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ABSTRACT 
Recent trends in artificial intelligence and machine learning (AI/ML), dynamic data driven application systems 
(DDDAS), and cloud computing provide opportunities for enhancing multidomain systems performance.  The DDDAS 
framework utilizes models, measurements, and computation to enhance real-time sensing, performance, and analysis. 
One example the represents a multi-domain scenario is “fly-by-feel” avionics systems that can support autonomous 
operations. A "fly-by-feel" system measures the aerodynamic forces (wind, pressure, temperature) for physics-based 
adaptive flight control to increase maneuverability, safety and fuel efficiency. This paper presents a multidomain 
approach that identifies safe flight operation platform position needs from which models, data, and information are 
invoked for effective multidomain control.  Concepts are presented to demonstrate the DDDAS approach for enhanced 
multi-domain coordination bringing together modeling (data at rest), control (data in motion) and command (data in 
use).  
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1. INTRODUCTION 
Data science has become a recent trend in engineering, business, and medical applications, among others. Data science is 
integral to the advancements in artificial intelligence (AI), machine learning (ML), as well as information fusion [1]. 
Such developments in information fusion have moved from surveillance applications from video and text analytics [2], 
towards that of the internet of things (IoT) [3, 4], multidomain applications [5], and battle management [6]. Multidomain 
applications likewise follow from various approaches to layered sensing [7, 8], where each layer represents data and 
information from different domains of space, air, ground, and sea as shown in Figure 1.  Methods for combining sensing 
include: data (1960’s), sensor (1980’s), information (1990’s), and multi-intelligence (2010’s) information fusion; widely 
adopted from the Data Fusion Information Group (DFIG) process model [9, 10], as shown in Figure 2. 

             
                                   Figure 1 – Layered Sensing       Figure 2 – Data Fusion Information Group model. 



 
 

 
 

 

To enable the multidomain operations, examples include (1) space: satellite health monitoring and communication [11], 
(2) air: avionics control [12]; (3) ground: sensor fusion assessment [13], (4) sea: maritime awareness [14], (5) 
underwater: submarine navigation [15], and (5) cyber security [16]. Information management and data visualization help 
provide command and control [17]. With the plethora of information available, the big data elements: volume, velocity, 
variety, veracity, and value need consideration [18]. Hence, multidomain requires (1) command and control (e.g., 
tracking), (2) cyber security (e.g., health monitoring), (3) connectivity and dissemination (e.g., communications), and (4) 
processing and exploitation (e.g., remote sensing) to support various users [19] over contested environments [20] using 
context [21].  DDDAS can support multidomain applications through: (1) instrumentation methods, (2) real-world 
applications, (3) modeling and simulation, and (4) systems software [22, 23], as shown in Figure 3. 
 

 
Figure 3 – Primary DDDAS components. 

 

DDDAS developments in deep manifold learning [24], nonlinear tracking [25, 26], and information fusion [27, 28, 29]; 
show promise for advanced avionics assessments. For multidomain operations, there is a need for information 
management, feature sensing, and data analytics.  Information management includes the types of data and signals being 
routed in the network for coordinated control and sensing. Key elements of information management include ontologies, 
data base access, and graphical networks [30]. Feature sensing results from images (e.g., multispectral imaging [31]) 
text, and actuators. Data analytics for multidomain includes space, air, and ground, but also responses to threats such as 
signals jamming, spoofing, and contamination. 

Together, the large data needs to be visualized over the entire data space. The concept of a user-defined operating picture 
(UDOP) allows support operators to interact with the data for effective and efficient operations. Effective human 
interaction with the visualization supports coverage analysis, command, and control. An essential element is complexity 
management of the data volume, variety, velocity, value, and veracity [32] which support space-air-ground big data [33].    

The paper is as follows. Section 2 highlights methods of DDDAS.  Section 3 discusses multidomain results from 
DDDAS methods. Section 4 provides a multidomain concept bringing together space communications, avionics fly-by-
feel, ground visualization, and spectrum management. Section 5 provides conclusions and future directions. 

2. DYNAMIC DATA DRIVEN APPLICATIONS SYSTEMS (DDDAS) 
Consider high winds affecting an avionics platform. A weather environment model of the wind can be constructed from 
space, air and ground sensors, but this has limited predictive value without knowledge of initial conditions, boundary 
conditions, inputs, parameters, and states (such as velocities and accelerations). In order to make predictions, data is 
needed to estimate unknown quantities. Although the wind patterns can be imaged at low resolution by a satellite, 
measurements by ground sensors with higher resolution are expensive and limited in range, and therefore the high-
dimensional elements of the wind makes it impossible to obtain detailed measurements over a large area. 

In a scenario of this type, it may be possible to use the model to guide and reconfigure the sensors so that the information 
content of the data is enhanced for the ultimate objective of predicting the path and intensity of the wind. One example is 
the ProgrammIng Language for spatiO-Temporal data Streaming (PILOTS)1 that uses pitot tubes and other sensors to 

                                                             
1 Available in open-source form at: http://wcl.cs.rpi.edu/pilots/. 



 
 

 
 

 

determine the wind as shown in Figure 4 [34]. At the same time, the data collected by the sensors enhances the accuracy 
of the model by providing estimates of initial conditions, boundary conditions, inputs, parameters, and states. The 
integration of on-line data with the off-line model creates a positive feedback loop, where the model judiciously guides 
the sensor selection, sensor data collection, from which the sensor data improves the accuracy of the model. In the fly-
by-feel DDDAS approach [35], the structures of the aircraft can provide real-time measurements to adjust the flight 
control, which is highlighted in Figure 5. 

        
               Figure 4 – DDDAS Pilots Architecture [34]               Figure 5 – Fly-by-Feel Avionics System [35] 

The wind example illustrates the essence of Dynamic Data-Driven Application Systems (DDDAS). DDDAS is a 
conceptual framework that synergistically combines models and data in order to facilitate the analysis and prediction of 
physical phenomena. In a broader context, DDDAS is a variation of adaptive state estimation that uses a sensor 
reconfiguration loop as shown in Figure 6(a). This loop seeks to reconfigure the sensors in order to enhance the 
information content of the measurements. The sensor reconfiguration is guided by the simulation of the physical process. 
Consequently, the sensor reconfiguration is dynamic, and the overall process is data driven. 

	 	
                         (a)                                                                    (b) 

Figure 6 – Dynamic Data-Driven Application Systems (DDDAS) feedback loop. 
 

The core of DDDAS is the data assimilation loop, which uses sensor data error to drive the physical system simulation 
so that the trajectory of the simulation more closely follows the trajectory of the physical system. The data assimilation 
loop uses input data if input sensors are available. The innovative feature of DDDAS is the additional sensor 
reconfiguration loop, which guides the physical sensors in order to enhance the information content of the collected 
data. The data assimilation and sensor reconfiguration feedback loops are computational rather than physical feedback 
loops. The simulation guides the sensor reconfiguration and the collected data, and in turn, improves the accuracy of the 
physical system simulation. This “meta” positive feedback loop is the essence of DDDAS. 

Key aspects of DDDAS include the algorithmic and statistical methods that incorporate the measurement data with that 
of the high-fidelity modeling and simulation. Figure 6(b) shows that the “data in motion” is the estimation of the sensor 
reconfiguration loop, and “data at rest” is the simulated data; while the “data in use” is the current simulated model data 
necessary to support real-time control. 



 
 

 
 

 

2.1 State Estimation and Data Assimilation  

The goal of state estimation is to combine models with data in order to estimate model states that are not directly 
measured. State estimation is a foundational area of research in systems and control. Relevant techniques date from the 
1960’s in the form of the Kalman filter and the Luenberger observer. An observer is a model that emulates the dynamics 
of a physical system and is driven by sensor data in order to approximate unmeasured states. The Kalman filter is a 
stochastically optimal observer that estimates unmeasured states. In large-scale physics applications, such as applications 
involving structures or fluids, state estimation is called data assimilation. 

The Kalman filter was developed for linear systems. However, most real applications involve nonlinear dynamics, and 
the development of observers and filters for nonlinear systems is a challenging problem that remains largely unsolved. 
Numerous techniques, which can be described as suboptimal, ad hoc, application-based, or approximate, have been 
developed, and many of these methods are widely used. These techniques include the extended Kalman filter (KF) [36],  
ensemble Kalman filter (EKF) [37], ensemble adjustment Kalman filter (EnAKF) [38], information filter [39], unscented 
Kalman filter (UKF) [40, 41], stochastic integration filter (SIF) [42], and particle filters (PF) [43]. 

2.2 DDDAS and Adaptive State Estimation 

State estimation algorithms are based on prior information about the physical system. The information typically includes 
a model of the physical system as well as knowledge of the initial state, inputs (such as disturbances), and sensor noise 
[44]. Likewise, stochastic representation, for example, as a statistical description of the disturbances and sensor noise, is 
one method to process the information. An adaptive state estimation algorithm may attempt to learn and update the 
information, states, and parameters online [45]. 

DDDAS uses adaptation in a different sense. In particular, DDDAS seeks to reconfigure the sensors during operation. 
Sensor reconfiguration, driven by the model, enhances the information content of the measurements. Together, the 
integration of the data assimilation loop and the sensor reconfiguration loop are central to methods using DDDAS. 

2.3 DDDAS for Feedback Control 

DDDAS uses computational feedback, but not physical feedback. As Figure 6 shows, state estimation is a feedback 
process, where the sensor error corrects the simulation of the physical system. The data assimilation feedback loop is 
implemented in computation, and thus has no effect on the physical system. 

DDDAS employs an additional feedback loop by reconfiguring the sensors based on the sensor error data. The sensor 
reconfiguration feedback loop is also computational, and thus does not affect the response of the physical system. In 
contrast, feedback control uses physical inputs (such as forces and moments) in order to affect the behavior of a physical 
system, such as an aircraft autopilot that drives the control surfaces and modifies the aircraft trajectory. Consequently, 
DDDAS employs two computational feedback loops, but does not use only use physical feedback control.  The power of 
DDDAS is to use simulated data from a high-dimensional model to augment measurement systems for systems design to 
leverage statistical methods, simulation, and computation architectures. 

2.4 DDDAS Methods  

The DDDAS framework, as it name implies, has been applied to many applications where modeling and data collection 
are utilized in engineering and scientific analysis. Hence, four attributes of DDDAS include: (1) instrumentation 
methods, (2) real-world applications, (3) modeling and simulation, and (4) systems software. Instrumentation methods 
include multidomain components in real-world situations such as space sensors monitoring the atmosphere; avionics 
sensors detected the air movements, computer vision detecting vehicles on a terrain road network [46], as well as, water 
properties in the ocean. The coordination of high-end with real-time computing requires new hardware and software 
approaches in the fields of optimization, data flow, and architectures to being together modeling and instrumentation 
methods for real world applications. 

The key developments of the integration of the instrumentation, models, and software to enable the development of 
DDDAS include: theory, algorithms, and computation. The theory includes mathematical advances (e.g., retrospective 
cost modeling); while the algorithms support new methods (e.g., ensemble Kalman filter, Particle filter, optimization 
techniques). The computational considerations align with the developments in the continuing networked society such as 
non-convex optimization, data flow architectures, and systems design.  



 
 

 
 

 

3. MULTIDOMAIN DDDAS EXAMPLES 
DDDAS methods include many results for multidomain assessment as shown in Figure 7. From the recent Handbook on 
Dynamic Data Driven Applications Systems [23], multi-domain examples demonstrate techniques to incorporate physics 
models in support of domain specific operations. The three methods of measurement, context, and cyber aware methods 
support a combined systems aware analysis. The measurement aware techniques include air, fluid, and structural 
analysis [47]. The multidomain context aware methods include target tracking, pattern classification, and coordinated 
control as components of information fusion as applied to video tracking [48, 49, 50, 51, 52] and wide area motion 
imagery [53, 54, 55]. To assess the processing, cyber aware methods include security, power, and scene (data) modeling 
of the system. These functions operate over the layered domain operations as DDDAS-based resilient cyber battle 
management services [56, 57, 58]. 

 
Figure 7 – DDDAS methods for multidomain command and control (MDC2). 

4. MULTIDOMAIN EXAMPLE 
The interest in multidomain operations requires the coordination among different platforms in space, air, ground, and 
cyber domains. The space domain provides valuable functions for navigation, communication, and data routing – all 
services for data in motion. Likewise, the modeling capabilities of predicted weather in the different domains can 
support the real time operations from the various data at rest. The intersection of the information is data in use. A unique 
scenario that leverages the many developments in DDDAS is the fly-by-feel concept for future UAVs (or a swarm of 
UAVs).  To enable such a concept, the structural health data from the on-board sensors would need to be combined with 
data from off-line sources as shown in Figure 8. 

The areas to support the techniques include: 

Data at Rest: Provide structure (i.e., translations) between data for integration, analysis, and storage; 

Data in Collect: Leverage the power of modeling from which data is analyzed for information, delivered as 
knowledge, and supports prediction of data needs; 

Data in Transit: Develop a Data as a Service (DaaS) architecture that incorporates contextual information, metadata, 
and information registration to support the systems-of-systems design; 

Data in Motion: Utilize feedback control loops to dynamically adapt to changing priorities, timescales, and mission 
scenarios; and, 

Data in Use: Afford context-based human-machine interactions based on dynamic mission priorities, information 
needs, and resource availability. 

 



 
 

 
 

 

                        
Figure 8 – Multidomain Coordination for Fly-by-Feel Avionics. 

 

4.1 Space Domain  

Space weather detection is important for the continuous satellite operations for space situation awareness [59]. Knowing 
the space weather can help mitigate the effects of threats to satellites supporting tracking, communication, navigation, 
and remote sensing [60, 61]. Current DDDAS efforts focus on the results of weather effecting reliable communications 
[62, 63, 64]. Satellite health monitoring (SHM) includes the power and electronics to control the satellite [65, 66]. 
Secure uplink and downlink services can provide data in use [67, 68].  Examples could be steering and processing the 
raw data before sending the information to the ground and Satellite Communication (SATCOM) Network survivability 
oriented Markov games (NSOMG) to process data on the satellite for effective digital transmission [69].  The space 
domain is critical for multidomain services such as the control and positing of a UAV that provides situation awareness.   
 
4.2 Air Domain 

The air domain includes the coordinated autonomous actions of information fusion and control diffusion (e.g., data in 
collect) such as a network of swarm UAVs [70, 71, 72, 73]. A recent example is fly-by-feel that incorporates active 
sensing for flying [74]. To enable such a concept, various sensors need to be designed [75] to leverage the other domains 
such as that of biological systems [76]. Aeroelastic sensing [77, 78], is evident as a DDDAS method to enhance real time 
management and control. The fly-by-feel techniques incorporate stochastic sensing and filtering as part of the on-line 
structural health of the aircraft that is incorporated with the measurements of position and air fluid flow [79, 80]. 
 
4.3 Ground Domain 

The Android Team Awareness Kit (ATAK) [81] is a situation awareness tools that includes many feature displays for a 
portable device that supports multi-domain operations. While ATAK features the display of various data sources, for 
multidomain operations; it could provide additional information to the user towards the health of the systems for 
command and control [82]. 

                                   
                   (a)  Route Planning tools                          (b) Route Navigation Tools 

Figure 9 – Android Team Awareness Kit (ATAK) visualizations for planning [81]. 
 



 
 

 
 

 

The DDDAS rendering options support the design of a User Defined Operating Picture (UDOP) [83] that can be 
displayed on the ATAK system. The ability to plot tracks, discussions, and labels of objects [84, 85] enhances the 
situation understanding [86, 87].  The display could also provide feedback support to support resource management of 
the sensors onboard [88, 89], and determine the coordinated control and performance of the multidomain sensing system 
[90]. If the UAVs supported multiple imagery sensors, methods for image fusion [91] could be applied, uncertainty 
assessment of the incoming data [92], and methods to broker compression ratios of the data in collect and transit [93].  
With the display of information, future methods could provide active support to spectrum management.  
 
4.4 Spectrum Management 

Along with the satellite health monitoring, recent efforts have focused on dynamic spectrum access (DSA) for space.  
Resolving uncertainties of satellite locations, data requirements, and antenna processing are needed to optimize 
performance. Examples include spectrum awareness [94, 95], waveform selection [96], and reasoning engines to 
enhance multidomain performance. Over the many aspects of the satellite performance, a reasoning strategy using a 
Bayes’ network [97], or other reasoning engines, can be used to process the large amounts of data to robustly optimize 
performance. Finally, in the presence of adversarial conditions, the system provides secure communication [98], 
interference mitigation [99], and cyber protection [100]. There has also been recent focus on the utilization of DSA 
techniques for UAV networks in which the UAVs perform various sensing and transmission tasks using spectrum leased 
from terrestrial networks in exchange for providing relaying services for the terrestrial network [101]. 
 
 
4.5 System Design for multidomain management 

The design of a multidomain system would coordinate the space, air, ground, and cyber domains with a user interface 
through the ATAK system as shown in Figure 10. The system determines the mission needs for autonomous surveillance 
of a designated area which gathers information from space (e.g., GPS), air (e.g., aircraft measurements), and ground 
Automatic dependent surveillance—broadcast (e.g., ADS-B) which is currently being researched and implemented. 
 

 
 

Figure 10 – Multidomain Fly-by-Feel concept 
  

5. CONCLUSIONS 
In this paper, we reviewed Dynamic Data Driven Applications Systems (DDDAS) methods for use in a multidomain fly-
by-feel air platform concept.  DDDAS advances support object tracking, characterization, cyber network protection, 
sensing, and information management. These functions typically include correspondence with ground support such as 
providing sensor control, visualizations, and awareness. The design leverages modeling (data at rest), real-time control 
(data in motion) and analytics (data in use) for multidomain coordination. Future efforts include further simulation and 
development towards a prototype for multidomain command and control. 
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