
A Model-Driven Architectural Design Method for
Big Data Analytics Applications

Camilo Castellanos∗, Boris Pérez∗†, Darı́o Correal∗
∗System Engineering and Computing Department

University of Los Andes, Bogotá, Colombia

Email: cc.castellanos87, br.perez41, dcorreal@uniandes.edu.co
†Department of Systems

Francisco de Paula Santander University, Cúcuta, Colombia

Carlos A. Varela
Computer Science Department

Rensselaer Polytechnic Institute, Troy, NY, USA

Email:cvarela@cs.rpi.edu

Abstract—Big data analytics (BDA) applications use machine
learning to extract valuable insights from large, fast, and hetero-
geneous data sources. The architectural design and evaluation
of BDA applications entail new challenges to integrate emerging
machine learning algorithms with cutting-edge practices whilst
ensuring performance levels even in the presence of large data
volume, velocity, and variety (3Vs). This paper presents a design
process approach based on the Attribute-Driven Design (ADD)
method and Architecture tradeoff analysis method (ATAM)
to specify, deploy, and monitor performance metrics in BDA
applications supported by domain-specific modeling and DevOps.
Our design process starts with the definition of architectural
drivers, followed by functional and deployment specification
through integrated high-level modeling which enables quality
scenarios monitoring. We used two use cases from avionics
to evaluate this proposal, and the preliminary results suggest
advantages by integrating multiple views, automating deployment
and monitoring compared to similar approaches.

Index Terms—Software architecture, Attribute-Driven Design,
ADD, ATAM, Big data analytics deployment, DevOps, Domain-
specific model, Quality Scenarios

I. INTRODUCTION

Big data analytics (BDA) applications use Machine Learn-

ing (ML) algorithms to extract valuable insights from large,

fast and heterogeneous data. These BDA applications require

complex software design, development, and deployment to

deal with big data characteristics: volume, variety, and velocity

(3Vs) while maintaining expected performance. BDA develop-

ment involves three knowledge domains: business, analytics,

and technology. In the business domain, business users define

business goals and quality scenarios (QS) to drive analytics

projects. In the analytics domain, business goals are translated

into specific analytics tasks by data scientists. In the tech-

nology domain, architects make decisions in terms of tactics,

patterns, and deployment strategies addressing QS. The current

design approaches do not address this multi-domain nature and

complexity involved in BDA application development which

frequently leads to delayed deployments [1]. Due to the lack

of methods and tools to enable integration and alignment

of multiple domains, BDA development presents a costly

The authors would like to thank Amazon Web Services educational research
for granting us their cloud resources.

transition between development and production environments

(“Deployment Gap” phenomenon [1]).

ACCORDANT [2] is a Domain-Specific Model (DSM)

approach to formally specify, develop, deploy, and monitor

BDA solutions bridging the gap between analytics and IT do-

mains. This paper proposes an extension of the ACCORDANT

Method by including architectural inputs (drivers) and aligning

to the Attribute-Driven Design Method [3] (ADD 3.0), and to

promote the architecture testability following evaluation meth-

ods such as ATAM (Architecture tradeoff analysis method) [4].

The proposed method is a model-driven approach that allows

us to design, assess, and deploy integrated BDA applications

based on architectural drivers: quality scenarios, constraints,

tactics and sensitivity points. This proposal was validated

with two use cases from the avionics field by designing

functional and deployment models, and assessing performance

QS in distributed batch and micro-batch processing contexts.

The contributions of this paper are: 1) A DSM method to

design and evaluate BDA architectures aligned to drivers

thus accelerating iterative development and deployment. 2)

Three integrated domain-specific languages (DSLs) to specify

architectural inputs, functional and deployment view. 3) The

experimentation of this proposal on two avionics use cases

using different deployment strategies and QS.

The rest of this paper is organized as follows. In Section

II describes the background. Section III reviews related work.

Section IV details our proposal. Section V describes the ex-

perimentation. Section VI reports preliminary results. Finally,

Section VII summarizes the conclusions and next steps.

II. BACKGROUND

A. Software Architecture Design

An architecture description is composed of architectural
views to address different concerns, and these views are built

based on the collection of patterns, templates, and conventions

called Viewpoints. The architectural design is driven by QS and

functional requirements through a systematic design method,

such as ADD [3]), and it could be evaluated using methods

such as ATAM [4]. ADD comprises 7 steps: 1) Review inputs

(purpose, functional requirements, QS, and constraints). 2)

In each ADD iteration, a design goal is defined from these

89

2020 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-1-7281-4659-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSA-C50368.2020.00026

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

inputs. 3) Choose systems elements to refine. 4) Choose

design concepts to satisfy the selected drivers. 5) Instantiate

architectural elements and define interfaces. 6) Sketch views

and record design decisions. and 7) Analyze current design

and review goal achievement and design purpose, and start a

new iteration (from step 2), if selected drivers are not satisfied.

B. Infrastructure as Code and BDA Deployment

Infrastructure as Code (IaC) arises from the necessity to

handle the infrastructure setup, evolution, and monitoring in

an automated and replicable way through executable specifica-

tions. IaC promotes the reduction of cost, time and risk of IT

infrastructure provision by offering languages and tools which

allow to specify environments, operative systems, middleware,

configuration resources and allocate them automatically. Porta-

bility plays a key role to deploy, operate, and evolve BDA

applications due to the wide range of BDA technologies.

Hence, portable standards appear such as Predictive Model

Markup Language (PMML)1. PMML models specify machine

learning models and data transformations along with their

metadata. The PMML standard is supported by a wide range of

data science tools such as R, SAS, IBM SPSS, among others.

III. RELATED WORK

Several works have proposed frameworks to build and

deploy BDA applications. We review and compare some of

the most relevant works in Table I highlighting the important

features. In the analytics domain, we compare if they use

separation of concerns (SoC), cross-industry application (CI),

and support of technology-neutral models (TNM). Regarding

software architecture concepts, we include: QS specification

(QSS), functional (FV) and deployment (DV) views, tactics

(AT), and target-technology assignment (TTA: predefined tech-

nologies (P) or extensible code generators (C). Considering

DevOps practices, deployment specification (DS) defines if

only a number of instances (I) per component or a whole

deployment diagram (D) can be described. Finally, practices

as continuous deployment (CD), QS monitoring (QSM), and

self-adaptation (SA) support IT operations.

Some works have presented DSM to model analytics func-

tions, however, they do not tackle architecture concepts and

deployment considerations because they are only focused on

functional definitions. Lechevalier et al. [5] introduce a DSM

framework for predictive analytics of manufacturing data using

artificial neural networks to generate analytics models. Sujeeth

et al. present in [8] OptiML, a DSL for machine learning

which describes analytics functions using a statistical model

that covers a subset of ML algorithms, this analytics functions

are analyzed and optimized before the code generation.

In contrast, we found another group of studies interested in

infrastructure concerns of BDA applications leaving aside their

functional components. Gribaudo et al. [6] propose a mod-

eling framework based on graph-based language to evaluate

the system’s performance of running applications that follow

1http://dmg.org/pmml/v4-3/GeneralStructure.html

the lambda architecture pattern. Huang et al. [7] introduce

a model to design, deploy, and configure Hadoop clusters

through architecture metamodel and rules, which describe

BDA infrastructure and deploy automation.

A final group of works combines functional definitions and

deployment specifications. QualiMaster [9] focuses on the

processing of online data streams for real-time applications

such as the risk analysis of financial markets regarding metrics

of time behavior and resource utilization. QualiMaster aims

to maximize the throughput of a given processing pipeline.

Fastscore [10] is a commercial framework to design and de-

ploy analytics models. Analytics components are convention-

ally developed using a determined programming language or

technology-neutral models, and once imported to the platform,

they can be connected to data inputs and outputs. SpringXD

[11] is a unified, distributed, and extensible system for data

ingestion, analytics, processing, and export to simplify BDA

development and deployment. Finally, the DICE project in

[12] presents a DSM offering big data design that comprises

data, computation, technology-frameworks, and deployment

concepts to design and deploy data-intensive applications.

DICE proposes a model-driven approach to develop applica-

tion models that are automatically transformed into IaC.

IV. THE ACCORDANT METHOD

This proposal aims at offering a high-level approach to

design BDA solutions starting from architectural artifacts,

instead of source code. Specifically, we propose an architecture

design and development method based on ACCORDANT

[2] framework to deal with architectural drivers, functional,

and deployment views. Our proposal comprises a design

and deployment method, and its underlying metamodel. This

metamodel extends that proposed in [2] by including archi-

tectural inputs and serverless deployments. Fig. 1 depicts the

ACCORDANT Method steps, which specializes and integrates

ADD and ATAM concepts in the BDA domain.

The steps performed in the ACCORDANT framework are

framed in solid lines, while the steps made with external tools

are in dotted lines. ACCORDANT is iterative and composed

of seven steps: 1) Elicitation of drivers (business goals, QS,

and constraints) by business users and architects. 2) The data

scientist builds and data transformations and analytics models

(exported as PMML files) addressing the business goals. 3)

The architect designs the software architecture in terms of

functional view(FV) and deployment view(DV). FV makes

use of PMML models to specify the analytics components’

behavior. 4) FV and DV models are interweaved to obtain

an integrated model. 5) Code generation of software and

infrastructure is performed from integrated models. 6) The

code generated is executed to provision infrastructure and

install the software. 7) QS are monitored in operation, and

new design iterations can be made to fulfill the drivers.

A. Architectural Drivers Elicitation

According to ADD and ATAM, architecture design and

evaluation are driven by predefined quality scenarios (QS)

90

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RELATED WORK

Work SoC
Business (Analytics) Software Architecture DevOps
CI TNM QSS FV DV AT TTA DS CD QSM SA

Lechevalier et al. [5] � � �
Gribaudo et al. [6], Huang et al. [7] � � D �
OptiML [8] � � � C �
Qualimaster [9] � � � � � � � �
FastScore [10] � � � � C I � �
SpringXD [11] � � � � P I � � �
DICE [12] � � � � � C D � � �
ACCORDANT � � � � � � � C D � �

Fig. 1. ACCORDANT Method Overview

which must be achieved through design decisions compiled

in well-known catalogs of architectural patterns and tactics.

QS and tactics are inputs of the architecture design, therefore

we include these initial building blocks in the ACCORDANT

metamodel along with other concepts like constraints. Fig. 2

details the main input building blocks grouped by a (Project)
which contains the elements required to start the architec-

tural design: QS (QScenario), Analyzed QS (AnalyzedQS),

SentivityPoint and Tactic. A QScenario determines a quality

attribute requirement for a specific Artifact. Thus, for instance,

a QS could be defined as “latency<=3 seconds for an artifact

(software component or connector). A QS is analyzed through

a AnalyzedQS, and sensitivity points. A SensitivityPoint is a

decision’s property (a set of elements and their relationships

within architectural views) that is critical for achieving the QS,

and that such decision is the application of a Tactic to a specific

application context. Finally, Constraints restrict architectural

decisions, e.g. mandated technologies, vendors, or processing

models. This step covers ADD’s steps 1 and 2.

B. Analytics Model Building
The data scientist build and evaluate data transformations

and analytics models using data science tools, which are inde-

pendent of ACCORDANT. This approach decouples analytics

models and software architecture supported by the portability

given by PMML format, but also it enables us to offer an

integrated multi-domain framework.

C. Software Architecture Design
Once drivers are defined in step 1, architecture is designed

in the step 3 and expressed on the views instantiating tactics

Fig. 2. Excerpt of Architectural Inputs Metamodel.

in a concrete application. These decisions are associated via

SensitivityPoints, and they will be evaluated against the initial

QS to validated whether the architecture is achieving its goal.

This step spans from steps 3 to 6 in ADD.

Functional View allows us to design analytics pipelines in

terms of ingestion, preparation, analysis and exporting building

blocks. FV specifies functional requirements of the analytics

solution, and the constructs are described in a technology-

neutral. FV is expressed in a component-connector model.

Sensitivity points can be associated to components and con-

nectors to represent where architectural decisions have impact

regarding the QS. Component metaclasses are specialized

in Ingestors, Transformers, Estimators and Sinks. Estimators
and Transformers are the software component realizations of

91

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

PMML predictive models and data transformers respectively.

A Component exposes required and provided Ports. Connec-
tors metaclasses transfer data or control flow among compo-

nents through an input or output Roles. A set of connector

types are defined: Procedure Call, Event, Stream, Adaptor,

Distributor and Arbitrator.

Deployment Viewpoint includes DevOps practices starting

with the specification of how software artifacts are deployed

on a set of computation nodes. DV metamodel comprises Pod,

ExposedPort, and Deployment metaclasses to operationalize

BDA applications. A FV model can be deployed in different

DV models either to use a different strategy or to test the

fulfillment of predefined QS. DV contains Devices, Services,

Deployments, serverless environments (ServerlessEnv), and

Artifacts. Sensitivity points can be assigned to Deployments

and Artifacts to map critical architectural decisions in the

DV. Devices (physical or virtual), Pods, and ExecEnvironment)
constitute the main elements to provision virtual machines or

containers-based infrastructures. On the other hand, Server-
lessEnv element describes a computing environment in which

the cloud provider dynamically manages the allocation of

machine resources. Finally, Artifacts correspond to executable

or deployable representations of functional elements (i.e. com-

ponents and connectors from FV) which can be deployed on

either execution or serverless environments.

D. Integration, Code Generation, and Execution

Once PMML, FV and DV models are designed and in-

tegrated, code generation takes place using model-to-text

transformations. Code generation is twofold: software and

infrastructure (IaC) code. On the software side, each com-

ponent and connector is assigned to a specific technology

regarding their properties and constraints. Such assignment

enables us to generate code for target technology restricted

to those constraints. The analytics model’s inputs and outputs

are transformed to the component’s interfaces (required and

provided respectively). To monitor QS, the code generators

include specific machinery at application level to measure

specific metrics (e.g. response time, throughput, deadline, etc)

for each artifact according to its associated QS. This allows

us to reduce code for logging starting from high-level quality

specifications. On the IaC side, DV model is transformed into

Kubernetes’ configuration files, used to create and configure

infrastructure over the Kubernetes where software artifacts can

be automatically deployed using the FV-DV mappings.

E. Solution Monitoring

In the last step, the performance metrics of the BDA

application are gathered to be compared to initial QS and

evaluate the fulfillment of quality requirements. In this step,

the architect has to check the outputs and to make decisions

in the architectural views. This process can take several

iterations, and this is the whole cycle that we expect to

accelerate and using ACCORDANT. This ACCORDANT’s

step corresponds to analyze drivers’ achievement in ADD (step

7), and to analyze architectural approaches evaluated against

each scenario in ATAM.

V. EXPERIMENTATION WITH AVIONICS USE CASES

Our experimentation aims to compare development and

deployment time for each iteration with other two frameworks

reviewed in Section III: FastScore and SpringXD. We chose

these frameworks because they are the closest to our approach,

and they support portable analytics models.

We validated our proposal using two use cases: UC1) Near

mid-air collision detection, and UC2) Near mid-air collision

risk analysis. These use cases are applied to analytics models,

they also illustrate BDA facets as streaming and micro-batch

to deal with the velocity aspect and batch processing. More

details about the use cases can be found in [13], and source

code is publicly available2.

Use case 1 (UC1) was applied in aviation safety to detect

near mid-air collisions (NMAC) on different air space ranges

with different deployment models while performance QS is

monitored. NMAC detection comprises a pairwise compar-

ison of flights to calculate location, speeds and heading to

determine the risk level of NMAC. Eight-hours of data were

stored in a distributed file system to be loaded by JSON

reader component. This ingestor calls NMAC detector which

computes the alert level. Once an alerting level is calculated for

each flight pair, the results are sent to the clustering estimator

to be associated with a specific cluster, and these results are

stored back in the file system. This use case requires a heavy

workload nature, and therefore a performance QS for deadlines

lower than one hour was defined.

Use case 2 (UC2) is a real-time application to detect NMAC

within an air space range. The ingestor component consumed

data through direct REST service. Flight data was pushed

in a message queue to be consumed by the NMAC detector

component which performed the potential collision detection

to be finally stored in a relational DB through a message broker

connector. It is worth mentioning that the NMAC estimator

of UC1 and UC2 are the same, since its inputs, outputs,

and behavior are identical, so we can reuse such functional

component definition, though their deployments are different

regarding the QS constraints. Given the near real-time nature

of this application, latency is the critical QS.

A. Architectural Drivers Elicitation

The business goal is to group NMAC events to identify

potential risky zones and times within specific air-spaces. A

scheduled job to detect risky clusters is processed in batch

every day. Fig 3 details drivers expressed using the ACCOR-

DANT’s DSL. The NMACDetector component is required to

have a deadline lower than 1 hour in the QS UC1 QS1. Ana-

lyzing this QS, a sensitivity point (UC1 SP1) is identified to

achieve the deadline metric by applying two tactics: introduce
concurrency and increase available resources. These tactics

will be materialized in the software architecture design.

2http://github.com/kmilo-castellanos/accordant-usecases

92

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Excerpt of Input Package Models of UC1 Using ACCORDANT DSLs

Fig. 4. Excerpt of Functional Models of UC1 Using ACCORDANT DSL

B. Data Transformations and Analytics Models

Analytics models were trained and evaluated by the data

scientist using Scikit-learn, exported to PMML, and loaded in

the ACCORDANT FV model. In this case, the decision tree

and K-means models will be assigned in the FV specification.

C. Design of Software Architecture

FV models were designed using ACCORDANT Func-

tional DSL to specify a component-connector structure for

each use case, Fig. 4 depicts the UC1’s FV model. Since

drivers are required in FV, this package is imported us-

ing the keyword use. The FV model specified four com-

ponents (JsonReader, NMACDetector, NMACClustering, and

HDFSWriter), and three procedure call connectors: CallN-
MACDetector, CallClustering, and CallWriter which connect

the components through ports. Additionally, NMACDetector
uses batch processing model, and it has associated “NMAC-

TreeModel.pmml” obtained in the previous step. The sensi-

tivity point UC1 SP1 aligns the drivers to the NMACDetec-
tor as part of the introduce concurrency tactic realization.

NMACDetector will be translated into a distributed processing

component which must be supported by the target technology.

DV models were designed using ACCORDANT DSL for

UC1 defined in the FV, see Fig. 5. Given that DV is based

Fig. 5. Excerpt of Deployment Models of UC1 Using ACCORDANT DSL

on the input package and FV model, they are imported using

the keyword use. This view includes the artifacts that map

connectors and components from FV to deployable elements

in DV. For instance, NMACDetector (see markers A) is mapped

to NMACArtifact, and deployed in SparkWEnv (see markers

B). Devices and deployments were specified to support the

computation requirements. For instance, deployments of Spark

master and worker nodes (e.g. SparkWorkerDep) details repli-

cas, pods and execution environments (ExecEnv). ExecEnv

defines the docker image, resources, and ports along with the

artifacts to be deployed. Finally, the sensitivity point UC1 SP1
associates the deployment SparkWorkerDep to performance

QS, and the tactic increase available resources (see Section

V-A) to support distributed computing over a Spark cluster.

D. Integration, Code Generation, and Execution

Once FV and DV models were designed and integrated,

code generators produced functional code and IaC. The target

technology selected was Apache Spark, so NMACDetector
component implements the PMML model in a Spark driver

program. The Spark program defines data input and output

from the Data Dictionary and Mining Schema embedded in

PMML specifications. On the other hand, the infrastructure

code was generated as Kubernetes’ configuration files. Kuber-

netes code was executed on the AWS cloud using Amazon

Kubernetes and EC2 services. After that, the software code

was installed over the cluster to operationalize the solution.

E. Solution Monitoring

Deadline and latency metrics for each use case were

collected in operation and validated against QS defined in

Section V-A. As a result, different deployment configurations

were designed, deployed and monitored in each iteration to

monitor the fulfillment of QS.

VI. PRELIMINARY RESULTS

Revisiting the related work reviewed in Section III, we

have shown how the ACCORDANT Method fills some gaps

93

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Development and Deployment Time for Use Case

in BDA architecture. As presented in Fig. I, ACCORDANT

follows the SoC principle using three different languages to

specify domain concerns. Analytics models in ACCORDANT

are cross-industry and technology-neutral. In terms of soft-

ware architecture, ACCORDANT supports QS specifications

aligned to FV and DV, and these models can be specified

independently, but in an integrated way. Code generators

promote flexibility and faster development and deployment.

Respecting DevOps practice, deployment models allow us to

design deployment diagrams and generate IaC to provision

such resources semi-automatically. The solution monitoring is

aligned to the initial QS specification and implemented by

injecting logging code in the generated applications. Finally,

self-adaptation is not covered in the current version.

Regarding the development and deployment effort, Fig. 6

depicts the average times invested for UC and two devel-

opment teams. These teams developed the UCs using each

framework and taking drivers (QS, constraints, and tactics)

and the PMML model as input. Each UC was deployed to

cloud containers, and the QS monitored using the features

offered by each framework. The development time using AC-

CORDANT was higher (between 22.7% and 44.4%) compared

to SpringXD and Fastscore, but the deployment time was

significantly lower (between 50% and 81.8%) using ACCOR-

DANT. The higher development time can be explained by the

time required to specify architectural inputs and FV models.

Besides, the current ACCORDANT prototype generates func-

tional code for estimators, but ingestor, sinks, and connectors

still require manual coding. Although ACCORDANT required

more effort in the development phase, this effort was rewarded

during the deployment phase, where infrastructure and QS-

monitoring are provided automatically aligned to QS, unlike

other approaches. The biggest time differences arose from

UC1 that demanded more time because it included a more

complex pipeline, involving two estimators. These results sug-

gest ACCORDANT is more suitable for application involving

multiple iterations, or in subsequent applications where reusing

architectural elements can reduce development times.

VII. CONCLUSIONS

We have presented a design method to specify, deploy, and

monitor BDA solutions. Two avionics use cases were used

to evaluate our approach against two BDA frameworks. As a

result, ACCORDANT has shown to facilitate and accelerate

iterative deployment by offering an integrated and high-level

design BDA applications by investing more effort in the

design phase. In contrast, some limitations have emerged from

experimentation. The development phase is slower than the

other approaches for multiple reasons. The current version of

the ACCORDANT’s prototype requires extra manual coding.

ACCORDANT also requires more design details and archi-

tectural inputs. These additional definitions are rewarded in

consecutive iterations, so ACCORDANT is most suitable for

application involving multiple iterations. Finally, our approach

takes advantage of reusing architectural decisions and models,

hence, first-time or one-time applications may not be benefited

from our proposal.

The next steps include a model to predict the expected

performance based on FV and DV models, target technologies,

and collected metrics to recommend the optimal architecture

configuration given a set of drivers. Furthermore, we are

developing validation rules to check correctness properties

against architectural constraints, e.g. technology conformance,

resource availability, and architectural mismatch, taking advan-

tage of the integration among drivers, FV and DV. Finally, the

experimentation has been performed using containers in the

DV, but we expect to include serverless and/or fog computing

deployment which can open new challenges.

REFERENCES

[1] H.-M. Chen, R. Schütz, R. Kazman, and F. Matthes, “How Lufthansa
Capitalized on Big Data for Business Model Renovation,” MIS Quarterly
Executive, vol. 1615, no. 14, pp. 299–320, 2017.

[2] C. Castellanos, D. Correal, and J.-D. Rodriguez, “Executing Architec-
tural Models for Big Data Analytics,” in Software Architecture, C. E.
Cuesta, D. Garlan, and J. Pérez, Eds. Cham: Springer International
Publishing, 2018, pp. 364–371.

[3] H. Cervantes and R. Kazman, Designing software architectures: a
practical approach. Addison-Wesley Professional, 2016.

[4] P. Clements, R. Kazman, M. Klein et al., Evaluating software architec-
tures. Tsinghua University Press Beijing, 2003.

[5] D. Lechevalier, R. Ak, Y. T. Lee, S. Hudak, and S. Foufou, “A Neural
Network Meta-Model and its Application for Manufacturing,” in 2015
IEEE International Conference on Big Data, 2015, pp. 1428–1435.

[6] M. Gribaudo, M. Iacono, and M. Kiran, “A Performance Modeling
Framework for Lambda Architecture Based Applications,” Future Gen-
eration Computer Systems, jul 2017.

[7] Y. Huang, X. Lan, X. Chen, and W. Guo, “Towards Model Based
Approach to Hadoop Deployment and Configuration,” in 12th WISA.
IEEE, sep 2015, pp. 79–84.

[8] A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Wu, A. R. Atreya,
K. Olukotun, T. Rompf, and M. Odersky, “OptiML: An Implicitly
Parallel Domain-Specific Language for Machine Learning,” in 28th
ICML, 2011, pp. 609—-616.

[9] M. Alrifai, H. Eichelberger, C. Qui, R. Sizonenko, S. Burkhard, and
G. Chrysos, “Quality-aware Processing Pipeline Modeling,” QualiMaster
Project, Tech. Rep., 2014.

[10] Open Data Group, “FastScore.” [Online]. Available:
https://www.opendatagroup.com/fastscore

[11] S. Anandan, M. Bogoevici, G. Renfro, I. Gopinathan, and P. Peralta,
“Spring XD: a modular distributed stream and batch processing system,”
in Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems - DEBS ’15. New York, New York, USA: ACM
Press, 2015, pp. 217–225.

[12] M. Artac, T. Borovsak, E. Di Nitto, M. Guerriero, D. Perez-Palacin,
and D. A. Tamburri, “Infrastructure-as-Code for Data-Intensive Ar-
chitectures: A Model-Driven Development Approach,” in 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE, apr
2018, pp. 156–165.

[13] C. Castellanos, B. Pérez, C. A. Varela, M. d. P. Villamil, and D. Correal,
“A survey on big data analytics solutions deployment,” in Software
Architecture, T. Bures, L. Duchien, and P. Inverardi, Eds. Cham:
Springer International Publishing, 2019, pp. 195–210.

94

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 02,2020 at 19:26:31 UTC from IEEE Xplore. Restrictions apply.

