
Actor Garbage Collection Using

Vertex-Preserving Actor-to-Object Graph

Transformations

Wei-Jen Wang1, Carlos Varela2, Fu-Hau Hsu1*, and Cheng-Hsien Tang1

1 Department of Computer Science and Information Engineering
National Central University, Taiwan
2 Department of Computer Science

Rensselaer Polytechnic Institute, USA

Abstract. Large-scale distributed computing applications require con-
current programming models that support modular and compositional
software development. The actor model supports the development of in-
dependent software components with its asynchronous message-passing
communication and state encapsulation properties. Automatic actor garbage
collection is necessary for high-level actor-oriented programming, but
identifying live actors is not as intuitive and easy as identifying live
passive objects in a reference graph. However, a transformation method
can turn an actor reference graph into a passive object reference graph,
which enables the use of passive object garbage collection algorithms
and simplifies the problem of actor garbage collection. In this paper, we
formally define potential communication by introducing two binary rela-
tions - the may-talk-to and the may-transitively-talk-to relations, which
are then used to define the set of live actors. We also devise two vertex-
preserving transformation methods to transform an actor reference graph
into a passive object reference graph. We provide correctness proofs for
the proposed algorithms. The experimental results also show that the
proposed algorithms are efficient.

Key words: Garbage collection, actors, active objects, program trans-
formation

1 Introduction

Parallel and distributed computing applications are working on increasingly
larger data sets and require more parallelism to better exploit new hardware
such as multi-core architectures and graphical processing units. These applica-
tions demand concurrent programming models that support modular and com-
positional software development. The actor model of computation [1–3] can be
used to reason about and to build such massively parallel and distributed com-
puting systems. The fundamental computing unit of actor systems is a reactive
entity called the actor, which encapsulates a thread of control along with its in-
ternal state. Communication of actors is through asynchronous message passing,

2 Wei-Jen Wang et al.

in which message sending is non-blocking and message reception is unordered
(non-FIFO).

High-level actor-oriented programming languages [4] support dynamic ac-
tor creation and actor reference passing, such as SALSA [3], Scala [5], E [6]
and Erlang [7]. Introducing automatic actor garbage collection [8–10] to actor-
oriented programming languages simplifies the problem of dynamic lifetime man-
agement of actors because the computing resources occupied by actor garbage
can be reclaimed without manual intervention. Automatic actor garbage col-
lection can reduce programmers’ efforts on their sometimes error-prone manual
lifetime management of actors, and can also let them focus on developing appli-
cation functionality. Therefore automatic actor garbage collection is necessary
for high-level actor-oriented programming.

Actor Garbage Problem

The widely used definition of live actors is described in [8]. Conceptually, the set
of live actors consists of the set of root actors and the set of actors which can
potentially communicate with the root set of actors. The set of actor garbage
is then defined as the complement set of live actors. However, the term “poten-
tially communicate with” is too abstract to make an operational definition. [10]
proposes a more operational definition of actor garbage.

Blocked ActorRoot Actor

Unblocked Actor Reference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

2 3 4 5 6 7

Actor Reference Graph

Root Object Object

Reference

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

2 3 4 5 6 7

Passive Object Reference Graph

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
1

1

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Live Actor

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Live Object

Fig. 1. Objects 2 and 3 are live, while Actors 1 to 5 are live.

Both the passive object garbage collection problem and the actor garbage
collection problem can be expressed as directed graph problems, consisting of
directed edges (references) and vertices (objects or actors). The major difference
resides in the state of each vertex — a non-root object has only one state; a non-
root actor can either be unblocked or blocked and its state changes dynamically.
An actor is unblocked if it is processing a message or has messages in its message
box; it is blocked otherwise. Consider the example in Figure 1. It illustrates that

Vertex-Preserving Actor-to-Object Graph Transformations 3

a passive object reference graph and an actor reference graph can have different
set of live objects/actors even given the same set of vertices and references. The
upper half of Figure 1 shows a passive object reference graph, where Objects 2
and 3 are live. The lower half of Figure 1 shows a similar actor reference graph,
where Actors 1 to 5 are live. Actor 1 is live because it can send a message to
the set of root actors. Actors 3 to 5 are live because Actor 2 and Actor 4 can
send their references to Actor 3 and Actor 5, and change them to the unblocked
state respectively. As a result, Actors 3 to 5 can become unblocked and can
transitively send messages to the root set of actors.

Transformation Technique

An actor garbage collection algorithm is not as intuitive as a passive object
collection algorithm [11,12] because it has more restrictions. However, Vardhan
and Agha [9] have pointed out that an actor reference graph can be transformed
into a passive object reference graph, which enables the use of passive object
garbage collection algorithms. The problem of the transformed reference graph is
that it produces at least three times as many references and about twice as many
vertices as the original actor reference graph. Figure 2 shows an object reference
graph which is transformed from the actor reference graph in Figure 1 using the
Vardhan-Agha transformation method. The transformed reference graph consists
of 14 vertices and 21 edges.

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

c(2) c(3) c(4) c(5)

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
c(1) c(6) c(7)

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Root Object Object

Reference
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Live Object

c'(2) c'(3) c'(4) c'(5)c'(1) c'(6) c'(7)

Fig. 2. A transformed reference graph from the actor reference graph in Figure 1
using the Vardhan-Agha transformation method. Objects c(1) to c(5) are live, implying
Actors 1 to 5 are live.

Contributions

In this paper, we formally define potential communication by introducing two
binary relations — the may-talk-to and the may-transitively-talk-to relations,
which are then used to define the set of live actors. We devise two vertex-
preserving transformation methods, each of which can transform an actor refer-
ence graph into a passive object reference graph. Compared to the Vardhan-Agha
transformation method, both of our methods only require adding new edges for

4 Wei-Jen Wang et al.

transformation. The experimental results also show that our algorithms are more
efficient than the Vardhan-Agha transformation method.

Outline of This Paper

The rest of the paper is organized as follows: Section 2 briefly introduced related
actor garbage collection work. Section 3 defines garbage. Section 4 provides two
novel vertex-preserving transformation methods, and proves that actor garbage
collection is equivalent to passive object garbage collection. Section 5 explains
how we implement the proposed algorithms, and compare them to the Vardhan-
Agha algorithm. Section 6 presents conclusions.

2 Related Work

At the beginning stage of the actor model (the 1970s and the early 1980s),
state encapsulation is not a requisite. Processes (or processors) which use asyn-
chronous messages for communication are usually considered as actors, even
though processes can have references to remote objects. Halstead’s algorithm [13]
deals with garbage collection on a set of connected processors, each of which is
viewed as a root and maintains references to objects. Based on the same assump-
tion of memory sharing and Baker’s garbage collection algorithm [14], Lieberman
and Hewitt [15] proposed a concurrent generational garbage collection algorithm
which spends proportionately less effort reclaiming objects with longer lifetimes,
and makes different storage for objects according to their age.

In the middle 1980s, Agha emphasized the importance of state encapsulation
in the actor model [1] because it is an essential feature for modular software
development. As a result, the change of the actor model leads to the need of
new actor marking strategies because traditional passive object garbage collec-
tion strategies cannot be directly reused. Kafura et al. [8, 16, 17] proposed the
Push-Pull algorithm and the Is-Black algorithm. Dickman proposed the parti-
tion merging algorithm [18] which treats all unblocked actors as potential roots,
divides actors into several large partitions, and then verifies each partition from
the root actors using an Euler cycle traversal algorithm. Vardhan and Agha pro-
posed a problem transformation technique to do actor garbage collection which
is described in Section 1 and [9].

3 Definition of Garbage

In this section, we formally define the passive object garbage collection problem
using the transitive reachability relation ; . We then propose a new model
to define the actor garbage collection problem using the may-talk-to ! and
the may-transitively-talk-to !

∗ relations. The definitions will be used in Sec-
tion 4 to prove equivalence of actor garbage collection and passive object garbage
collection.

Vertex-Preserving Actor-to-Object Graph Transformations 5

3.1 Garbage in Passive Object Systems

The essential concept of passive object garbage is based on the idea of the pos-
sibility of object manipulation. Root objects are objects that can be directly
accessed by the thread of control. Live objects are those transitively reachable
from the root objects by following references, while garbage objects are those who
are not live. The problem of passive object garbage collection can be represented
as a graph problem. To concisely describe the problem, we introduce transitive
reachability ; . The transitive reachability relation is reflective (a ; a) and
transitive ((a ; b) ∧ (b ; c) ⇒ (a ; c)). Then we use it to define the passive
object garbage collection problem.

Definition 1. Transitive reachability 3.
Object (or actor) oq is transitively reachable from op, denoted by

op ; oq,

if and only if op = oq ∨ (∃ou : opou ∧ ou ; oq).
Otherwise, we say op Y; oq.

Definition 2. Live passive objects.
Given a passive object reference graph G = 〈V, E〉, where V represents ob-
jects and E represents references, let R represent roots such that R ⊆ V : The
problem of passive object garbage collection is to find the set of live objects,
Liveobject(G, R), where

Liveobject(G, R) ≡ {olive | ∃oroot : (oroot ∈ R ∧ olive ∈ V ∧ oroot ; olive)}

3.2 Garbage in Actor Systems

The definition of actor garbage is defined as having the ability to communicate
with any of the root actors, where root actors are I/O services or public services
such as web services and databases. We assume that every actor/object has
a reference to itself, which is not necessarily true in the actor model 4. The
widely used definition of live actors proposed by Kafura et al. [8] is based on
the possibility of message reception from or message delivery to the root actors
— a live actor is one which can either receive messages from the root actors
or send messages to the root actors. The original definition of live actors is
denotational because it uses the concept of “potential” communication which
must be considered along with possible state transitions from the present system
configuration (system state). To make it more operational, the state of an actor
(unblocked or blocked) and the referential relationship of actors must be used
instead, as follows:

3
ab is defined as a reference (or a directed edge) from a to b.

4 The assumption that every actor/object has a reference to itself is used in most
programming languages.

6 Wei-Jen Wang et al.

Definition 3. Potential communication from ap to aq.
Let the current system configuration be S. Potential communication from Actor
ap to Actor aq (or message reception of aq from ap) is defined as:

∃Sfuture : (ap is unblocked ∧ ap ; aq at Sfuture) ∧ (S →∗ Sfuture).

Definition 3 says that there exists potential communication from Actor ap

to Actor aq if and only if both ap will become unblocked and ap ; aq will
become true at a future system configuration. In other words, the unblocked
actor ap can send a message to aq along the path from ap to aq at a future
system configuration.

Now, consider two actors, ap and aq. If they are both transitively reachable
from an unblocked actor or a root actor, namely amid, message delivery from
Actor ap to Actor aq (or from aq to ap) is possible. The reason is that there exists
a sequence of state transitions such that amid transitively makes ap unblocked
and transitively creates a directional path to aq. As a result, ap ; aq is possible.
The relationship of ap and aq can be expressed by the may-talk-to relation,
defined as ! (Definition 4). It is also possible that a message can be delivered
from ap to another new actor ar if (ap ! aq ∧aq ! ar) because the unblocked
actors can create a path to connect ap and ar. The generalized idea of the may-
transitively-talk-to relation, !

∗ , is shown in Definition 5 to represent potential
communication.

Definition 4. May-talk-to ! .
Given an actor reference graph G = 〈V, E〉 and {ap, aq} ⊆ V , where V repre-
sents actors and E represents references, let R represent roots and U represent
unblocked actors such that R, U ⊆ V , then:

ap ! aq ⇐⇒ ∃au : au ∈ (U ∪ R) ∧ au ; ap ∧ au ; aq.

We call ! the may-talk-to relation.

Definition 5. May-transitively-talk-to !
∗ .

Following Definition 4,

ap !
∗ aq ⇐⇒ ap ! aq ∨ ∃amid : (ap ! amid ∧ amid !

∗ aq).

We call !
∗ the may-transitively-talk-to relation.

Notice that the ! and !
∗ relations are constrained by the set of un-

blocked actors and root actors of the current system configuration. By using the
!

∗ relation, the definition of the set of live actors can be concisely rewritten:

Definition 6. Live actors.
Given an actor reference graph G = 〈V, E〉, where V represents actors and E

represents references, let R represent roots and U represent unblocked actors such
that R, U ⊆ V . The problem of actor garbage collection is to find the set of live
actors Liveactor(G, R, U), where

Liveactor(G, R, U) ≡ {alive | ∃aroot : (aroot ∈ R ∧ alive ∈ V ∧ aroot !
∗ alive)}

Vertex-Preserving Actor-to-Object Graph Transformations 7

4 Equivalence of Actor Garbage Collection and Passive

Object Garbage Collection

This section presents two novel transformation methods that demonstrate the
equivalence of object and actor garbage collection.

Transformation from Passive Object Garbage Collection to Actor

Garbage Collection

Transformation from passive object garbage collection to actor garbage collection
is easier because the passive object garbage collection problem is a sub-problem
of actor garbage collection. Let the passive object reference graph be G = 〈V, E〉
and the set of roots be R. Let the transformed actor reference graph be G′ =
〈V ′, E′〉, the set of roots be R′, and U ′ be the set of unblocked actors. The
problem of passive object garbage collection can be transformed into the problem
of actor garbage collection by assigning V ′ = V , E′ = E, R′ = R and U ′ = ∅.
Then for any two objects or and oq, we get (or ; oq ∧ or ∈ R) ⇐⇒ (or ; or ∧
or ; oq∧or ∈ R) ⇐⇒ (or !

∗ oq∧or ∈ R). Therefore the set Liveobject(G, R) =
Liveactor(G

′, R′, U ′).

Transformation from Actor Garbage Collection to Passive Object

Garbage Collection

Now, consider the backward transformation. Let the actor reference graph be
G = 〈V, E〉, R be the roots and U be the unblocked actors. If there exist G′ =
〈V ′, E′〉 and R′ such that Liveactor(G, R, U) = Liveobject(G

′, R′), we say the
actor garbage collection problem can be transformed into the passive object
garbage collection problem.

Transformation by Direct Back-Pointers to Unblocked Actors The di-
rect back-pointer transformation method can transform actor garbage collec-
tion into passive object garbage collection by making E′ = E ∪ {aqau | au ∈
(U ∪ R) ∧ au ; aq}. Figure 3 shows what the actor reference graph in Figure 1
transforms into. Notice that we use the term back-pointers to describe the newly
added references and to avoid ambiguity with the term references. Theorem 1
shows that the direct back-pointer transformation method is correct.

Theorem 1. Direct back-pointer transformation.
Let the actor reference graph be G = 〈V, E〉, R be the set of roots, and U be the
set of unblocked actors. Let E′ = E ∪ {aqau | au ∈ (U ∪ R) ∧ au ; aq}, and
G′ = 〈V, E′〉 and R′ = R.

Liveactor(G, R, U) = Liveobject(G
′, R′)

8 Wei-Jen Wang et al.

Root Object ObjectReference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

2 3 4 5

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

1

xxxxx
xxxxx
xxxxx
xxxxx

Live Object

6 7

Back Pointers

Fig. 3. An example of transformation by direct back-pointers to unblocked actors.

Proof. Let Liveactor(G, R, U) = {alive | ∃aroot : (aroot ∈ R∧alive ∈ V ∧aroot !
∗

alive)}, and Liveobject(G
′, R′) = {olive | ∃oroot : (oroot ∈ R′ ∧ olive ∈ V ∧ oroot ;

olive)}.
Now, consider the first case, Liveactor(G, R, U) ⊆ Liveobject(G

′, R′). Let ar and
al be actors and ar ∈ R ∧ al ∈ V . Then in G:
ar !

∗ al =⇒
∃amid,1, amid,2, ..., amid,n : ar ! amid,1 ! amid,2 ! ... ! amid,n ! al =⇒
∃amid,1, amid,2, ..., amid,n, au,1, au,2, ..., au,n+1 : {au,1, au,2, ..., au,n} ⊆ (U ∪ R) ∧
(au,1 ; ar ∧ au,1 ; amid,1) ∧ (au,2 ; amid,1 ∧ au,2 ; amid,2) ∧ ... ∧ ((au,n+1 ;

amid,n ∧ au,n+1 ; al)).
The above statement is true in G′ because E ⊆ E′. Since ∀ax, ay :
ax ∈ (U ∪ R) ∧ ay ∈ V ∧ ax ; ay =⇒ ay ; ax in G′, we know
∃amid,1, amid,2, ..., amid,n, au,1, au,2, ..., au,n+1 : {au,1, au,2, ..., au,n} ⊆ (U ∪ R) ∧
ar ; au,1 ; amid,1 ; au,2 ; amid,2... ; amid,n ; au,n+1 ; al.
Therefore Liveactor(G, R, U) ⊆ Liveobject(G

′, R′).
Now, consider the other case that

Liveobject(G
′, R′) ⊆ Liveactor(G, R, U).

For any ar and al, ar ∈ R′ ∧ al ∈ V ′ ∧ ar ; al in G′,
let {ax,1au,1, ax,2au,2, ..., ax,nau,n} ⊆ (E′−E) and be part of ar ; al in G′, such
that
(ar ; ax,1 ∧ ax,1au,1 ∈ (E′ − E)) ∧ (au,1 ; ax,2 ∧ ax,2au,2 ∈ (E′ − E)) ∧ ...
(au,n−1 ; ax,n ∧ ax,nau,n ∈ (E′ − E)) ∧ au,n ; al.
Since a reference aqap in (E′−E) implies that ap ∈ (U ∪R)∧aq ∈ V ∧ap ; aq,
we get ar ; ar ∧ (ar ; ax,1 ∧ au,1 ; ax,1) ∧ (au,1 ; ax,2 ∧ au,2 ; ax,2) ∧ ...

∧ (au,n−1 ; ax,n ∧ au,n ; ax,n) ∧ au,n ; al =⇒
ar ! ax,1 ∧ ax,1 ! ax,2 ∧ ... ∧ ax,n−1 ! ax,n ∧ ax,n ! al =⇒
ar !

∗ al.
Therefore Liveobject(G

′, R′) ⊆ Liveactor(G, R, U).

Transformation by Indirect Back-Pointers to Unblocked Actors The
indirect back-pointer transformation method transforms actor garbage collection
into passive object garbage collection by making the reference set E′ = E ∪
{aqap | au ∈ (U ∪ R) ∧ apaq ∈ E ∧ au ; ap}. Figure 4 shows what the actor
reference graph in Figure 1 transforms into. Notice that aqap ∈ E′ implies that
apaq ∈ E. Therefore the total number of back-pointers must be no bigger than

Vertex-Preserving Actor-to-Object Graph Transformations 9

the total number of edges in the actor reference graph G. Theorem 2 shows that
the indirect back-pointer transformation method is correct. Since the correctness
proof for the indirect back-pointer transformation method is very similar to the
proof for the direct back-pointer transformation method, we will leave it to the
readers.

Root Object ObjectReference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

2 3 4 5

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

1

xxxxx
xxxxx
xxxxx
xxxxx

Live Object

6 7

Back Pointers

Fig. 4. An example of transformation using indirect back-pointers to unblocked actors.

Theorem 2. Indirect back-pointer transformation.
Let the actor reference graph be G = 〈V, E〉, R be the set of roots, and U be
the set of unblocked actors. Let E′ = E ∪ {aqap | ∃au : au ∈ (U ∪ R) ∧ apaq ∈
E ∧ au ; ap}, and G′ = 〈V, E′〉 and R′ = R.

Liveactor(G, R, U) = Liveobject(G
′, R′)

5 Implementation and Experimental Results

Theorem 1 or Theorem 2 can directly turn into an actor garbage collection
algorithm by simply adding new back-pointers in the actor reference graph.
Theorem 2 is a better choice to model the back-pointer algorithm because it
generates fewer back-pointers.

Based on Theorem 1, we also propose the N-color algorithm. The idea comes
from the strategy of turning “a back-pointer to an unblocked/root actor” into
a special color, that is, two actors could have the same color if both of them
have back-pointers to the same unblocked/root actor. A root color is defined
as Color 0. To avoid multiple colors in an actor, only one color is allowed in
each actor. Once different colors conflict in an actor, we combine the colors
by using disjoint set operations [19]. Since any color conflict implies the two
representive unblocked/root actors have the relation of !

∗ , we can conclude
that actors marked by any color in a disjoint set containing a root color are
live. Actors marked by the same colors may talk to each other because they
are directly reachable from the same unblocked actor. Color conflict implies
the may-transitively-talk-to relationship. Therefore, combining conflict colors is
equivalent to grouping the set of actors that may transitively talk to each other.
If a root color is included in this set, every actor in the set may transitively talk to

10 Wei-Jen Wang et al.

the root. Take Figure 5 for example. Actors marked by Colors 0, 1, or 2 are live.
Unmarked actors and actors with Color 3 are garbage. Color 0 can be viewed as
a back-pointer to the root; Color 1 represents a back-pointer to unblocked Actor
1; Color 2 represents a back-pointer to unblocked Actor 4; Color 3 represents a
back-pointer to unblocked Actor 7.

1
Blocked

Actor
Root
Actor

Unblocked
Actor

Reference

1 2 3 4 5 76 Union(Set(1),Set(0))

 Root Color Set={0, 1, 2}Color

1 1
0 22 Union(Set(2),Set(0))

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

20
3

Fig. 5. An example for the N-color algorithm.

Let N be the number of actors, E the number of references in the system, and
M be the number of unblocked actors. The time complexity of the back-pointer
algorithm is O(N + E), and its extra space complexity is O(N + E). The time
complexity of the algorithm is O(N + E lg∗ M), and its extra space complexity
is O(M + N) where O(M) is for the disjoint set operations and O(N) is for
marking.

We implement the N-color algorithm, the back-pointer algorithm, and the
Vardhan-Agha transformation method on SALSA 2.0 [20]. SALSA is imple-
mented by Java and all SALSA programs are compiled into Java source code.
Figure 6 shows the total execution time of executing a SALSA Fibonacci pro-
gram with different algorithms. In the experiment, the actor garbage collector is
triggered every one second to do a complete scan of garbage and to reclaim all
garbage and each scan may involve tens of thousands of actors and messages.
The result shows that the N-color algorithm is less intrusive than the back-
pointer algorithm, which is less intrusive than the Vardhan-Agha algorithm. We
also measure the average execution time of marking N live actors using our al-
gorithms and the Vardhan-Agha algorithm, as shown in Figure 7. The left side
is the result of marking N actors and N references, and the right side shows the
result of marking N actors and 2N references. All the results suggest that the
N-Color algorithm is the best among them, and the back-pointer algorithm is
the second. The result can attribute to: (1) the N-Color algorithm demands less
expensive memory operations, and (2) the function lg∗M grows extremely slow,
and therefore O(N + E lg∗ M) is very close to O(N + E) in practice.

6 Conclusions

Both passive object garbage collection and actor garbage collection can be rep-
resented as graph problems. However, the traditional root-reachability condition

Vertex-Preserving Actor-to-Object Graph Transformations 11

5000

10000

15000

20000

18 19 20 21 22 23 24E
xe

cu
tio

n
T

im
e

in
 m

ill
is

ec
on

ds

Argument of Fibonacci

N-Color
Back-Pointer

Vardhan-Agha

Fig. 6. Performance evaluation using a SALSA Fibonacci number program.

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
ar

ki
ng

 T
im

e
P

er
 It

er
at

io
n

(m
ill

is
ec

on
ds

)

Number of Actors

N Actors + N references

N-Color
Back-Pointer

Vardhan-Agha

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
ar

ki
ng

 T
im

e
P

er
 It

er
at

io
n

(m
ill

is
ec

on
ds

)

Number of Actors

N Actors + 2N references

N-Color
Back-Pointer

Vardhan-Agha

Fig. 7. Execution time of marking N actors.

that determines live objects in object graphs does not correctly detect live actors
in an actor graph. Since there has been significant research in object garbage
collection, developing transformation methods from actor to object graphs is
benefitial for high-level actor programming language implementation.

This paper has made some contributions. First, we introduced the may-talk-
to (!) and the may-transitively-talk-to (!

∗) relations to explain and
formally define potential communication between actors. Second, we proved the
equivalence of actor garbage collection and passive object garbage collection in
which we showed two vertex-preserving transformation methods to transform ac-
tor garbage collection into passive object garbage collection. Third, we presented
two practical actor garbage collection algorithms, the N-color algorithm and the
back-pointer algorithm. Experimental results show that they are efficient, and
perform better than the Vardhan-Agha algorithm.

Acknowledgments

The authors would like to thank Yousaf Shah and Ping Wang of Rensselaer
Polytechnic Institute, USA, for their comments and suggestions. This work was
supported in part by the Taiwan National Science Council under Grant NSC-
98-2221-E-008-080.

12 Wei-Jen Wang et al.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press (1986)

2. Hewitt, C.: Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence 8(3) (June 1977) 323–364

3. Varela, C.A., Agha, G.: Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 ACM Conference on
Object-Oriented Systems, Languages and Applications 36(12) (December 2001)
20–34

4. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: a
comparative analysis. In: PPPJ ’09: Proceedings of the 7th International Confer-
ence on Principles and Practice of Programming in Java, New York, NY, USA,
ACM (2009) 11–20

5. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: OOPSLA ’08,
New York, NY, USA, ACM (2008) 423–438

6. ERights.org: The E Programming Language (2009) http://ERights.org/.
7. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming

in Erlang. 2nd edn. Prentice Hall (1996)
8. Kafura, D., Washabaugh, D., Nelson, J.: Garbage collection of actors. In: OOP-

SLA’90 ACM Conference on Object-Oriented Systems, Languages and Applica-
tions, ACM Press (October 1990) 126–134

9. Vardhan, A., Agha, G.: Using passive object garbage collection algorithms for
garbage collection of active objects. In: ISMM’02. ACM SIGPLAN Notices, Berlin,
ACM Press (June 2002) 106–113

10. Wang, W., Varela, C.A.: Distributed garbage collection for mobile actor systems:
The pseudo root approach. Lecture Notes in Computer Science 3947 (May 2006)
360–372

11. Jones, R.E.: Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley, Chichester (July 1996) With a chapter on Distributed
Garbage Collection by R. Lins.

12. Abdullahi, S.E., Ringwood, A.: Garbage collecting the internet: A survey of dis-
tributed garbage collection. ACM Computing Surveys 30(3) (1998) 330–373

13. Halstead, R.H.: Reference Tree Networks: Virtual Machine and Implementation.
PhD thesis, MIT Laboratory for Computer Science (July 1979) Technical report
MIT/LCS/TR–222.

14. Baker, H.G.: List processing in real-time on a serial computer. Communications
of the ACM 21(4) (1978) 280–294

15. Lieberman, H., Hewitt, C.: A real-time garbage collector based on the lifetimes of
objects. Commun. ACM 26(6) (1983) 419–429

16. Washabaugh, D.: Real-time garbage collection of actors in a distributed system.
Master’s thesis, Virginia Tech, Blacksburg, VA (February 1990)

17. Nelson, J.: Automatic, incremental, on-the-fly garbage collection of actors. Mas-
ter’s thesis, Virginia Tech, Blacksburg, VA (February 1989)

18. Dickman, P.: Incremental, distributed orphan detection and actor garbage collec-
tion using graph partitioning and Euler cycles. Lecture Notes in Computer Science
1151 (October 1996) 141–158

19. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: 21. In: Introduction to
Algorithms. Second edn. MIT Press/McGraw-Hill (2001) 498–522

20. Worldwide Computing Laboratory: The SALSA Programming Language (2009)
http://wcl.cs.rpi.edu/salsa/.

