
Verification of Eventual Consensus in Synod
Using a Failure-Aware Actor Model

Saswata Paul1, Gul A. Agha2, Stacy Patterson1, and Carlos A. Varela1

1 Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
pauls4@rpi.edu, {sep,cvarela}@cs.rpi.edu

2 University of Illinois at Urbana-Champaign, Champaign, Illinois, 61820, USA
agha@illinois.edu

Abstract. Successfully attaining consensus in the absence of a central-
ized coordinator is a fundamental problem in distributed multi-agent sys-
tems. We analyze progress in the Synod consensus protocol—which does
not assume a unique leader—under the assumptions of asynchronous
communication and potential agent failures. We identify a set of suf-
ficient conditions under which it is possible to guarantee that a set of
agents will eventually attain consensus. First, a subset of the agents must
behave correctly and not permanently fail until consensus is reached,
and second, at least one proposal must be eventually uninterrupted by
higher-numbered proposals. To formally reason about agent failures, we
introduce a failure-aware actor model (FAM). Using FAM, we model the
identified conditions and provide a formal proof of eventual progress in
Synod. Our proof has been mechanically verified using the Athena proof
assistant and, to the best of our knowledge, it is the first machine-checked
proof of eventual progress in Synod.

1 Introduction

Consensus, which requires a set of processes to reach an agreement on some
value, is a fundamental problem in distributed systems. Under asynchronous
communication settings, where message transmission and processing delays are
unbounded, it is impossible to guarantee consensus [18] since message delays
cannot be differentiated from process failures. Nevertheless, in distributed multi-
agent systems, where there is no centralized coordinator to manage safe oper-
ation, it is necessary for the agents to use distributed consensus protocols [58]
for coordination. An important application of such systems is decentralized air-
traffic control (ATC) for Urban Air Mobility (UAM) [63].

The integration of uncrewed aircraft systems (UAS) and micro-aircraft in
the National Airspace System (NAS) for package delivery, scientific data collec-
tion, and urban transportation will significantly increase the density of urban
air traffic [44], elevating the possibilities of hazards such as near mid-air colli-
sions (NMAC) [35] and wake-vortex induced rolls [37]. Since centralized, human-
operated ATC is not scalable to high densities and is prone to human errors [22],
UAS operating in UAM scenarios must be capable of autonomous UAS traffic



2 Paul, Agha, Patterson, and Varela

management (UTM) [9]. To ensure safety in UTM, they must coordinate with
each other by using distributed consensus protocols3 (e.g. – [10,54]).

In [51], we have proposed an Internet of Planes (IoP), consisting of an
asynchronous vehicle-to-vehicle (V2V) [41] network of aircraft, to facilitate au-
tonomous capabilities such as decentralized admission control (DAC) [53]. In
DAC, a candidate aircraft generates a conflict-aware flight plan that avoids
NMACs with a set of owner aircraft of a controlled airspace [52]. The candi-
date then requests admission into the airspace by proposing this flight plan to
the owners. As there may be multiple candidates concurrently competing for
admission into an airspace, the owners may only admit candidates sequentially.
This is because candidates do not consider each other in their proposals: in
fact, a candidate may not even be aware of other candidates. Thus, admitting
one candidate potentially invalidates the proposals of all other candidates. Since
UAM applications are time-critical, any consensus protocol used for DAC must
guarantee that a proposal will be eventually chosen. In this paper, we present an
analysis of consensus that is primarily motivated by the requirements of DAC.

In [29], Lamport describes three variants of a consensus protocol that strongly
guarantees the safety property that only one value will be chosen:
– The Basic Synod protocol or Synod guarantees safety if one or more agents

are allowed to initiate new proposals for consensus.
– The Complete Synod protocol or Paxos is a variant of Synod in which only a

distinguished agent (leader) is allowed to initiate proposals [30]. Other agents
may only introduce values through the leader. This is done to guarantee the
progress property that consensus will eventually be achieved.

– The Multi-Decree protocol orMulti-Paxos allows multiple values to be chosen
using a separate instance of Paxos for each value, but using the same leader
for each of those instances.

Both Paxos and Multi-Paxos use Synod as the underlying consensus protocol.
A progress guarantee contingent upon a unique leader has several drawbacks

from the perspective of DAC. First, leader election itself is a consensus problem.
Therefore, a progress guarantee that relies on successful leader election as a pre-
condition would be circular, and therefore fallacious. Second, the Fischer, Lynch,
and Paterson impossibility result (FLP) [18] implies that unique leadership can-
not be guaranteed in asynchronous systems where agents may unpredictably fail.
In some cases, network partitioning may also erroneously cause multiple leaders
to be elected [4]. Third, V2V networks like the IoP are expected to be highly
dynamic where membership frequently changes. Consensus is used in DAC for
agreeing on only a single candidate, after which the set of owners changes by de-
sign. Hence, the benefits of electing a stable leader that apply for state machine
replication (e.g. – [27]), where reconfiguration is expected to be infrequent [34],
are not applicable to DAC. Finally, channeling proposals through a unique leader
creates a communication bottleneck and introduces the leader as a single point
of failure: there can be no progress if the specified leader fails. In the absence of a

3 An approach for implicit coordination between two aircraft has been proposed in [43],
but that is only applicable for the purpose of pairwise tactical conflict avoidance.



Verification of Eventual Consensus in Synod 3

unique leader, a system implementing Paxos falls back to the more general Synod
protocol. Therefore, in this paper, we focus on identifying sufficient conditions
under which the fundamental Synod protocol can make eventual progress.

The failure of safety-critical aerospace systems can lead to the loss of human
life [24,61] and property [25]. Hence, formal methods must be used for the rigor-
ous verification of any algorithm used in such systems. The actor model [1,21] is a
theoretical model of concurrent computation that can be used for formal reason-
ing about distributed algorithms [42]. It assumes asynchronous communication
as the most primitive form of interaction and it also assumes fairness, which is
useful for reasoning about the progress of actor systems [62]. In the context of
DAC, aircraft may experience temporary or permanent communication failures
where they are unable to send or receive any messages [46]. Our verification of
Synod must model the possibility of such failures. To support explicit reasoning
about such failures in actors, we introduce a (predicate-fair) failure-aware actor
model (FAM) that assumes predicate fairness [55] in addition to the standard
actor model’s fairness properties. Predicate fairness states that if a predicate is
enabled infinitely often in a given path, then it must be eventually satisfied. We
use Varela’s dialect [62] of Agha, Mason, Smith, and Talcott’s actor language
(AMST) [3] and modify its semantics to model failures.

In order to ensure that our formalization of Synod and its eventual progress
property are correct, we machine-check our proof using the Athena proof assis-
tant [5, 7]. Along with a language for expressing proofs, Athena also provides
an interactive proof development environment. Athena’s theorem proving ca-
pabilities are based on many-sorted first-order logic [39] and it uses a natural
deduction [6] style of proofs. All terms have an associated sort and Athena
can automatically detect and report ill-sorted terms and expressions in proofs.
Athena is sound: all methods that successfully execute produce a theorem that
is guaranteed to be a logical consequence of its assumption base. It also allows
the use of automated theorem provers like Vampire [59] and SPASS [64].

The main contributions of this work are:
– We identify a set of conditions under which progress in Synod can be guar-

anteed in purely asynchronous settings, without assuming a unique leader.
– We introduce a failure-aware actor model to support formal reasoning about

temporary or permanent actor failures.
– We show that progress can be guaranteed in Synod under the identified con-

ditions and mechanically verify our proof using Athena. To our knowledge,
this is the first machine-checked proof of eventual progress in Synod.
It is important to note here that a guarantee of eventual progress alone is

insufficient for time-critical UAM applications, but it is a necessary precondition
for providing timely progress guarantees that can be directly applicable for UAM.

The paper is structured as follows – Section 2 informally describes Synod
and discusses the conditions required for progress; Section 3 introduces FAM;
Section 4 presents the formal verification of progress in Synod; Section 5 relates
our work to prior research on formal verification of consensus protocols; and
Section 6 concludes the paper including potential future directions of work.



4 Paul, Agha, Patterson, and Varela

2 The Synod Protocol

Synod assumes an asynchronous, non-Byzantine system model in which agents
operate at arbitrary speed, may fail and restart, and have stable storage. Mes-
sages can be duplicated, lost, and have arbitrary transmission time, but cannot
be corrupted [30]. It consists of two logically separate sets of agents:
– Proposers - The set of agents that can propose values to be chosen.
– Acceptors - The set of agents that can vote on which value should be chosen.
Synod requires a subset of acceptors, which satisfy a quorum, to proceed. To

ensure that if there is a consensus in one quorum, there cannot also be another
quorum with a consensus, any two quorums must intersect. A subset of acceptors
which constitutes a simple majority is an example of a quorum. Other methods
of determining quorums can be found in [23].

There are four types of messages in Synod:
– prepare (1a) messages include a proposal number.
– accept (2a) messages include a proposal number and a value.
– promise (1b) messages include a proposal number and a value.
– voted (2b) messages include a proposal number and a value.
For each proposer, the algorithm proceeds in two distinct phases [30]:

– Phase 1
(a) A proposer P selects a unique proposal number b and sends a prepare

request with b to a subset Q of acceptors, where Q constitutes a quorum.
(b) When an acceptor A receives a prepare request with the proposal num-

ber b, it checks if b is greater than the proposal numbers of all prepare
requests to which A has already responded. If this condition is satisfied,
then A responds to P with a promise message. The promise message im-
plies that A will not accept any other proposal with a proposal number
less than b. The promise includes (i) the highest-numbered proposal b′

that A has previously accepted and (ii) the value corresponding to b′.
If A has not accepted any proposals, it simply sends a default value.

– Phase 2
(a) If P receives a promise message in response to its prepare requests from

all members of Q, then P sends an accept request to all members of Q.
These accept messages contain the proposal number b and a value v,
where v is the value of the highest-numbered proposal among the re-
sponses or an arbitrary value if all responses reported the default value.

(b) If an acceptor A receives an accept request with a proposal number b and
a value v from P , it accepts the proposal unless it has already responded
to a prepare request having a number greater than b. If A accepts the
proposal, it sends P a voted message which includes b and v [29].

A proposer determines that a proposal was successfully chosen if and only if it
receives voted messages from a quorum for that proposal.

Synod allows multiple proposals to be chosen. Safety is ensured by the invari-
ant - "If a proposal with value v is chosen, then every higher numbered-proposal
that is chosen has value v" [30]. Therefore, there may be situations where a



Verification of Eventual Consensus in Synod 5

proposer P proposes a proposal number after one or more lower-numbered pro-
posals have already been chosen, resulting in some value v being chosen. By
design, Synod will ensure that P proposes the same value v in its Phase 2.
Since proposers can initiate proposals in any order and communication is asyn-
chronous, the only fact that can be guaranteed about any chosen value is that
it must have been proposed by the first proposal to have been chosen by any
quorum. From the context of admission control, it implies that if a candidate
P2 successfully completes both phases after another candidate P1 has completed
both phases, then P2 will simply learn that P1 has been granted admission. So
P2 will update its set of owners to include P1, create a new conflict-aware flight
plan, and request admission by starting the Synod protocol again.

2.1 Progress in Synod

Some obvious scenarios in which progress may be affected in Synod are:
– Two proposers P1 and P2 may complete Phase 1 with proposal numbers b1

and b2 such that b2 > b1. This will cause P1 to fail Phase 2. P1 may then
propose a fresh proposal number b3 > b2 and complete Phase 1 before P2
completes its Phase 2. This will cause P2 to fail Phase 2 and propose a fresh
proposal number b4 > b3 . This process may repeat infinitely [30] (livelock).

– Progress may be affected even if one random agent fails unpredictably [18].
Paxos assumes that a distinguished proposer (leader) is elected as the only

proposer that can initiate proposals [29]. Lamport states “If the distinguished
proposer can communicate successfully with a majority of acceptors, and if it
uses a proposal with number greater than any already used, then it will succeed
in issuing a proposal that is accepted.” [30]. The FLP impossibility result [18]
implies that in purely asynchronous systems, where agent failures cannot be dif-
ferentiated from message delays, leader election cannot be guaranteed. Moreover,
it is possible that due to network partitioning, multiple proposers are elected as
leaders [4]. In the absence of a unique leader, a system implementing Paxos falls
back to Synod. Therefore, it is important to identify the conditions under which
progress can be formally guaranteed in Synod in the absence of a unique leader.

To guarantee progress, it suffices to show that some proposal number b will
be chosen. This will happen if b satisfies the following conditions:
P1 When an acceptor A receives a prepare message with b, b should be greater

than all other proposal numbers that A has previously seen.
P2 When an acceptor A receives an accept message with b, b should be greater

than or equal to all other proposal numbers that A has previously seen.
P1 and P2 simply suggest that for b, there will be a long enough period without
prepare or accept messages with a proposal number greater than b, allowing mes-
sages corresponding to b to get successfully processed without being interrupted
by messages corresponding to a higher-numbered proposal. The non-interruption
condition follows from two assumptions. First, we assume that a proposer P will
keep retrying until it successfully receives votes from a quorum. Second, we as-
sume that the system has a form of fairness called predicate fairness [55]. With
predicate fairness, if a predicate is enabled infinitely often in a given path, then



6 Paul, Agha, Patterson, and Varela

the predicate must be satisfied (this is a recursive definition in that the path could
begin from any state along the path). Conditions P1 and P2 are infinitely often
enabled in any path corresponding to livelock. Therefore, by predicate fairness,
these conditions must eventually happen, allowing consensus to be reached.4

Since progress cannot be guaranteed if too many agents permanently fail
or if too many messages are lost, Lamport [33] presents some conditions for
informally proving progress in Paxos. A nonfaulty agent is defined as “an agent
that eventually performs the actions that it should”, and a good set is defined
as a set of nonfaulty agents, such that, if an agent repeatedly sends a message
to another agent in the set, it is eventually received by the recipient. It is then
assumed that the unique leader and a quorum of acceptors form a good set and
that they infinitely repeat all messages that they have sent. These conditions
are quite strong since they depend on the future behavior of a subset of agents
and may not always be true of an implementation. However, since they have
been deemed reasonable for informally proving progress even in the presence of
a unique leader, we partially incorporate them in our conditions under which
progress in Synod can be formally guaranteed in the absence of a unique leader.
Our complete set of conditions for guaranteeing progress in Synod, therefore,
informally states that eventually, a nonfaulty proposer must propose a proposal
number, that will satisfy P1 and P2, to a quorum of nonfaulty acceptors, and
the Synod-specific messages between these agents must be eventually received.

We can see that the conditions for progress in Paxos constitute a special
case of our conditions for progress in Synod where P1 and P2 are satisfied by a
proposal proposed by the unique leader. If the unique leader permanently fails,
then the corresponding guarantee is only useful if leader re-election is successful.
However, if leader election is assumed to have already succeeded, there will be
no need for further consensus, rendering the guarantee moot. Synod’s progress
guarantee remains useful as long as at least one random proposer is available to
possibly propose at least one successful proposal, thereby remaining pertinent
even if multiple (not all) proposers arbitrarily fail. Moreover, the conditions do
not assume that consensus (leader election) will have already succeeded.

3 A Failure-Aware Actor Model

We use the actor model to formally reason about progress in Synod since it
assumes asynchronous communication and fairness, which is helpful for reason-
ing about progress [3]. Fairness in the standard actor model has the following
consequences [62]:
– guaranteed message delivery5, and

4 We do not use the predicate fairness assumption in the formal proof associated with
this paper. Instead, we use a system-specific derived property: that eventually, at
least one proposal must be uninterrupted by higher-numbered proposals.

5 "Delivery" here implies that the message will be available to the recipient. The re-
cipient may or may not eventually receive and process the message.



Verification of Eventual Consensus in Synod 7

– an actor infinitely often ready to process a message will eventually process
the message.
The IoP is an open network in which aircraft communicate asynchronously

and may experience permanent or temporary communication failures that render
them unable to send or receive any messages. All messages to and from an
aircraft may get delayed because of transmission problems or internal processing
delays (or processing failures) in the aircraft. In asynchronous communication,
since message transmission times are unbounded, it is not possible to distinguish
transmission delays from processing delays or failures. However, it is important
to take into account if an actor has failed at any given time, i.e., if it is incapable
of sending or receiving messages. For this reason, we introduce a (predicate-fair)
failure-aware actor model (FAM) that allows reasoning about such actor failures.

FAM models two states for an actor at any given time—available or failed.
Actors can switch states as transitions between configurations. From the per-
spective of message transmission and reception, a failed actor cannot send or
receive any messages, but an available actor can. The failure model of FAM also
assumes that every actor has a stable storage that is persistent across failures. In
addition to the standard actor model’s fairness assumptions, FAM assumes pred-
icate fairness [55], which states that a predicate that is infinitely often enabled
in a given path will eventually be satisfied.

Varela [62] presents a dialect of AMST’s lambda-calculus based actor lan-
guage [3] whose operational semantics are a set of labeled transitions from actor
configurations to actor configurations6. An actor configuration κ is a tempo-
ral snapshot of actor system components, namely the individual actors and the
messages “en route”. It is denoted by 〈〈α ‖ µ〉〉, where α is a map from actor
names to actor expressions, and µ is a multi-set of messages. An actor expression
e is either a value v or a reduction context R filled with a redex r, denoted as
e = R I r J. κ1

l−→ κ2 denotes a transition rule where κ1, κ2, and l are the ini-
tial configuration, the final configuration, and the transition label respectively.
There are four possible transitions – fun, new, snd, and rcv. To model failures,
we modify Varela’s dialect of AMST and categorize its original transitions (fun,
new, snd, and rcv) as base-level transitions.

For a base-level transition in FAM to be enabled to occur for an actor in focus
at any time, the actor needs to be available at that time. To denote available and
failed actors at a given time, we redefine an actor configuration as 〈〈α ‖ ᾱ ‖ µ〉〉,
where α is a map from actor names to actor expressions for available actors, ᾱ
is a map from actor names to actor expressions for failed actors, and µ is a
multi-set of messages “en route”.

To model actor failure and restart, we define two meta-level transitions stp
(stop) and bgn (begin) that can stop an available actor or start a failed actor
in its persistent state before failure. The stp transition is only enabled for an
actor in the available state and the bgn transition is only enabled for an actor

6 Interested readers can refer to section 4.5 of [62] for more details.



8 Paul, Agha, Patterson, and Varela

e→λ e
′

〈〈α, [R I e J]a ‖ ᾱ ‖ µ〉〉
[fun:a]−→ 〈〈α, [R I e′ J]a ‖ ᾱ ‖ µ〉〉

〈〈α, [R I new(b) J]a ‖ ᾱ ‖ µ〉〉
[new:a,a′]−→ 〈〈α, [R I a′ J]a, [ready(b)]a′ ‖ ᾱ ‖ µ

a′ fresh
〉〉

〈〈α, [R I send(a′, v) J]a ‖ ᾱ ‖ µ〉〉
[snd:a]−→ 〈〈α, [R I nil J]a ‖ ᾱ ‖ µ ] {〈a′ ⇐ v〉}〉〉

〈〈α, [R I ready(b) J]a ‖ ᾱ ‖ {〈a⇐ v〉} ] µ〉〉 [rcv:a,v]−→ 〈〈α, [b(v)]a ‖ ᾱ ‖ µ〉〉

Fig. 1: Operational semantics for the base-level transition rules.

〈〈α, [e]a ‖ ᾱ ‖ µ〉〉
[stp:a]−→ 〈〈α|dom(α)−{a} ‖ ᾱ, [e]a ‖ µ〉〉

〈〈α ‖ ᾱ, [e]a ‖ µ〉〉
[bgn:a]−→ 〈〈α, [e]a ‖ ᾱ|dom(ᾱ)−{a} ‖ µ〉〉

Fig. 2: Operational semantics for the meta-level transition rules.

in the failed state. Fig. 1 and Fig. 2 show the operational semantics of our actor
language as labelled transition rules7,8.

For an actor configuration κ = 〈〈α ‖ ᾱ ‖ µ〉〉 to be syntactically well-formed
in our actor language, it must conform to the following9:
1. ∀a, a ∈ dom(α) ∪ dom(ᾱ), fv(α(a)) ⊆ dom(α) ∪ dom(ᾱ)
2. ∀m, m ∈ µ, m = 〈a⇐ v〉, fv(a) ∪ fv(v) ⊆ dom(α) ∪ dom(ᾱ)
3. dom(α) ∩ dom(ᾱ) = ∅

The standard actor model’s fairness assumptions apply only to the base-level
transitions in our language and not to the meta-level transitions.

4 Formal Verification of Eventual Progress in Synod

This section presents our proof of eventual progress in the Synod protocol. The
notations used in this section have been introduced in Table 1 and Table 2.

A message is a tuple 〈s∈A,r∈A,k∈ξ,b∈B,v∈V〉 where ξ = {1a, 1b, 2a, 2b},
s is the sender, r is the receiver, k is the type of message, b is a proposal number,
and v is a value. v̄ ∈ V is a null value constant used in 1a (prepare) messages.
7 →λ denotes lambda calculus semantics, essentially beta-reduction. new, send, and
ready are actor redexes. 〈a⇐ v〉 denotes a message for actor a with value v. α, [e]a
denotes the extended map α′, which is the same as α except that it maps a to e.
] denotes multiset union. α|S denotes restriction of mapping α to elements in set S.
dom(α) is the domain of α.

8 More details about actor language semantics can be found in [2], [3], and [62].
9 fv(e) is the set of free variables in the expression e.



Verification of Eventual Consensus in Synod 9

Symbol Description Symbol Description
A Set of all actors M Set of all messages
P Set of all proposer actors A Set of all acceptor actors
V Set of all values Q Set of all quorums
B Set of all proposal numbers M Set of all sets of messages
C Set of all actor configurations S Set of all transition steps
T Set of all fair transition paths N Set of all natural numbers

Table 1: Set symbols for our formal specification.

Symbol Description Input Output
ς Get last configuration T C
ρ Get transition path up to index T × N T
ᵀ Transition path constructor T × S T
σ Choose a value to propose based on configuration C × A V
s Construct a snd transition step A×M S
r Construct a rcv transition step A×M S
m Get set of messages “en route” C M
a Actor is in α C × A Bool
< Actor is ready for a step T × A× S Bool
φ Proposer has promises from a quorum A× B ×Q× C Bool
Φ Proposer has votes from a quorum A× B ×Q× C Bool
đ Actor is nonfaulty A Bool
þ Proposal number satisfies P1 and P2 B Bool
Ł Proposer has learned of successful consensus A× B × C Bool

Table 2: Relation symbols for our formal specification.

The local state of an actor x can be extracted from a configuration κ as
a tuple 〈ηxκ∈M, βxκ∈B, vxκ∈V〉 where ηxκ is the set of messages received but not
yet responded to, βxκ is the highest proposal number seen, and vxκ is the value
corresponding to the highest proposal number accepted.

Transition paths represent the dynamic changes to actor configurations as a
result of transition steps [42]. Indexed positions in transition paths correspond
to logical steps in time and are used to express eventuality.

P ⊂ A and A ⊂ A are the sets of proposers and acceptors respectively and a
quorum is a possibly equal non-empty subset of A, i.e.,∀Q ∈ Q : Q ⊆ A ∧ Q 6= ∅.

4.1 Fairness Assumptions for Transitions

We assume two fairness axioms for the snd and rcv transitions that follow from
the fairness assumptions of FAM. The F-Snd-axm and the F-Rcv-axm state
that if a snd or rcv transition is enabled at some time, it must either eventually
happen or eventually, it must become permanently disabled.
F-Snd-Axm ≡
∀x ∈ A,m ∈M, T ∈ T , i ∈ N : (<(ρ(T, i), x, s(x,m)) =⇒

((∃j ∈ N : (j ≥ i)



10 Paul, Agha, Patterson, and Varela

∧ ρ(T, j + 1) = ᵀ(ρ(T, j), s(x,m)))
∨ (∃k ∈ N : (k > i)

∧ (∀j ∈ N : (j ≥ k) =⇒ ¬<(ρ(T, j), x, s(x,m))))))

F-Rcv-Axm ≡
∀x ∈ A,m ∈M, T ∈ T , i ∈ N : ((m ∈ m(ς(ρ(T, i))) ∧ <(ρ(T, i), x, r(x,m))) =⇒

((∃j ∈ N : (j ≥ i)
∧ ρ(T, j + 1) = ᵀ(ρ(T, j), r(x,m)))

∨ (∃k ∈ N : (k > i)
∧ (∀j ∈ N : (j ≥ k) =⇒

¬(m ∈ m(ς(ρ(T, j))) ∧ <(ρ(T, j), x, r(x,m)))))))

4.2 Rules Specifying the Actions of Synod Actors

The Synod protocol is presented in [29] as a high-level abstraction of the behavior
of the agents, while leaving out the implementation details to the discretion of
the system developers [47]. We specify rules over actor local states that dictate
if an available Synod actor should become ready to send a message. Since Synod
does not specify when a proposer should send a prepare message, we leave that
behavior unspecified. For proving progress, we will assume that eventually, a
proposer will be ready to send prepare messages to a quorum.
Snd-1b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B :
(〈p, a, 1a, b, v̄〉 ∈ ηaς(ρ(T,i)) ∧ βaς(ρ(T,i)) < b ∧ a(ς(ρ(T, i)), a)) =⇒

<(ρ(T, i), a, s(a, 〈a, p, 1b, b, vaς(ρ(T,i))〉))

Snd-2a-Rul ≡
∀p ∈ P, T ∈ T , i ∈ N, b ∈ B, Q ∈ Q :
(φ(p, b,Q, ς(ρ(T, i))) ∧ a(ς(ρ(T, i)), p)) =⇒

(∀a ∈ Q : <(ρ(T, i), p, s(p, 〈p, a, 2a, b, σ(ς(ρ(T, i)), p)〉)))

Snd-2b-Rul ≡
∀a : A, p ∈ P, T ∈ T , i ∈ N, b ∈ B, v ∈ V :
(〈p, a, 2a, b, v〉 ∈ ηaς(ρ(T,i)) ∧ βaς(ρ(T,i)) ≤ b ∧ a(ς(ρ(T, i)), a))) =⇒

<(ρ(T, i), a, s(a, 〈a, p, 2b, b, v〉))

Since the response to a message in Synod is a finite set of actions, if there
is a message in the multi-set for a Synod actor and the actor is also available,
then a receive transition is enabled.
Rcv-Rul ≡
∀s, r ∈ A, T ∈ T , i ∈ N, k ∈ ξ, b ∈ B, v ∈ V :
(〈s, r, k, b, v〉 ∈ m(ς(ρ(T, i)) ∧ a(ς(ρ(T, i)), r))) =⇒ <(ρ(T, i), r, r(r, 〈s, r, k, b, v〉))

4.3 Assumptions About the Future Behavior of Agents

To prove progress in Synod, we borrow some assumptions about the future be-
havior of nonfaulty agents used by Lamport for informally proving progress in



Verification of Eventual Consensus in Synod 11

Paxos [33]. It is worth noting that being nonfaulty does not prohibit an agent
from temporarily failing. It simply means that for every action that needs to be
performed by the agent, eventually the agent is available to perform the action
and the action happens. In FAM, a nonfaulty actor can be modelled by assert-
ing that an enabled snd or rcv transition for the actor will eventually happen.
However, given the F-Snd-Axm and F-Rcv-Axm axioms, it suffices to assume
that for a nonfaulty actor, if a snd or rcv transition is enabled, then it will
either eventually occur or it will be infinitely often enabled. As FAM does not
model message loss, any message in the multi-set will persist until it is received.

We introduce a predicate đ to specify an actor as nonfaulty, such that:
– đ(x) implies that the actor x will be eventually available if there is a message

“en route” that x needs to receive.
– đ(x) implies that the actor x will be eventually available if x’s local state

dictates that it needs to send a message.
– đ(x) implies that if a snd or rcv transition is enabled for the actor x, it will

either eventually occur or it will be infinitely often enabled.
Prp-NF-Axm ≡
∀p ∈ P : đ(p) =⇒

(∀b ∈ B, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, a ∈ A, Q ∈ Q :
(φ(p, b,Q, ς(ρ(T, i)))
∨ 〈a, p, k, b, v〉 ∈ m(ς(ρ(T, i)))) =⇒

(a(ς(ρ(T, i)), p)
∨ (∃j ∈ N : (j > i) ∧ a(ς(ρ(T, j)), p))))

Acc-NF-Axm ≡
∀a ∈ A : đ(a) =⇒

(∀p ∈ P, k ∈ ξ, v ∈ V, T ∈ T , i ∈ N, b ∈ B :
((〈p, a, 1a, b, v̄〉 ∈ ηaς(ρ(T,i)) ∧ (βaς(ρ(T,i)) < b))
∨ (〈p, a, 2a, b, v〉 ∈ ηaς(ρ(T,i)) ∧ (βaς(ρ(T,i)) ≤ b))
∨ (〈p, a, k, b, v〉 ∈ m(ς(ρ(T, i))))) =⇒

(a(ς(ρ(T, i)), a)
∨ (∃j ∈ N : (j > i) ∧ a(ς(ρ(T, j)), a))))

NF-IOE-Axm ≡
∀x ∈ A : đ(x) =⇒

(∀T ∈ T , i ∈ N,m ∈M :
((m ∈ m(ς(ρ(T, i))) ∧ <(ρ(T, i), x, r(x,m))) =⇒
((∃j ∈ N : (j ≥ i)

∧ ρ(T, j + 1) = ᵀ(ρ(T, j), r(x,m)))
∨ (∀k ∈ N : (k > i)

=⇒ (∃j ∈ N : (j ≥ k)
∧ (m ∈ m(ς(ρ(T, j))) ∧ <(ρ(T, j), x, r(x,m)))))))

∧ (<(ρ(T, i), x, s(x,m)) =⇒
((∃j ∈ N : (j ≥ i)

∧ ρ(T, j + 1) = ᵀ(ρ(T, j), s(x,m)))
∨ (∀k ∈ N : (k > i)

=⇒ (∃j ∈ N : (j ≥ k) ∧ <(ρ(T, j), x, s(x,m))))))



12 Paul, Agha, Patterson, and Varela

We then introduce a predicate þ that is true of a proposal number if and
only if it satisfies the conditions P1 and P2 described informally in Section 2.1.
P1-P2-Def ≡
∀b ∈ B : þ(b) ⇐⇒

(∀p ∈ P, T ∈ T , i ∈ N, v ∈ V, a ∈ A :
((〈p, a, 1a, b, v̄〉 ∈ ηaς(ρ(T,i)) =⇒ βaς(ρ(T,i)) < b)
∧ (〈p, a, 2a, b, v〉 ∈ ηaς(ρ(T,i)) =⇒ βaς(ρ(T,i)) ≤ b)))

Finally, the conditions for formally guaranteeing progress state that – in
all fair transition paths, some nonfaulty proposer p will be eventually ready to
propose some proposal number b, that will satisfy P1 and P2, to some quorum
Q whose members are all nonfaulty.
CND ≡
∀T ∈ T :

(∃i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :
(đ(p) ∧ þ(b) ∧ (∀a ∈ Q : (đ(a) ∧ <(ρ(T, i), p, s(p, 〈p, a, 1a, b, v̄〉))))))

4.4 The Proof of Progress

To prove progress in Synod, it suffices to prove that eventually, at least one pro-
posal number will be chosen by some quorum (Section 2). In our set of conditions
CND, we have assumed that some proposer p will eventually propose a proposal
number b, that will satisfy P1 and P2, to a quorum Q. Our proof strategy is
to show that eventually, p will learn that b has been chosen by all members of
Q. Theorem 1 formally states our main progress guarantee while Lemma 1 and
Lemma 2 state progress in Phase 1 and Phase 2 respectively.

Theorem 1. Given CND, in all fair transition paths, eventually some proposer
p will learn that some proposal number b has been chosen.

Theorem-1 ≡
CND =⇒ (∀T ∈ T : (∃i ∈ N, p ∈ P, b ∈ B : Ł(p, b, ς(ρ(T, i)))))

Lemma 1. In a fair transition path, if eventually a nonfaulty proposer p be-
comes ready to propose a proposal number b, that satisfies P1 and P2, to a quo-
rum Q whose members are all nonfaulty, then eventually p will receive promises
from all members of Q for b.

Lemma-1 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :

(đ(p) ∧ þ(b) ∧ (∀a ∈ Q : (đ(a) ∧ <(ρ(T, i), p, s(p, 〈p, a, 1a, b, v̄〉)))))
=⇒ (∃j ∈ N : (j ≥ i) ∧ φ(p, b,Q, ς(ρ(T, j))))

Lemma 2. In a fair transition path, if eventually a nonfaulty proposer p receives
promises for a proposal number b, that satisfies P1 and P2, from a quorum Q
whose members are all nonfaulty, then eventually p will receive votes from all
members of Q for b.



Verification of Eventual Consensus in Synod 13

Lemma-2 ≡
∀T ∈ T , i ∈ N, p ∈ P, b ∈ B, Q ∈ Q :

(đ(p) ∧ þ(b) ∧ φ(p,Q, ς(ρ(T, i))) ∧ (∀a ∈ Q : đ(a)))
=⇒ (∃j ∈ N : (j ≥ i) ∧ Φ(p, b,Q, ς(ρ(T, j))))

Given below are the proof sketches of Theorem 1, Lemma 1, and Lemma 2:
Theorem 1 Proof Sketch -
(1) By Lemma 1 and CND, some nonfaulty proposer p will eventually receive

promises from some quorum Q, whose members are all nonfaulty, for some
proposal number b that satisfies P1 and P2.

(2) By Lemma 2, p will eventually receive votes from Q for b and learn that b
has been chosen.
ut

Lemma 1 Proof Sketch -
(1) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm prepare messages from p

will eventually be sent to all members of Q.
(2) By Acc-NF-Axm, NF-IOE-Axm, F-Rcv-Axm all members of Q will even-

tually receive the prepare messages.
(3) By P1-P2-Def, Snd-1b-Rul, and Acc-NF-Axm, each member of Q will

eventually be ready to send promise messages to p.
(4) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm the promise messages

from each member of Q will eventually be sent.
(5) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm p will eventually receive

the promise messages from all members of Q.
ut

Lemma 2 Proof Sketch -
(1) By Snd-2a-Rul, and Prp-NF-Axm, p will eventually be ready to send

accept messages to all members of Q with proposal number b.
(2) By Prp-NF-Axm, NF-IOE-Axm, and F-Snd-Axm, accept messages from p

will eventually be sent to all members of Q.
(3) By Acc-NF-Axm, NF-IOE-Axm, F-Rcv-Axm all members of Q will even-

tually receive the accept messages.
(4) By P1-P2-Def, Snd-2b-Rul, and Acc-NF-Axm, each member of Q will

eventually be ready to send voted messages to p.
(5) By Acc-NF-Axm, NF-IOE-Axm, and F-Snd-Axm the voted messages from

each member of Q will eventually be sent
(6) By Prp-NF-Axm, F-Rcv-Axm, and NF-IOE-Axm p will eventually receive

the voted messages from all members of Q.
ut
We have formalized all the theory and proof sketches presented in this sec-

tion using Athena. The proofs of Theorem 1, Lemma 1, and Lemma 2 have
been mechanically verified for correctness. The high-level structures of the proofs
were developed in a hierarchical manner consisting of well-connected steps. The
SPASS [64] automatic theorem prover was then guided with appropriate premises
for mechanically verifying each step (more details can be found in the companion
technical report [50]). We have made extensive use of Athena’s existing library



14 Paul, Agha, Patterson, and Varela

of natural number theory for reasoning about indexed points in transition paths.
The complete proof consists of about 6000 lines of Athena code10.

5 Related Work

Prior work on verification of Synod-related protocols exists in the literature.
Prisco et al. [15] present a rigorous hand-written proof of safety for Paxos along
with an analysis of time performance and fault tolerance. Chand et al. [12] pro-
vide a specification of Multi-Paxos in TLA+ [31] and use TLAPS [14] to prove
its safety. Padon et al. [48] have verified the safety property for Paxos, Vertical
Paxos [34], Fast Paxos [33], and Stoppable Paxos [38] using deductive verification.
Küfner et al. [28] provide a methodology to develop machine-checkable proofs of
fault-tolerant round-based distributed systems and verify the safety property for
Paxos. Schiper et al. [60] have formally verified the safety property of a Paxos-
based totally ordered broadcast protocol using EventML [11] and the Nuprl [45]
proof assistant. Howard et al. [23] have presented Flexible Paxos by introducing
flexible quorums for Paxos and have model checked its safety property using the
TLC model checker [32]. Rahli et al. [56, 57] have used EventML and Nuprl to
formally verify the safety of an implementation of Multi-Paxos. Attiya et al. [8]
provide bounds on the time to reach progress in consensus by assuming a syn-
chronous model with known bounds on message delivery and processing time of
non-faulty processes. Keidar et al. [26] consider a partial synchrony model with
known bounds on processing times and message delays and use it to guarantee
progress in a consensus algorithm when the bounds hold. Malkhi et al. [38] in-
troduce Stoppable Paxos, a variant of Paxos for implementing a stoppable state
machine and provide an informal proof of safety and progress for Stoppable
Paxos with a unique leader. McMillan et al. [40] machine-check and verify the
proofs of safety and progress properties of Stoppable Paxos [38] using Ivy [49].
Dragoi et al. [17] introduce PSync, a language that allows writing, execution,
and verification of high-level implementations of fault-tolerant systems, and use
it to verify the safety and progress properties of LastVoting [13]. LastVoting is an
adaptation of Paxos in the Heard-Of model [13] that guarantees progress under
the assumption of a single leader. A machine-checked proof of safety and progress
of LastVoting also appeared in [16]. Hawblitzel et al. [19,20] introduce a frame-
work for designing provably correct distributed algorithms called IronFleet and
use it to prove the safety and progress properties for a Multi-Paxos implemen-
tation called IronRSL by embedding TLA+ specifications in Dafny [36]. Their
proof of progress relies on the assumption that eventually, all messages will arrive
within a maximum network delay and leader election will succeed.

All of the aforementioned work has either analyzed the safety property or
both the safety and progress properties of Synod-related protocols. Where progress
has been verified, the authors have either assumed a unique leader, synchrony,
or both. Our work improves upon existing work by identifying a set of asyn-
chronous conditions under which the fundamental Synod consensus protocol can
10 Complete Athena code available at http://wcl.cs.rpi.edu/pilots/fvcafp



Verification of Eventual Consensus in Synod 15

make eventual progress in the absence of a unique leader, and providing the first
mechanically verified proof of eventual progress in Synod.

6 Conclusion

We have identified a set of sufficient conditions under which the Synod protocol
can make progress, in asynchronous communication settings and in the absence
of a unique leader. Leader election itself being a consensus problem, our condi-
tions generalize Paxos’ progress conditions by eliminating their cyclic reliance
on consensus. Consequently, our weaker assumptions do not impose a commu-
nication bottleneck or proposal restrictions. We have introduced a failure-aware
actor model (FAM) to reason about communication failures in actors. Using this
reasoning framework we have formally demonstrated that eventual progress can
be guaranteed in Synod under the identified conditions. Finally, we have used
Athena to develop the first machine-checked proof of progress in Synod.

It is important to note that a guarantee of eventual progress only states that
consensus will be achieved, but does not provide any bound on the amount of
time that may be required for the same. Since air traffic data usually has a short
useful lifetime and aircraft have limited time to remain airborne, a guarantee
of eventual progress alone is insufficient for UAM applications. To be useful, a
progress guarantee should have some associated time bounds that the aircraft
can use to make important decisions, e.g., if there is a guarantee that consensus
will take at least 5 seconds, then a candidate can decide to only compute flight
plans that start after 5 seconds. Nevertheless, we see this work as a valuable
exercise in perceiving the nuances involved in guaranteeing eventual consensus
in the presence of multiple unrestricted proposers. This is important because
a guarantee of eventual progress is a necessary precondition for providing a
guarantee of timely progress that can be directly applicable for UAM.

A potential direction of future work would be to investigate formal proofs
of probabilistic guarantees of timely progress by using data-driven statistical re-
sults. Such properties may be provided by using statistical observations about
message transmission and processing delays, which cannot be deterministically
predicted in asynchronous conditions but can be observed at run-time. Another
potential direction of work would be to model message loss in FAM by introduc-
ing additional meta-level transitions. This would allow us to weaken the condi-
tions further by requiring the guaranteed delivery of only a subset of messages,
thereby weakening the current fairness assumptions of FAM. To avoid livelocks,
it may also suffice to replace predicate fairness with a weaker assumption that
infinitely often enabled finite transition sequences must eventually occur.

Acknowledgment: This research was partially supported by the National Science
Foundation (NSF), Grant No. – CNS-1816307 and the Air Force Office of Scientific
Research (AFOSR), DDDAS Grant No. – FA9550-19-1-0054. The authors would like
to express their gratitude to Elkin Cruz-Camacho, Dan Plyukhin, and the anonymous
reviewers of NFM 2021 for their helpful comments on improving the manuscript.



16 Paul, Agha, Patterson, and Varela

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press (1986)

2. Agha, G., Mason, I.A., Smith, S., Talcott, C.: Towards a Theory of Actor Compu-
tation. In: International Conference on Concurrency Theory. pp. 565–579. Springer
(1992)

3. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-
putation. Journal of Functional Programming 7(1), 1–72 (1997)

4. Alquraan, A., Takruri, H., Alfatafta, M., Al-Kiswany, S.: An Analysis of Network-
Partitioning Failures in Cloud Systems. In: 13th USENIX Symposium on Operating
Systems Design and Implementation. pp. 51–68 (2018)

5. Arkoudas, K.: Athena, http://proofcentral.org/athena
6. Arkoudas, K.: Simplifying Proofs in Fitch-Style Natural Deduction Systems. Jour-

nal of Automated Reasoning 34(3), 239–294 (2005)
7. Arkoudas, K., Musser, D.: Fundamental Proof Methods in Computer Science: A

Computer-Based Approach. MIT Press (2017)
8. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the Time to Reach

Agreement in the Presence of Timing Uncertainty. Journal of the ACM (JACM)
41(1), 122–152 (1994)

9. Aweiss, A.S., Owens, B.D., Rios, J., Homola, J.R., Mohlenbrink, C.P.: Unmanned
Aircraft Systems (UAS) Traffic Management (UTM) National Campaign II. In:
2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p. 1727 (2018)

10. Balachandran, S., Muñoz, C., Consiglio, M.: Distributed Consensus to Enable
Merging and Spacing of UAS in an Urban Environment. In: 2018 International
Conference on Unmanned Aircraft Systems (ICUAS). pp. 670–675. IEEE (2018)

11. Bickford, M., Constable, R.L., Rahli, V.: Logic of Events, a Framework to Reason
About Distributed Systems. In: Languages for Distributed Algorithms Workshop
(2012)

12. Chand, S., Liu, Y.A., Stoller, S.D.: Formal Verification of Multi-Paxos for Dis-
tributed Consensus. In: International Symposium on Formal Methods. pp. 119–136.
Springer (2016)

13. Charron-Bost, B., Schiper, A.: The Heard-Of Model: Computing in Distributed
Systems With Benign Faults. Distributed Computing 22(1), 49–71 (2009)

14. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying Safety Properties
with the TLA+ Proof System. In: International Joint Conference on Automated
Reasoning. pp. 142–148. Springer (2010)

15. De Prisco, R., Lampson, B., Lynch, N.: Revisiting the PAXOS Algorithm. Theo-
retical Computer Science 243(1-2), 35–91 (2000)

16. Debrat, H., Merz, S.: Verifying Fault-Tolerant Distributed Algorithms in the
Heard-Of Model. Archive of Formal Proofs 2012 (2012)

17. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSync: A Partially Synchronous Lan-
guage for Fault-Tolerant Distributed Algorithms. In: ACM SIGPLAN Notices.
vol. 51, pp. 400–415. ACM (2016)

18. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
With One Faulty Process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

19. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving Practical Distributed Systems Correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles. pp. 1–17.
ACM (2015)



Verification of Eventual Consensus in Synod 17

20. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving Safety and Liveness of Practical Distributed
Systems. Communications of the ACM 60(7), 83–92 (2017)

21. Hewitt, C.: Viewing Control Structures as Patterns of Passing Messages. Artificial
Intelligence 8(3), 323–364 (1977)

22. Hopkin, V.D.: Human Factors in Air Traffic Control. CRC Press (2017)
23. Howard, H., Malkhi, D., Spiegelman, A.: Flexible Paxos: Quorum Intersection Re-

visited. arXiv preprint arXiv:1608.06696 (2016)
24. Imai, S., Varela, C.A.: A Programming Model for Spatio-Temporal Data Stream-

ing Applications. In: Dynamic Data-Driven Applications Systems. pp. 1139–1148.
Omaha, NE, USA (2012)

25. Imai, S., Blasch, E., Galli, A., Zhu, W., Lee, F., Varela, C.A.: Airplane Flight Safety
Using Error-Tolerant Data Stream Processing. IEEE Aerospace and Electronics
Systems Magazine 32(4), 4–17 (2017)

26. Keidar, I., Rajsbaum, S.: Open Questions on Consensus Performance in Well-
Behaved Runs. In: Future Directions in Distributed Computing, pp. 35–39.
Springer (2003)

27. Kirsch, J., Amir, Y.: Paxos for System Builders: An Overview. In: Proceedings of
the 2nd Workshop on Large-Scale Distributed Systems and Middleware. pp. 1–6
(2008)

28. Küfner, P., Nestmann, U., Rickmann, C.: Formal Verification of Distributed Algo-
rithms. In: IFIP International Conference on Theoretical Computer Science. pp.
209–224. Springer (2012)

29. Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems
(TOCS) 16(2), 133–169 (1998)

30. Lamport, L.: Paxos Made Simple. ACM Sigact News 32(4), 18–25 (2001)
31. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)
32. Lamport, L.: Real-Time Model Checking is Really Simple. In: Advanced Research

Working Conference on Correct Hardware Design and Verification Methods. pp.
162–175. Springer (2005)

33. Lamport, L.: Fast Paxos. Distributed Computing 19(2), 79–103 (2006)
34. Lamport, L., Malkhi, D., Zhou, L.: Vertical Paxos and Primary-Backup Replica-

tion. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing. pp. 312–313 (2009)

35. Lee, S.M., Park, C., Johnson, M.A., Mueller, E.R.: Investigating Effects of Well
Clear Definitions on UAS Sense-And-Avoid Operations in Enroute and Transition
Airspace. In: 2013 Aviation Technology, Integration, and Operations Conference.
p. 4308 (2013)

36. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning. pp. 348–370. Springer (2010)

37. Luckner, R., Höhne, G., Fuhrmann, M.: Hazard Criteria for Wake Vortex Encoun-
ters During Approach. Aerospace Science and Technology 8(8), 673–687 (2004)

38. Malkhi, D., Lamport, L., Zhou, L.: Stoppable Paxos. Tech. rep., Microsoft Research
(2008)

39. Manzano, M., Manzano, T.d.L.M.: Extensions of First-Order Logic, vol. 19. Cam-
bridge University Press (1996)

40. McMillan, K.L., Padon, O.: Deductive Verification in Decidable Fragments with
Ivy. In: International Static Analysis Symposium. pp. 43–55. Springer (2018)



18 Paul, Agha, Patterson, and Varela

41. Molisch, A.F., Tufvesson, F., Karedal, J., Mecklenbrauker, C.F.: A Survey on
Vehicle-to-Vehicle Propagation Channels. IEEE Wireless Communications 16(6),
12–22 (2009)

42. Musser, D.R., Varela, C.A.: Structured Reasoning About Actor Systems. In: Pro-
ceedings of the 2013 Workshop on Programming Based on Actors, Agents, and
Decentralized Control. pp. 37–48. Agere! 2013, ACM, New York, NY, USA (2013)

43. Narkawicz, A., Muñoz, C., Dutle, A.: Coordination Logic for Repulsive Resolu-
tion Maneuvers. In: 16th AIAA Aviation Technology, Integration, and Operations
Conference. p. 3156 (2016)

44. National Academies of Sciences, Engineering, and Medicine: Assessing the Risks of
Integrating Unmanned Aircraft Systems (UAS) into the National Airspace System.
The National Academies Press, Washington, DC (2018)

45. Naumov, P., Stehr, M.O., Meseguer, J.: The HOL/NuPRL Proof Translator. In:
International Conference on Theorem Proving in Higher Order Logics. pp. 329–345.
Springer (2001)

46. Okcu, H.: Operational Requirements of Unmanned Aircraft Systems Data Link
and Communication Systems. Journal of Advances in Computer Networks 4(1),
28–32 (2016)

47. Ongaro, D., Ousterhout, J.: In Search of an Understandable Consensus Algorithm.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 14). pp. 305–319
(2014)

48. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: Decidable Reasoning
About Distributed Protocols. Proceedings of the ACM on Programming Languages
1(OOPSLA), 1–31 (2017)

49. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety Ver-
ification by Interactive Generalization. ACM SIGPLAN Notices 51(6), 614–630
(2016)

50. Paul, S., Agha, G.A., Patterson, S., Varela, C.A.: Verification of Eventual Consen-
sus in Synod using a Failure-Aware Actor Model. Tech. rep., Rensselaer Polytechnic
Institute, Department of Computer Science (Mar 2021)

51. Paul, S., Kopsaftopoulos, F., Patterson, S., Varela, C.A.: Dynamic Data-Driven
Formal Progress Envelopes for Distributed Algorithms. In: Dynamic Data-Driven
Application Systems (InfoSymbiotics/DDDAS 2020). pp. 245–252 (2020)

52. Paul, S., Patterson, S., Varela, C.A.: Conflict-Aware Flight Planning for Avoid-
ing Near Mid-Air Collisions. In: The 38th IEEE/AIAA Digital Avionics Systems
Conference. pp. 1–10. San Diego, CA (2019)

53. Paul, S., Patterson, S., Varela, C.A.: Collaborative Situational Awareness for
Conflict-Aware Flight Planning. In: The 39th IEEE/AIAA Digital Avionics Sys-
tems Conference. pp. 1–10 (2020)

54. Peters, A., Balachandran, S., Duffy, B., Smalling, K., Consiglio, M., Muñoz, C.:
Flight Test Results of a Distributed Merging Algorithm for Autonomous UAS
Operations. In: The 39th IEEE/AIAA Digital Avionics Systems Conference. pp. 1–
7 (2020)

55. Queille, J.P., Sifakis, J.: Fairness and Related Properties in Transition Systems —
A Temporal Logic to Deal with Fairness. Acta Informatica 19(3), 195–220 (1983)

56. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal Specification, Verifi-
cation, and Implementation of Fault-Tolerant Systems Using EventML. Electronic
Communications of the EASST 72, 1–15 (2015)

57. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: EventML: Specification,
Verification, and Implementation of Crash-Tolerant State Machine Replication Sys-
tems. Science of Computer Programming 148, 26–48 (2017)



Verification of Eventual Consensus in Synod 19

58. Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Con-
trol. Springer (2008)

59. Riazanov, A., Voronkov, A.: The Design and Implementation of VAMPIRE. AI
communications 15(2, 3), 91–110 (2002)

60. Schiper, N., Rahli, V., Van Renesse, R., Bickford, M., Constable, R.L.: Developing
Correctly Replicated Databases Using Formal Tools. In: 2014 44th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks. pp. 395–406.
IEEE (2014)

61. Sommerville, I.: Software Engineering. Addison-Wesley/Pearson (2011)
62. Varela, C.A.: Programming Distributed Computing Systems. The MIT Press

(2013)
63. Vascik, P.D., Hansman, R.J., Dunn, N.S.: Analysis of Urban Air Mobility Opera-

tional Constraints. Journal of Air Transportation 26(4), 133–146 (2018)
64. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:

SPASS Version 3.5. In: International Conference on Automated Deduction. pp.
140–145. Springer (2009)


