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Abstract. Intelligent aerospace systems of the future are expected to be
“smarter” and more self-sufficient in terms of self-diagnosis, self-healing,
self-navigation, and overall situational awareness. Enhanced situational
awareness will be facilitated by access to a vast amount of real-time data
from on-board sensors, other aircraft, ground stations, and satellites, as
well as contextual models from environment analysis of weather, terrain,
and structures. The Dynamic data-driven application systems (DDDAS)
paradigm incorporates real-time data for creating high-fidelity models to
aid in flight-diagnosis and decision-making. DDDAS techniques accom-
modate the fusion of dynamic-data, algorithms, computation, and inter-
pretation, making them apposite for use in safety-critical intelligent sens-
ing systems. In safety-critical systems, it is important to have irrefutable
system assurance over hardware and software guarantees. Formal meth-
ods allow the development of machine-checked correctness proofs for such
guarantees, facilitating the verification of such systems on infinite states.
This chapter presents formal correctness envelopes (FCE), analogous to
performance envelopes of an aircraft, which represent the operating con-
ditions under which the guarantees regarding a system’s properties hold.
FCEs are data-driven, allowing them to be computed, quantified, and
monitored in real-time using correctness sentinels. Correctness sentinels
are executable programs that use the notion of correctness envelopes to
monitor real-time data-streams and detect the status of a system’s state
with respect to relevant envelopes during runtime. At any given point of
time, correctness sentinels can provide useful information about which
system properties can be guaranteed and with how much confidence.
FCEs, in tandem with correctness sentinels, allow the development of
aerospace systems that can monitor formal guarantees in real-time and
dynamically adapt to remain within the bounds of those guarantees.
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1 Introduction

The future of aviation is going to be largely autonomous, giving way to more
intelligent and situationally-aware flight control systems. Smart aerospace sys-
tems of the future will be able to analyze their own health and environmental
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conditions and make decisions to optimize flight-performance while ensuring
safe navigation through the national airspace system (NAS). Intelligence in the
NAS will stem from an influx of valuable real-time data from both local sources
such as on-board physical sensors and remote sources such as other aircraft,
ground-stations, and satellites [24,48,50]. Dynamic data-driven application sys-
tems (DDDAS) is a paradigm that allows models of a system under considera-
tion to dynamically incorporate new data [7, 14]. In addition, DDDAS enables
an application to influence the data collection and real-time measurement pro-
cesses towards more effective collection and measurement of data, thus leading
to better quality of data specifically suited for the application and more broadly,
model-cognizant control of the system’s instrumentation.

The DDDAS paradigm involves the use of a feedback loop which updates
an existing application model with real-time data to create a more accurate
model, reflecting system behaviors. When DDDAS techniques are integrated into
aerospace systems, they are known as dynamic data-driven aerospace systems.
Dynamic data-driven aerospace systems employ DDDAS concepts for dynamic
integration and unification of real-time data for a wide range of aerospace-related
applications and can be extremely effective in designing high fidelity diagnos-
tic and decision-support systems for both manned and unmanned aerial ve-
hicles (UAVs). DDDAS-aerospace techniques have been used for applications
ranging from error detection and recovery from sensor failures [20–23, 28] to
generation of high-fidelity emergency trajectories by considering aircraft flight-
performance [45–47].
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Fig. 1: Formal methods in dynamic data-driven aerospace system workflow.

Aerospace systems are safety-critical which means that their failures can be
catastrophic to life, environment, and property [58]. Therefore, it is imperative
to have high confidence in the correctness of the software components that are
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used in engineering these systems. However, dynamic data-driven aerospace sys-
tems are, more often than not, inherently complex, making them vulnerable to
specification and/or implementation errors. Under such dynamic conditions, for-
mal methods can be used to mechanically verify the guarantees provided by a
system. Fig. 1 depicts a sample framework for the integration of formal methods
in dynamic data-driven aerospace systems workflow, such as software verifica-
tion techniques to reason about and monitor system properties during runtime.
Formal methods provide a way to perform a more thorough and exhaustive val-
idation of software systems than traditional methods like unit testing [9].

Formal methods allow interactive theorem-proving, which is the process of
formally specifying properties, and then proving that these properties are cor-
rect within a proof assistant [2, 4, 12, 44]. Using a proof assistant is much like
developing a proof of correctness on paper, except that the proof assistant en-
sures that proofs are complete, i.e., that theorems are logical consequences of
axioms. Interactive methods are interesting because they can be used without
sacrificing the undoubtedly-useful automated methods. Tools like Satisfiability
Modulo Theory (SMT) [5] solvers can be used to automatically discharge sim-
ple propositions, while more complex propositions that would be intractable in
a purely-automated approach can be tackled “manually”. As such, a high-level
interactive theorem-proving system is an essential tool in nearly any complex
verification task by merit of forcing propositions to be organized in a principled
way, even if most of the actual “proving” is done automatically [9].
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Fig. 2: Hierarchical nature of theories for reasoning about high-level stochastic
properties.

Although formal methods can be extremely beneficial in verifying the prop-
erties of dynamic data-driven aerospace systems, there are some barriers to using
such tools, as they would be for any system operating under dynamic conditions
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without statically-predetermined outcomes. The nature of foundational verifi-
cation is a somewhat daunting task in the formal setting of a proof assistant.
Fig. 2 shows the hierarchy of mathematical theories [18,26,43,61] that must be
(in full or in part) formalized to allow high-level reasoning about statistics and
properties of stochastic systems. The complexity of stochastic formal methods
resides beneath even the simplest statements, introducing challenges that are
not present in domains involving only deterministic computation. For example,
to even express the notion that a variable follows a continuous normal distri-
bution, a large number of definitions from across mathematics are needed: the
real numbers (e.g., Cauchy sequences [53] or Dedekind cuts [57] or otherwise)
and various algebraic properties thereof (e.g., the Lebesgue integral [11], some
amount of measure theory and topology to express the prior, etc) (Fig. 2). To
manage this underlying complexity, a divide-and-conquer approach that synthe-
sizes both “bottom-up” and “top-down” proof development may be adopted.
Sometimes, libraries like Coquelicot [8] may be used to develop required formal-
izations, but to quickly demonstrate the applicability of the methods involved,
certain high-level statistical theorems may be taken as axioms, affording the
ability to prove interesting properties about DDDAS. At the same time, the
lower-level theory modules for algebra, analysis, measure theory, etc. can be de-
veloped, with the goal of eventually replacing the axiomatization of high-level
propositions with actual proofs.

This chapter presents the concept of formal correctness envelopes (FCE)
and correctness sentinels for dynamic data-driven aerospace systems [9, 13, 48].
Aerospace systems of the future will be capable of performing a wide spectrum
of functions ranging from flight-diagnosis to autonomous navigation. These func-
tions will utilize different types of algorithms which will have different criteria
for correctness (e.g., an algorithm that computes emergency trajectories will
be correct if it can compute safe trajectories within some predefined time limit
while an algorithm that detects sensor failures will be correct if it can success-
fully detect any error in a sensor data-stream). When the correctness guarantees
of software systems are expressed formally and proven with the help of proof
assistants, the proofs are successful only if certain logical conditions hold in the
underlying context. For dynamic data-driven aerospace systems, these conditions
imply that the properties guaranteed by the proofs may hold only under a com-
putable subset of the application state space. Correctness envelopes represent
the constraints on the operating conditions under which the correctness guar-
antees of a property of a system are valid. These constraints can be continuous
(e.g., membership in some interval of the state space) or non-continuous (e.g.,
the Gaussian distribution [40] of the sample history of a sensor). The presence
of dedicated correctness envelopes for different properties provides the opportu-
nity for monitoring the system state during runtime to detect which properties
can be guaranteed. Correctness sentinels are special runtime accessible programs
that can analyze the system state in runtime and provide information about the
status of the system state with respect to the correctness envelopes for different
system properties. FCEs and sentinels allow the development of highly-adaptive
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DDDAS applications that can monitor formal guarantees in real-time and adjust
their operations accordingly to remain within the envelopes of those guarantees.

The rest of the chapter is divided as follows: Section 2 explores some examples
of applications of DDDAS in aerospace systems; Section 3 introduces formal cor-
rectness envelopes, their potential applications in dynamic data-driven aerospace
systems, and correctness envelope sentinels; Section 4 discusses experiments and
results; Section 5 discusses related work; and finally, Section 6 concludes the
chapter with a discussion about potential future directions of work.

2 DDDAS in Safety-Critical Aerospace Systems

Akin to biological organisms, autonomous fly-by-feel aerospace systems of the
future will be able to detect changes in their operation, environment, and their
own structural health to make appropriate changes in their behavior or oper-
ations [25]. Moreover, the future of the NAS will witness a significant rise in
aircraft density (augmented further with the advent of civilian and other classes
of drones), thus making it necessary to develop smarter flight-control systems
that can autonomously navigate through the airspace, plan trajectories during
emergencies, and maintain standard separation from aircraft to avoid near mid-
air collisions (NMAC) [49]. This section showcases a few examples of the appli-
cation of DDDAS in modern aerospace systems for purposes like self-diagnosis,
improved situational awareness, and decision-support for avionics and pilots.

2.1 Fly-by-feel state awareness method for stall detection
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Fig. 3: Data-driven fly-by-feel structural and aeroelastic awareness.

Traditional aircraft state awareness methods, in addition to altitude, air-
speed, acceleration, turbulence, etc, with respect to stalling awareness situations,
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are limited to the attitude information and do not take into account structural
and aeroelastic feedback from the aircraft [30]. A data-driven fly-by-feel state
awareness method for stall detection uses response signals recorded from piezo-
electric sensors placed on the wings of an aircraft [31] to detect the stall states
of an aircraft. Fig. 3 shows the schematic representation of a framework which
uses data from the sensors under varying flight states. Given dynamic noise-
corrupted response-only data records collected from a sample of the admissible
flight states, each state can be characterized by a specific airspeed and angle of
attack (AoA) and kept constant for the duration of the data collection. Hence, it
is possible to develop appropriate fly-by-feel methods capable of monitoring and
detecting aerodynamic stall without the use of attitude information [32]. The

Fig. 4: Visualization of experimental signal energy used to train model.

mathematical model for stall detection is based upon experimental wind tunnel
data, obtained by controlling the AoA and airspeed configuration and record-
ing the mean and variance of signal energy. Fig. 4 illustrates a visualization of
the signal energy collected from one sensor on the wing (for a fixed airspeed of
15 m/s and a fixed angle of attack of 7 degrees, with a sampling rate of 1000
Hz). Specific angle of attack/airspeed configurations correlate with aeroelastic
properties, allowing certain signal energy distributions to be associated with
stall/no-stall conditions.

2.2 Emergency trajectory generation

In aircraft loss-of-thrust emergencies (resulting from partial or complete loss
of engine power), the response time is critical and it is imperative to quickly
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provide pilots with feasible landing trajectories. A dynamic data-driven approach
(Fig. 5) can be employed for generating emergency trajectories for a fixed-wing
aircraft that has sustained physical damages [45–47]. There are four components
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Fig. 5: Dynamic data-driven feedback loop for emergency trajectory generation.
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to consider for emergency response: the damaged aircraft model, flight trajectory
generator, aircraft/sensors and the model refinement component. The damaged
aircraft model (Fig. 6) takes as input the new baseline glide ratio g0 and a drag
multiplier function δ. For every possible bank angle θ, airspeed vx, and drag
configuration k, the model computes the corresponding glide ratio g(θ, k) and
the radius of turn r(θ, vx) and sends it to the trajectory generator. A continuous
stream of the pressure altitude z and the airspeed v from the sensors are used
to estimate the observed glide ratio ĝ(θ, k). For a given instant ti, ĝti(θ, k) is the
ratio of the horizontal distance traveled to the altitude lost in the preceding η
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seconds.

ĝti(θ, k) =
∆x(η, i)

∆z(η, i)
=

∑i
i−η vti

zti−η − zti
Anomalous data is filtered by detecting stable windows of descent (SWD), which
satisfy the following conditions:

– they are intervals of steady descent with no vertical acceleration;
– the distribution of ĝti(θ, k) in a SWD has a standard deviation within a

known threshold στ .

When a SWD ω is detected, the observed glide ratio ĝω(θ, k) is computed for ω
by taking a mean of all values of ĝti(θ, k) observed in ω.

ĝω(θ, k) =

∑n
i=1 ĝti(θ, k)

n
for all ti ∈ ω

The dynamic data-driven feedback loop in Fig. 5 allows the use of real-
time sensor data to compute the glide ratio of an accident aircraft during an
emergency. The resulting trajectories are high fidelity and practical, as they
take into consideration the real-time flight capabilities of the accident aircraft.

2.3 Conflict-aware flight planning

Well-clear volume

Near mid-air collision

Fig. 7: An NMAC is caused by the intersection of the WCVs of two aircraft.

Loss of standard separation between two aircraft can be potentially catas-
trophic since it can cause an NMAC or a wake-vortex induced roll [49]. The
well-clear volume (WCV) of an aircraft is a cylindrical volume of space (with
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Fig. 8: Dynamic data-driven feedback loop for conflict-aware flight planning.

diameter D and height H) surrounding the aircraft [42]. Two aircraft are in an
NMAC if their WCVs intersect (Fig. 7).

Given the 2D horizontal position and velocity vectors of two aircraft a and b
at time t0 as sat0 , sbt0 , vat0 , and vbt0 , and their vertical position and velocity vectors
as sat0 , sbt0 , vat0 , and vbt0 [41], then, assuming both aircraft maintain constant
velocity flight, their relative position and relative velocity in the horizontal (xy)
and vertical dimensions (z) at time t0 can be obtained by the following equations:

sxy,t0 = sat0 − sbt0

vxy,t0 = vat0 − vbt0

sz,t0 = sat0 − s
b
t0

vz,t0 = vat0 − v
b
t0

Their relative horizontal and vertical positions at any time t ≥ t0 can now be
computed as:

sxy,t = sxy,t0 + (t− t0)vxy,t0

sz,t = sz,t0 + (t− t0)vz,t0

An NMAC is possible at time t if the following conditions simultaneously hold:

‖sxy,t‖ < D

|sz,t| < H

For conflict-aware flight planning [49], an aircraft (the ownship) collects air-
traffic data from a network of ground-stations, satellites, and aircraft called the
Internet-of-Planes (IoP) [48, 50]. The dynamic data-driven feedback loop for
conflict-aware flight planning (Fig. 8) updates the NMAC detection algorithm
by using real-time data from the IoP, which can enhance the sensing range of
the ownship. The real-time data allows the ownship to monitor and resolve (if
possible) potential NMACS between its current flight-plan and traffic aircraft.
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3 Formal Correctness Envelopes for DDDAS

As discussed in Section 1, correctness properties of a system can be logically veri-
fied using machine-checked formal proofs. Formal proofs are written and checked
using proof assistants and each proof depends on certain logical preconditions.
Some of these preconditions are data-driven and can be quantified and measured
using data collected from local and remote sensors. Such data-driven precondi-
tions allow defining FCEs for a system as computable subsets of the DDDAS
state space where the correctness properties of the system can be irrefutably
guaranteed. For specific system properties, the FCEs are determined by specific
types of data. At any time, the system may be well within the boundaries of the
FCE for one property, while being outside the FCE for some other property.

This section describes two use cases to showcase the use of FCEs in dynamic
data-driven aerospace systems – the first use case has been motivated by the use
of local sensor data to determine the characteristics of the flight-profile of an
aircraft during flight, as discussed in Section 2.1; the second use case has been
motivated by the use of remote sensor data (sensors, here, being other aircraft,
ground-stations, and satellites) for conflict-aware flight-planning application in
the IoP, as discussed in Section 2.3.

3.1 A formal safety envelope

Considering the model used for fly-by-feel state awareness described in Sec-
tion 2.1 [9], there are two distinct scenarios where one would like to verify cor-
rectness properties. First, given the assumption that the experimental signal
energy data collected from the piezoelectric sensors is normally distributed, one
would want to be sure that the model behaves “correctly”. Additionally, there
should be some interval (or union of intervals) of signal energies that the model
classifies as unlikely to correspond to the stall state (assuming some reasonable
significance level). It is important to distinguish these cases and to treat them
appropriately. In the end, the model can be represented as a function

m : Rn → (R→ {Stall,No Stall})

where n is the size of the training data (in the model n = 90000). This function
can be uncurried1 to a function

m′ : Rn × R→ {Stall,No Stall},

which allows us to treat pairs of training data and runtime signal energies as
system states.

A formal safety2 envelope, analogous to a flight safety envelope describing the
safe operating conditions of an aircraft, is a computable subset of the DDDAS

1 A function which takes all its arguments at once.
2 “Safety” in this context implies correct operation of a system
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state space that describes the (ideally weakest possible) constraints on the op-
erating conditions under which a correctness guarantee is valid. A subset can
involve both continuous constraints (e.g., membership in some interval of the
state space) and non-continuous constraints (e.g., Gaussian distribution of the
sample history of a sensor). Fig. 9 shows the continuous constraint placed upon
runtime signal energy. Alongside this continuous constraint is a statistical con-
straint on the distribution of signal energy sensor data at the time of training.

Assuming both the continuous and non-continuous constraints hold for a
given training data/runtime signal energy pair, the goal is to prove that the
model always correctly classifies that runtime signal energy. The proof relies on
some extensional properties of the model function m′. Here, m′ is treated as
follows: there is a set of signal energy means and variances D(T ) taken from
the experimental data T at various airspeeds and angles of attack. Certain air-
speed/angle of attack configurations correspond to stall (determined using phys-
ical properties, or even by observation), and therefore, a certain subset of signal
energy means and variances S(T ) ⊆ D(T ) corresponds to stall states. The model
function m′ tests the runtime signal energy against every mean and variance in
that subset S(T ) assuming normality, and it classifies that runtime signal en-
ergy as likely to correspond to stall if it is suitably likely (e.g., 99%) to occur
in any such distribution, while also being suitably unlikely (e.g., 1%) for all dis-
tributions in D(T ) \ S(T ). Analogously, it classifies that runtime signal energy
as unlikely to correspond to stall if it is likely in any D(T ) \ S(T ), while also
unlikely in all S(T ). From here, it is relatively easy to verify model correctness.
Since it is known that the experimental data follows a normal distribution, it is
also known that each distribution in D(T ) is normal. The goal is to prove that
for all signal energies in a given interval, the model behaves in a predictable way.
Formally, one can express a proposition for the no-stall classification as

∀(〈x, T 〉 : R× Rn).〈x, T 〉 ∈ Safe→ m′(〈x, T 〉) = No Stall
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where Safe, the safe subset, is all 〈x, T 〉 satisfying:

(∀d ∈ D(T ) : N (d)) ∧ (∃d ∈ D(T ) \ S(T ) : f(x, d)) ∧ (∀d ∈ S(T ) : ¬f(x, d))

where N (d) is a predicate that returns True if the distribution d is Gaussian in
nature and f(x, d) is a predicate that returns True if the signal energy x is likely
to belong to the distribution d, given the mean and standard deviation of d.
Analogously, the corresponding proposition for the stall classification is similar
except for an inversion of the roles of S(T ) and D(T ) \ S(T ):

∀(〈x, T 〉 : R× Rn).〈x, T 〉 ∈ Safe′ → m′(〈x, T 〉) = Stall

where the new safe subset Safe′ is all 〈x, T 〉 satisfying

(∀d ∈ D(T ) : N (d)) ∧ (∃d ∈ S(T ) : f(x, d)) ∧ (∀d ∈ D(T ) \ S(T ) : ¬f(x, d))

As an example, to check if x lies within 2 standard deviations from the mean
of the distribution d, the function f(x, d) can be defined as follows:

f(x, d) ≡ |x− µ(d)| ≤ 2σ(d)

where µ(d) and σ(d) are the mean and standard deviation of d, respectively.
Therefore, for the Safe subset for no-stall classification, the required condition
is:

(∀(d ∈ D(T )) : N (d))

∧ (∃(d ∈ D(T ) \ S(T )) : |x− µ(d)| ≤ 2σ(d))

∧ (∀(d ∈ S(T )) : |x− µ(d)| > 2σ(d))

Similarly, for the Safe′ subset for stall classification, the required condition is:

(∀(d ∈ D(T )) : N (d))

∧ (∃(d ∈ S(T )) : |x− µ(d)| ≤ 2σ(d))

∧ (∀(d ∈ D(T ) \ S(T )) : |x− µ(d)| > 2σ(d))

The formal safety envelope S can now be defined as the union of these subsets:

S = Safe ∪ Safe′

The proofs of these rely on the previously expressed properties of m′: one
can simply compute the cumulative distribution function (CDF) of each Gaus-
sian distribution (known from the first assumption in the safe subsets) given
minimum/maximum values of x.

3.2 A formal progress envelope

In the conflict-aware flight planning application described in Section 2.3, after
an ownship computes a safe set of flight-plans, there needs to be a consensus
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regarding that safe set among a subset of participants in the IoP [50]. Consensus
is required because the algorithm for generating a conflict-free flight-plan for an
ownship assumes that the traffic aircraft do not deviate from their flight-plans. If
the set of traffic flight-plans changes, then the previously computed flight-plan
for the ownship may no longer be conflict-free and a new flight-plan must be
computed by considering the new traffic flight-plans.

Consensus algorithms are widely used in distributed lock services [10], cryp-
tocurrency networks [63], smart power grids [62], etc. The problem of achieving
consensus among a network of aircraft, however, is not trivial. The challenges
include, but are not limited to: (1) the dynamic nature of IoP - aircraft may
temporarily become disconnected from ground-stations and other aircraft; (2)
limitations of the network - message loss and message propagation delays may
lead to deadlocks and livelocks in consensus algorithms; (3) lack of a global clock
- makes it difficult to determine the total ordering of events across multiple sys-
tems; and (4) asynchronicity of the network - unknown message propagation time
makes it difficult to differentiate node failures from message delays. Consensus
algorithms like Paxos [35] solve the problem of distributed consensus by elect-
ing a leader and guaranteeing the properties of consistency and progress under
the assumption of a single leader [19]. However, this leader-follower method cre-
ates a communication bottleneck and makes the leader a unique point of failure
for progress. The Synod algorithm [34], which can guarantee both consistency
and progress (under certain conditions) in the absence of a unique leader, is,
therefore, better suited for achieving consensus in the IoP.

The Synod protocol assumes an asynchronous, non-Byzantine system model
in which agents operate at arbitrary speed, may fail and restart, and have stable
storage. In this system model, messages can be duplicated, lost, and have arbi-
trary transmission times, but cannot be corrupted [35]. There are two logically
separate sets of agents: proposers - the set of agents that can propose values to
be chosen; acceptors - the set of agents that can vote on which value should be
chosen; and learners - the set of agents that learn when a value is chosen by a
majority of acceptors. The proposers choose a number called the proposal number
which is used by the acceptors to vote on values. It can be formally proven that
the Synod algorithm makes progress under the following conservative conditions:

– some proposal number successfully completes both phases of the protocol,
– enough agents are non-faulty, i.e., they perform their expected actions, and
– all messages sent by non-faulty agents are eventually delivered.

Progress envelopes for data-driven systems are defined as computable sub-
sets of the system state space in which progress can be guaranteed [48]. For
the Synod algorithm, the conditions affected by network uncertainties (particu-
larly the conditions that enough agents are non-faulty and all messages sent by
non-faulty agents are eventually delivered) can be definitively quantified, mea-
sured, and used to classify the network characteristics into distinct subsets where
progress guarantees may or may not hold.

To illustrate an example of how progress envelopes may be used, consider the
case of the Synod algorithm where the network transmits data using Automatic



14 Paul, Patterson, Kopsaftopoulos, and Varela

Dependent Surveillance-Broadcast (ADS-B). ADS-B uses radio signals for com-
munication, the propagation of which is affected by the total electron content
(TEC) in the atmosphere [60]. Also represent the TEC of the atmosphere by τ .
If all other factors affecting propagation delay can be represented by a constant
K, then one can represent propagation delay ∆t using a function Φ of TEC.

∆t = Φ(τ,K)

Also represent the set of proposers by P, the set of acceptors by A, the set of
learners by L, the set of all possible TEC by Γ , the set of all points in time as
T , and the predicate that checks the availability of an agent x at any given time
t by α(x, t). It is possible to quantify and measure both Φ(τ) and α(x, t). Now,
the data-driven progress envelope for the Synod algorithm can be expressed as
the set of network characteristics satisfying the following:

∀τ ∈ Γ :
(
Φ(τ,K) <∞

)
∧∀t ∈ T , p ∈ P, a ∈ A, l ∈ L :

(
α(p, t)∧α(a, t)∧α(l, t)

)
The above envelope is a conjunction of the conditions that affect eventual mes-
sage delivery and availability of all agents at all times.

3.3 Correctness sentinels
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System Model

Development of
Software Control

Systems

Live
System

Runtime Sentinels

Operator

Inform

Inform

Generate Run On

Run On

Fig. 10: Workflow for verification with runtime sentinels.

A correctness sentinel is a runtime-accessible program that can monitor real-
time data-streams to detect if the data satisfies correctness envelope constraints
[9, 13]. The ability to automatically generate sentinels from proof-accessible
domain-specific languages is desirable as it allows the correctness of the sentinels
to be guaranteed just like the code generation module of a verified compiler [36].
Integrating sentinels as a part of the larger data-driven system provides the
ability to dynamically monitor the system state for runtime-awareness of which
formal properties can be guaranteed (Fig. 10) at any time.

It should be noted that the sentinels may not correspond exactly with the
formal assumption. For example, a test for normality up to some significance level
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Fig. 11: Normality visualization for preprocessed (left) and raw (right) data.

does not imply that the data is normal. Furthermore, preprocessing steps like
filtering and downsampling can have significant effects on normality assumptions
(Fig. 11). Additionally, floating-point arithmetic is not the same as arithmetic
over real numbers, making it difficult to reason about it in a formal setting.
Therefore, the sentinels, for now, provide only a useful estimate of the assumption
validity at runtime.

4 Experiments and Results
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Fig. 12: Signal energy from sensor 3 for a constant airspeed of 15 m/s.
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Fig. 13: The envelope metric Ψ for varying values of the Mσ multiplier.

To verify the effectiveness of the correctness envelopes and correctness enve-
lope sentinels, safety envelope sentinels have been implemented for the stochastic
state awareness application of Section 3.1.

Data was collected from 8 piezoelectric sensors along a prototype composite
wing which was tested in an open-loop low-turbulence wind tunnel that has a
square test section of 0.84 m × 0.84 m and can achieve continuous flow speeds of
approximately 30 m/s [32]. A series of wind tunnel experiments were conducted
by varying the AoA (discrete values from 0◦ to 17◦) and airspeed (discrete values
from 6 m/s to 22 m/s). For each AoA, data for 91 seconds was collected with a
sampling frequency of 1000 samples per second. For stall detection, a constant
airspeed of 15 m/s was considered (Fig. 12) and the corresponding signal energy
values for each AoA was split into windows of 1000 samples. The mean and stan-
dard deviation of the distribution corresponding to each window was calculated
and used to form the set D(T ) described in Section 3.1.

The sentinel, which was written in the Python programming language [55],
checked the signal energy values to determine if they were within the Safe/Safe′

envelopes, under the assumption that the distribution d is Gaussian in nature.
To capture the effect of varying levels of confidence on the safety envelopes, the
value of the sigma multiplier Mσ was varied from 0 to 4 with a step-size of 0.5
in the experiments and an envelope metric Ψ was introduced to compare the
envelope for each value of Mσ. Ψ was defined as the total number of values of
AoA corresponding to which there were no signal energy values which fell outside
the envelope. Formally, one can interpret Ψ as:

Ψ = |{θ ∈ A : (∀x ∈ X(θ) : x ∈ S(Mσ))}|

where A is the set of all AoA, X(θ) is the set of all signal energies corresponding
to the AoA value θ, and | | represents set cardinality.
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Fig. 14: A portion of the safety envelope (shaded region) detected from the input
signals for Mσ = 2 (+ = True, − = False).

From Fig. 13, which shows the variation of Ψ with varying values of Mσ, it
is clear that the current model for stall detection works best with Mσ = 1.8,
giving the best value of Ψ for the safety envelope. In this case, 17 of the 18
values of AoA considered for the experiment, fall completely under the safety
envelope, resulting in the most flexible envelope for the different values of Mσ

considered in the experiment. The outputs of the sentinel corresponding to the
input signal energies makes it possible to clearly split the range of signal energies
into separate regions where the safety envelope holds or does not hold. Fig. 14
represents a portion of the safety envelope detected by the sentinels for Mσ = 2.
The smaller values of Ψ correspond to higher confidence levels and indicate that
the current model is not very efficient and there is a need for more robust and
advanced methodologies. However, these results clearly show the effectiveness of
this approach in detecting the Safe and Safe′ subsets from runtime data, even
though there is room for improvement.

5 Related Work

Typically, verification efforts focused on hardware and software systems have
been primarily concerned with applying automated methods, for example, model
checking [56]. More recently, however, there has been interest in applying interac-
tive or human-guided techniques. For example, the VeriDrone project [54] builds
upon existing work using differential dynamic logic [52] to verify properties of hy-
brid systems [17] using an interactive theorem-proving system. There is existing
work on integrating automated tools with interactive theorem-provers [3, 6, 16,
38], allowing the use of a theorem-prover for high-level organization and proofs
of difficult lemmas while leaving the mundane and well-understood work to au-
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tomated tools. Previous work on runtime monitors for verified systems exist.
Mitsch et al. [39] have proposed “Modelplex”, which analyzes a real system im-
plementation during runtime to monitor if the system is in compliance with the
verified models. Pike et al. [51] have investigated the applications of “Copilot”, a
language and compiler designed for generating monitors for distributed, real-time
systems. They generate C [27] runtime monitors from specifications written in a
Haskell embedded domain-specific language [59] and can verify code-generation
backends using CompCert [37] and CBMC [33].

Formal progress properties for consensus protocols have been previously in-
vestigated. Hawblitzel et al. [19] introduce IronFleet, a framework for proving
progress and consistency properties of distributed systems. Konnov et al. [29]
propose a model checking framework for verifying the safety and progress prop-
erty of distributed algorithms like Paxos. Dragoi et al. [15] introduce PSYNC,
for the writing, execution, and verification of distributed algorithms.

A multifidelity approach for DDDAS, that draws upon information from mul-
tiple modelling and sensing options with varying levels of fidelity, has been used
for providing stochastic predictions for real-time decision-support systems [1]. It
uses a resource-allocation procedure that supports decision-making about when
and what to measure from sensors, which model to use, and what are the current
quantities of interest. From the perspective of FCEs, each model may be associ-
ated with a different envelope for the same system property, where the quality
of the envelope (weak/strong) is proportional to the fidelity level of the model.

The work presented in this chapter improves upon the state of the art by
defining correctness envelopes and extending runtime monitors from detecting
whether all properties of a system hold to identifying what properties of a system
can be guaranteed under the current operating conditions. The formal correct-
ness envelope (FCE) approach allows for providing probabilistic guarantees of
system properties which can be associated with confidence values if desired.

6 Conclusion

This chapter has presented the concept of formal correctness envelopes (FCE)
for dynamic data-driven aerospace systems. Correctness envelopes enable data-
driven systems to analyze if a particular correctness guarantee holds for a given
system state. A class of runtime accessible programs called correctness sentinels,
which can monitor system state in real-time and detect if the state satisfies the
envelope constraints, has also been presented. The chapter also discusses the
wide-ranging applications of DDDAS in smart aerospace systems of the future
and the scope of formal verification of such safety-critical systems using FCEs.

It should, however, be noted that correctness envelopes for a particular prop-
erty can vary from weak to strong. For any given property, a stronger envelope
imposes more stringent restrictions on the system than a weaker envelope. It is
usually desirable to ensure that the envelopes are the weakest possible so that
the corresponding guarantees are tolerant to more variations in the operating
conditions of the system. It may be possible to drive the decision-making pro-
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cedure of the multifidelity model approach for DDDAS (discussed in Section 5)
based on the desired quality of envelopes for a given set of system properties.

A formidable challenge is to generate correct sentinels from the system spec-
ifications, as discussed in Section 3.3. Therefore, an important topic for future
research is to investigate efficient procedures to connect the formal proof develop-
ment with correctness sentinels. The stochastic nature of data-driven aerospace
systems also implies that certain system properties can not only be expressed
as binary values but can also be expressed by continuous values with associated
confidence levels. Hence, another potential direction of future research is the
development of non-binary envelopes so that the corresponding sentinels can
analyze real-time data-streams and provide stochastic information about the
status of the system with respect to the correctness proofs during runtime. In-
vestigating the integration of the FCE approach with the multifidelity approach
for DDDAS to facilitate envelope-dependent decision-making considerations for
resource allocation is another interesting future direction of work.
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