data from 1980 to
1998 (178,080 records) using a CSV reader (ingestor) component,
which sends the data to the ENSO predictor component. ENSO
predictor is a estimator component that forecasts air tempera-
ture, and stores the prediction in a distributed file system. The QS
defined for UC4 was a deadline for batch processing lower than
30 min.

5.5. Development, deployment time, and gain factor

To compare ACCORDANT, SpringXD, and FastScore, we mea-
ured the time invested in development and deployment phases
or each use case. Development phase involves design and de-
elopment of the functional components and connectors in a
pecific technology. Deployment phase comprises the design and
rovisioning of the technology infrastructure, the installation of
oftware artifacts developed in the previous phase, and the mon-
toring of the solution regarding the predefined QS. These phases

5 http://dmg.org/pmml/pmml_examples
8

are performed iteratively, since in each iteration some improve-
ments and refinements are done until the QS are achieved. There-
fore, we measure the time invested in each iteration, and also
we calculate the gain factor GF (uc, f ), as a metric to estimate the
cumulative average of time reduction ratio for a use case uc, using
framework f over I iterations. GF (uc, f ) is defined as follows:

GF (uc, f ) =
1
I

I∑
i=1

time_spent(uc, f )i − time_spent(uc, f )i+1

time_spent(uc, f )i
(1)

We define the gain factor as a form to measure the incremen-
tal improving of using a high level abstractions to modify or refine
an application until achieve an expected QS. The time for each use
case, phase, and iteration was collected from two development
teams which learnt and used the three frameworks to develop
and deploy two use cases each one, while they were recording
the time spent. The development and deployment process using
ACCORDANT will be illustrated with UC4 in the next Section.

6. Experimentation

To design, develop, and deploy the four use cases, we followed
ACCORDANT process detailed previously in Fig. 1. For the sake
of brevity, this section details the step-by-step implementation
of UC4 as an example, more details about the other use cases
can be found in Castellanos et al. (2018, 2019). The ACCORDANT
projects are available in a public repository6 as well as use cases
and results.7

6.1. Definition of quality scenarios

QS are defined regarding the use case’s quality requirements.
In UC4, a scheduled job to estimate ENSO cycles for ten years of
data is processed in batch. In this vein, Fig. 6 details architectural
inputs of UC4 expressed using the ACCORDANT’s input package
DSL. The predictor component is required to have a deadline
lower than 1 h in the QS UC4_QS1. Analyzing this QS, a sensitivity
point (UC4_SP1) is identified to achieve the deadline metric by
applying two tactics: introduce concurrency and increase. avail-
able resources. These tactics will be materialized in the software
architecture design.

6.2. Development of data transformations and analytics model

The analytics model is trained and evaluated by the data
scientist outside the ACCORDANT framework, and the resulting
models were exported to PMML file to be loaded in the ACCOR-
DANT functional model. In this case, the polynomial regression
model of ENSO is downloaded and used. Fig. 7 describes the
structure of the PMML, detailing some data fields, mining fields,
and regression coefficients. This PMML file will be embedded in
the functional model in the next step.

6.3. Design of software architecture — Functional view

FV models were designed using ACCORDANT Functional DSL
to specify a component-connector structure for each use case.
Two iterations of functional model were designed for UC4, and
the last iteration is depicted in Fig. 8a. Since architectural in-
puts are required in this design, this package is imported using
the keyword use inputPackage. The functional model specifies
three components: (CSVReader::Ingestor, ENSOPredictor::Estimator,

6 http://github.com/kmilo-castellanos/accordant
7 http://github.com/kmilo-castellanos/accordant-usecases

http://dmg.org/pmml/pmml_examples
http://github.com/kmilo-castellanos/accordant
http://github.com/kmilo-castellanos/accordant-usecases
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Fig. 7. Excerpt of ENSO polynomial regression model of UC4 in PMML format.

nd HDFSWriter::Sink), and two connectors: procedure calls Cal-
Enso::ProcCall and CallExport::ProcCall which connect the compo-
ents through ports. The components also include some proper-
ies such as connections and formats. Additionally, ENSOPredictor
ses batch processing model, it has associated the PMML ‘‘El-
inoPolReg.pmml’’, obtained in the previous step, to provide
he predictive behavior. The sensitivity point UC4_SP1 aligns the
rchitectural input (QS and tactics explained in Section 6.1) to
NSOPredictor. It means that ENSOPredictor becomes part of the
ntroduce concurrency tactic realization that will be translated into
distributed processing model which has to be supported by the
arget technology.

.4. Design of software architecture — Deployment view

The deployment view models were designed using ACCOR-
ANT DSL for each use case defined in the functional models. The
C4 deployment model had three iterations, and Fig. 8b details
he last version. Given that DV is based on input package and
unctional view, they are imported by means of keyword use
inputPackage and functionalView respectively. This view includes
the artifacts that map connectors and components from func-
tional view (e.g. ENSOPredictor) to deployable elements (e.g. EN-
SOArtifact). Devices and deployments were specified to support
9

the computation requirements. For instance, deployments of
Spark master and worker nodes (e.g. SparkWorkerDep) details
he number of replicas, pods, and execution environments (Ex-
cEnv). ExecEnv defines the docker image, CPU and memory
equirements, ports, and commands along with the artifacts to
e deployed (ENSOArtifact). Finally, the sensitivity point UC4_SP1
ssociates the deployment SparkWorkerDep to performance QS,
nd the tactic increase available resources (see Section 6.1) to
upport distributed computing over a Spark cluster.

.5. Integration and code generation

Once the FV and DV models were designed and integrated, the
ode generation produced both the functional code and IaC. On
he one hand, the functional code is a Spark driver program as de-
ailed in Listing 1, where ENSOPredictor component implements
he PMML model in Spark technology. The Spark program defines
ata input and output from the Data Dictionary and Mining
chema embedded in PMML specifications. On the other hand,
nfrastructure code is the configuration files which specify the
rovision and configuration policies of Kubernetes cluster. Listing
shows an example of generated Kubernetes files. The whole

ode of use cases is publicly available in the accordant-usecases
epository.

Listing 1: Generated Java Code of EnsoEstimator Component for
Spark Streaming

SparkSession sparkSession = new SparkSession ( sc . sc ( ) ) ;
InputStream pmmlFile = new URL( " f i l e : / / / / path / ElNinoPolReg .pmml" )
EvaluatorBui lder b = new LoadingModelEvaluatorBuilder ( ) . load ( pmmlFile ) ;
Evaluator eval = bui lder . build ( ) ;
TransformerBuilder pmmlTransformerBuilder =
ew TransformerBuilder ( evaluator )

. withTargetCols ( ) . exploded ( true ) ;
L i s t < StructF ie ld > f i e l d s = new ArrayList <StructF ie ld > ( ) ;
f i e l d s . add(DataTypes . c rea teS t ruc tF ie ld ( " l a t i tude " , DataTypes . DoubleType , true ) ) ;
. . .
f i e l d s . add(DataTypes . c rea teS t ruc tF ie ld ( " s_s_temp" , DataTypes . DoubleType , true ) ) ;
StructType schema = DataTypes . createStructType ( f i e l d s ) ;
Transformer pmmlTransformer = pmmlTransformerBuilder . build ( ) ;
Dataset <Row> inputDs = sparkSession . read ( ) . schema(schema ) . csv ( " data / Elnino . csv " ) ;
TransformerBuilder tb = new TransformerBuilder ( eval ) ;
Transformer transformer = tb . build ( ) ;
Dataset <Row> resultDs = transformer . transform ( inputDs ) ;
resultDs . write ( ) . option ( "header " , " true " ) . csv ( " / enso output / " ) ;
. . .
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Fig. 8. Excerpt of functional (a) and deployment (b) models of UC4 using ACCORDANT DSLs.
Listing 2: Generated YAML Code from Deployment Specification
for Kubernetes (Extract)

apiVersion : apps / v1
kind : Deployment
metadata :

name: SparkWorkerDep
spec :

rep l i cas : 3
spec :

containers :
name: SparkWEnv
image : ramhiser / spark :2 . 0 . 1
command: [ / spark worker ]
ports :

containerPort : 8081
resources :

requests :
cpu : 0.3

. . .

.6. Code execution

Kubernetes code was executed on the AWS cloud using Ama-
on Elastic Container Service for Kubernetes (Amazon EKS) and
lastic Compute Cloud (EC2). After that, the software code was
nstalled over the cluster to operationalize the end-to-end solu-
ion.

.7. Solution monitoring

Performance metrics for each use case in operation were col-
ected and validated against QS defined in Section 6.1. As a result,
ifferent deployment configurations were designed, deployed,
nd monitored in each iteration to observe the fulfillment of QS.

. Results and discussion

Revisiting the related work reviewed in Section 3, we have
hown in practice how ACCORDANT bridge the gap among ana-
ytics, software architecture, and DevOps. As presented in Table 1,
CCORDANT follows the SoC principle by means of three differ-
nt languages to specify domain concerns. Analytics models in
CCORDANT are cross-industry and technology-neutral. In terms
f software architecture, ACCORDANT supports QS specifications
ligned to FV and DV, and these models can be specified inde-
endently but in an integrated way. Architectural tactics enable
oftware architects to describe and communicate their decisions.
10
Code generators offer flexibility and impact positively the devel-
opment and deployment efficiency. Respecting DevOps practice,
deployment models allow us to design deployment diagrams,
not limited to a number of instances. Continuous deployment
is supported via IaC and code generation, and QS-monitoring is
implemented by injecting logging code in the generated applica-
tions. Finally, self-adaptation is not covered in the current version
of ACCORDANT.

To summarize, though a large variety of component-connector
metamodels have been previously proposed, as far as we know,
our contribution resides in specialize a component-connector
metamodel in the BDA domain, and integrate it with architectural
inputs and deployment models to offer a holistic design. Addi-
tionally, this section presents and discusses the experimental re-
sults obtained during the iterative development and deployment
phases of UC1, UC2, UC3, and UC4.

7.1. Development and deployment time

Fig. 9 depicts the development and deployment time (in hours)
accumulated for all iterations per use case. It is worth noting
that development time using ACCORDANT is higher (between 23%
and 47%) compared to SpringXD and Fastscore, but the deploy-
ment time is significantly lower (between 50% and 81%) using
ACCORDANT. The higher development time can be explained by
the time required in ACCORDANT to specify architectural inputs,
and many details in the FV. In addition, the current version of
the ACCORDANT prototype generates functional code for esti-
mators, but ingestor, sinks, and connectors still require manual.
Although ACCORDANT required more effort in the development
phase, this effort is rewarded during the deployment phase,
where infrastructure and QS-monitoring are provided automat-
ically aligned to Inputs and FV, unlike other approaches. This
benefit can be observed on the deployment time across all use
cases using ACCORDANT, because they are more similar than the
other approaches.

The biggest time differences arise from UC2 that demands
more time because it includes a more complex pipeline involving
two estimators: NMAC detector and K-means clustering. Another
interesting finding was that the high-level reuse of previous
architectural decisions (tactics) reduced the time of development
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Fig. 9. Development and deployment time for use case.
Fig. 10. Gain factor for use case.
s shown the marked decreasing between use cases, and the
rowing gain factor among iterations detailed in Fig. 9. These
esults suggest that ACCORDANT is most suitable for application
nvolving multiple iterations, or in subsequent applications where
eusing architectural decisions, models, and metrics can reduce
evelopment times.

.2. Gain factor comparison

The gain factor metric presented in Eq. (1) in Section 5.5
as calculated for each use case and iteration of development
nd deployment phases as depicted in Fig. 10. ACCORDANT’s
ain factor was higher for all use cases, in the development
hase (Fig. 10a), what suggests that the high-level abstractions
romote the highest reduction of development time among con-
ecutive iterations. The highest gain factor was 0.46 in the UC3,
t means reducing in 46% the development time between con-
ecutive iterations. The greatest gain factor difference over the
ther approaches was 0.13 in the UC3. Regarding the deployment
ain factor (Fig. 10b), ACCORDANT also exhibited the highest
ain factor, on an even higher proportion, up to 0.75 in UC4.
his means each deployment iteration reduces the time in 75%
ompared to the previous one. Similar to the deployment time
n the previous section, we argue that the gain factor in the
eployment phase is greater because of the IaC generation is not
resent in the other approaches.

. Conclusions

We have presented a DevOps and DSM proposal to design, de-
loy, and monitor BDA solutions. We have positioned the ACCOR-
ANT contributions within the related work. Four use cases from
ifferent domains were used to evaluate our approach against
wo BDA frameworks. As a result, ACCORDANT has shown to
acilitate and accelerate iterative development and deployment
hases by offering an integrated and high-level design BDA appli-
ations. The greatest time reduction was reported in the deploy-
ent phase, achieving up to 81% compared to other approaches.
11
In contrast, the development times offered by ACCORDANT were
greater. Despite the longer development time, deployment time
is significantly reduced thanks to the QS, FV, and DV alignment.
ACCORDANT’s gain factor was higher, which implies a higher
reduction time in each iteration.

In contrast, some limitations have emerged from experimenta-
tion. The development phase is slower than the other approaches
for multiple reasons. The current version of the ACCORDANT’s
prototype requires supplementary manual coding what increases
the development time. ACCORDANT also requires more design
details and architectural inputs. These additional definitions are
rewarded in consecutive iterations, so ACCORDANT is most suit-
able for application involving multiple iterations. Finally, our
approach takes advantage of reusing architectural decisions and
models, hence, first-time or one-time applications may not be
benefited from our proposal.

As future work, the performance metrics collected along with
FV and DV models could allow us to propose a performance
model to predict the expected application-specific behavior based
on the functional model, deployment model, and target tech-
nology to recommend optimal architecture configuration for a
defined QS. Furthermore, we could include features to simulate
and verify correctness properties over the models such as tech-
nology selection in the FV model and resource allocation in the
DVmodel. Given that PMML provides a model verification schema
to validate results accuracy, a future extension could incorporate
automated model verification. This approach has been used for
deploying analytics components and connectors on virtual ma-
chines over cloud infrastructure, but different paradigms such as
serverless or fog computing may open new research lines.
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bbreviations.
ADD Attribute driven design method
ADS-B Automatic dependent surveillance—broadcast
BDA Big data analytics
DSL Domain-specific language
DSM Domain-specific model
DV Deployment view
ENSO El Nino/Southern oscillation
FV Functional view
IaC Infrastructure as code
NMAC Near mid-air collision
PFA Portable format for analytics
PMML Predictive model markup language
QS Quality scenario
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