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Abstract. This work investigates applying critically verified Cramer-
Rao Lower Bound theorem, within the framework of Dynamic Data
Driven Applications Systems (DDDAS), on a stochastic Vector-dependent
Functionally Pooled Auto-Regressive (VFP-AR) model. (i) The VFP-AR
model is identified via data obtained from wind tunnel experiments on
a “fly-by-feel” wing structure under multiple flight states (i.e. angle of
attack, velocity). (ii) CRLB is estimated at each true flight state reflect-
ing the state estimation capability of the model. At the estimated flight
states, corresponding CRLBs are given by testing data segment. (iii)
Apart from the CRLB given by pristine data and model, CRLBs are esti-
mated using either artificially corrupted testing data or sub-optimal mod-
els. Comparisons are made between CRLB and state estimations from
corrupted and pristine conditions. (iv) The effect of corrupted data and
degraded model is evaluated regarding the mechanically verified formal
proof of the Cramer-Rao Lower Bound (CRLB) Theorem using Athena,
which provides irrefutable guarantee of soundness as long as specified as-
sumptions are followed. The results of the study indicate the potential of
using a CRLB-based formal verification framework for state estimation
via stochastic FP time series models
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1 Introduction

Future intelligent aerial vehicles will be able to “feel,” “think,” and “react” in
real time based on high-resolution ubiquitous sensing leading to autonomous op-
eration based on unprecedented self-awareness and self-diagnostic capabilities.
This concept falls within the core of Dynamic Data-Driven Application Systems
(DDDAS) concept as they have to dynamically incorporate real-time data into
the modeling, learning, and decision making application phases, and in reverse,
steer the data measurement process based on the system’s dynamic data inte-
gration and interpretation. [3,5,7].

In this study, state awareness is achieved by data-driven state awareness
approaches based on functionally pooled stochastic time series models and ex-
perimentally assessed on a prototype self-sensing wing structure subjected to a
series of wind tunnel experiments under multiple flight states —defined by a pair
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of angle of attack (AoA) and airspeed [8]. Parametric vector-dependent function-
ally pooled auto-regressive (VFP-AR) models are used to represent the dynamics
of the wing as it undergoes different flight states. Model parameter estimation
is based on a weighted least squares (WLS) approach. In addition, Cramer-Rao
lower bound of VFP-AR model is formulated and introduced as means to reflect
on the quality of the data and models. The formally verified CRLB theorem
proved by Athena provides prior knowledge of state estimation capability based
on data condition, which is checked experimentally with artificially introduced
data and model abnormality. This study (i) identifies a VFP-AR model with ex-
perimental flight data for state estimation, and (ii) validates the properties and
theorem of Cramer-Rao lower bound with artificially introduced data corruption
and model degradation.

2 Functionally Pooled Time Series Models
An AR(na) model takes the following form [11]:

ylt]+ Y ai-ylt—i) =elt]  e[t] ~ iidN(0,0?) (1)
=1

with ¢ designating the normalized discrete time (¢t = 1,2, 3, ... with absolute time
being (t — 1)Ts, where Ty stands for the sampling period), y[t] the measured
vibration response signals captured by accelerometer on wing surface, na the
AR polynomial order, and e[t] the stochastic model residual (one-step-ahead
prediction error) sequence, that is a white (serially uncorrelated), Gaussian,
zero mean with variance o2 sequence. The symbol N(,-) designates Gaussian
distribution with the indicated mean and variance, and iid stands for identically
independently distributed.

The VFP representation combines structure dynamics captured under multi-
ple states by AR models to be treated as one entity in model identification. Fur-
thermore, the stochasticity in the data set is characterized as time series residual
covariance and related to damage state vector via functional dependency [6,9].
The general form of VFP-AR(na), model is given by [9]:

na p
vt = > ai(k) - yelt —il +enlt]  ai(k) = a;;G;(k) (2)
j=1

=1

where na designating the AR order, p the number of function basis. with y[t]
the data under various states specified by state vector k = [k, ko, ..., kn]. exlt]
is the residual (one-step-ahead prediction error) sequence of the model, which is
assumed a white (serially uncorrelated) zero mean sequence with variance o2 (k).
G, (k) is the function basis (e.g., Chebyshev, Legendre, Jacobi and etc), where
the model parameters a;(k) are modeled as explicit functions of the state vector
k. The states are estimated by minimizing model residual of VFP-AR(na), with
respect to testing signal over the range of flight state vector (k).

2.1 Formulation of CRLB in VFP-AR model

As a minimum variance unbiased (MVU) estimator for an unbiased state esti-
mator, CRLB informs real-time state awareness with insights into capability of
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current data-driven model based on in-flight data [4]. The VFP-AR model is
identified via the standard model identification process introduced by [11]. The
regression form of equations (2) is obtained by parameterizing equations (2) in

terms of the parameter vector (8 = [a11 ara ... a;; : 02(k) ]7). Then, the

parameter vector can be estimated from the measured signals via Weighted Least
Squares (WLS) method. The CRLB of VFP-AR model is formulated for state

estimator k with unknown signal, Yu[t]. Estimator k takes the form:

N
N 1 N N
= arg mH}nZ el[t, kleu[t, k], o2(k)= N;eu[t,k}ef[t,k} (3)
where e, is the model residual sequence and o2 (k) is the corresponding model
residual variance at estimated state. Now, k is assumed to be asymptotically
(N — oo) Gaussian distributed with k ~ A (k, Xg). The log-likelihood function
of k based on N samples of unknown signal is given by :

A~ eT 7 e 7
in £(k, o2 (k) = — 5 n(2m) — Tin(e?) - 5 L) Deu®). )
t=1 u

Then, the Cramer Rao Lower bound for ¥ is given by:

1
menun - [E[ (ot ety ®

3 Machine-Checked Proof of the CRLB Theorem

Data corruption caused by imprecision in avionics engineering or hostile cy-
ber activities may affect the decision chain of DDDAS systems and can lead
to catastrophic errors in safety-critical aerospace systems. For this reason, it is
necessary to rigorously verify all aspects of such systems to ensure that they will
behave correctly within some acceptable bounds. Informal proofs of mathemat-
ical theorems can have errors [10], but formal methods allow the use of precise
logical and mathematical techniques for the rigorous verification of such proofs.
This is important in avionics engineering where even subtle imprecision can be
catastrophic. A mechanically verified formal proof can provide an irrefutable
guarantee that the property in question will be true as long as the assumptions
made during proof development hold.

Athena [2] is an interactive proof assistant that can be used to develop and
mechanically verify formal proofs of properties. It is based on many-sorted first
order logic [12] and uses natural deduction [1] style proofs, which is an intu-
itive way of reasoning. Athena also provides a soundness guarantee that any
proven theorem will be a logical consequence of sentences in Athena’s assump-
tion base, which is a set of sentences that have either been proven or asserted to
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g M
define CRLB-Theorem :=
(forall theta X
(not
(:
(Random.expected (Random.pow
(Derivative.parDifLog (Logarithm.ln (Vector.
jointDen X theta)) theta) 2)) 0.0 ))
==>
(( (RealExt.pow
(Derivative.parDif
(Random.expected
(Estimator.estOut (Estimator.consEst (Model.consMod theta X)))) theta)
2)
/
(Random.expected (Random.pow
(Derivative.parDifLog (Logarithm.ln (Vector.
jointDen X theta)) theta) 2)))
<=
(Random.var (Estimator.estOut (Estimator.consEst (Model.consMod theta X))))))
conclude CRLB-Theorem
pick-any theta
pick-any X
assume (not (= (Random.expected (Random.pow (Derivative.parDifLog (Logarithm.ln (
Vector.jointDen X theta)) theta) 2)) 0.0 )
let{
W := (Estimator.estOut (Estimator.consEst (Model.consMod theta X)));
Y := (Derivative.parDifLog (Logarithm.ln (Vector.jointDen X theta)) theta);
V_Y_not_zero := (not (= (Random.expected (Random.pow (Derivative.parDifLog (
Logarithm.1ln (Vector.jointDen X theta)) theta) 2) ) 0.0 ) );
conn-2-Covariance-Inequality-THEOREM := (!uspec (!uspec
Covariance-Inequality-THEOREM theta) X);
cov-inequality-expression := (!mp conn-2-Covariance-Inequality-THEOREM
V_Y_not_zero);
rl := (RealExt.pow (Derivative.parDif (Random.expected (Estimator.estOut (
Estimator.consEst (Model.consMod theta X)))) theta) 2);
r2 := (Random.var (Estimator.estOut (Estimator.consEst (Model.consMod theta X))));
r3 := (Random.expected (Random.pow (Derivative.parDifLog (Logarithm.ln (Vector.
jointDen X theta)) theta) 2) );
conn-2-swap-sides-axiom := (!uspec (!uspec (!uspec RealExt.swap-sides-axiom rl) r2
) r3);
cov<=VXVY-implies—-cov_by_VY=<=VX := (!mp conn-2-swap-sides—-axiom V_Y_not_zero)
}
(!'mp cov<=VXVY-implies-cov_by_VY=<=VX cov-inequality-expression)
J

Fig. 1: Specification and proof of the CRLB Theorem in Athena.

be true. We have developed a mechanically verified proof (Fig. 1) of the Cramer-
Rao Lower Bound Theorem (CRLB-THEOREM) using Athena. Mathematically,
CRLB-THEOREM states that:

(ZET))
E [(% log f(X; 9))2}

where X = (X1, X2,...Xxn) € RY is a random vector with joint density f(X;6),
6 € © C R, and T(X) is a biased estimator of §. Formally specifying and proving
the correctness of complex mathematical statements, such as CRLB-THEOREWM,
in interactive proof assistants like Athena requires access to formal constructs
that are sufficiently expressive to correctly specify such statements. Further-
more, for formal reasoning about such high-level statistical properties, it is also
necessary to have access to formal definitions from across mathematics, such as
algebraic theory, linear algebra, measure theory, and statistics, that can support

2
E (gelogf(X;G)) #00] = |V[T(X)] >
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datatype Estimator := (consEst Model.Model) #consEst (X ~ P_theta) -> theta_hat (X)
declare biasedEstimator : [Estimator Real] -> Boolean
declare estOut : [Estimator] -> Random.RandVar

datatype Model := (consMod Real Vector.VectRandom)

Fig. 2: Formal Athena constructs we have developed for the CRLB proof.

the proofs of the properties. Developing such formal constructs and definitions
in a machine-readable language is a challenging task since it requires domain
knowledge of all aspects of the systems that need to be specified, knowledge of
formal logic and reasoning techniques, and proficiency in the machine-readable
language. For this reason, we have developed an open-source proof library in
Athena! that can be used for reasoning about mathematical properties of data-
driven aerospace systems [13,14]. Our specification and proof of the CRLB the-
orem (Fig. 1) rely on reusable formal constructs from our Athena library that
are necessary for the proof to be mechanically verified. For example, we have
created the Athena datatype Estimator to represent the domain of all estima-
tors and a relation biasedEstimator over the class of all estimators to denote
if an estimator is a biased estimator or not. Similarly, we have also created a
datatype Model to denote the domain of all models. Our Athena statement of
CRLB shown in Fig. 1 uses these constructs along with other constructs in our
Athena library that we have developed for expressing concepts like expected
value (Random.expected) and variance (Random.var) of random variables.

4 Experimental Results and Discussion

Structural response data is obtained through a series of wind-tunnel experiments.
A “fly-by-feel” capable modular wing (NACA 4412) with internally integrated
accelerometer and strain gauges is tested under multiple flights states charac-
terized by airspeed (8 ~ 20 m/s with 2 m/s increment) and angle of attack
(1 ~ 15 deg with 2 deg increment). Acceleration and strain signals from in-
ternally mounted ICP sensors are recorded at a sampling frequency of 512 Hz
for 128 s (N = 65536). The flight states vector k is formed as k = [k1, k2,
where k; is air velocity and ko is angle of attack. A data segment of N = 2048
(t =1s ~ 5 s) from each flight state is used as training data set for VFP-
AR model identification. The testing data set consists of non-overlapping signal
segments of N = 2048 (t = 10 s ~ 14 s) collected from the same flight states.
Simulated data corruptions are applied to break the data normality assumption
emphasized by the machine-checked CRLB theorem. “Notching” is created by
uniformly replacing 10% of data with zeros replicating sensor connection faults.
The CRLB of optimal model selected is estimated with respect to increasing
data length from N = 500 to N = 10000 with 500 increment. Fig. 3 shows the
CRLB converging in 2-D ellipsoid representation, which makes it easy to see
the best achievable state estimation standard deviation as a function of flight
parameters and flight states.

! The library can be found at https://wcl.cs.rpi.edu/assure
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Fig.3: CRLB estimations ellipse by 99% confidence interval assumed at exact
flight state for VFPAR(20)19 with N = 500 (blue) to N = 10000 (red).
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Fig. 4: Indicative CRLB estimation results comparing (a)(b)(c) uncorrupted case
and (d)(e)(f) “notching” case at flight states: Velocity = 10 m/s and AoA =
1 deg. (c)(f) show CRLB in ellipsoid presentation

Aiming to evaluate the performance of CRLB under various data and model
conditions, 4 different simulated data corruption and one sub-optimal model is
used for flight state estimation and corresponding CRLBs at estimated flights
states are calculated. The CRLBs obtained from corrupted conditions are then
compared with the model residual covariance and true CRLBs where true flight
states are assumed. Fig. 4(a)(b) shows the CRLB baseline using pristine data and
optimal model (VFP — AR(20)19) at flight states {AoA = 1deg,V = 10 m/s}
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Fig.5: Indicative CRLB real-time monitoring results based on data corrupted
by zeros at t = 30 s at flight states: Velocity = 14 m/s and AoA = 13 deg

and {AoA = 7deg,V = 8 m/s}. The convergence of CRLB w.r.t increasing N is
observed (dotted blue line) and the CRLBs at estimated flight states (magenta
line) approximate the CRLB baseline (dotted blue line) at N = 2048. Also,
CRLBs at estimations are approached by estimator standard deviation and the
lower bound is followed, demonstrating the efficiency of state estimator. Fig.
4(c) shows consensus between the covariance ellipse of estimations and baseline
CRLB ellipse (dotted blue line). For corrupted cases, “notching” the signals
provides poor state estimation results shown in Fig. 4(d)(e). In Fig. 4(e), the
CRLB of angle of attack at estimated state drops below the baseline CRLB
violating the CRLB theorem.

A simulated real-time monitoring of flight state is implemented by intro-
ducing a “notching” corruption starting at ¢t = 30 s within a 64 s signal at
{AoA = 13deg,V = 14 m/s}. Test data window (N = 2000) starts from ¢t = 0 s
and advance with a N = 1000 overlap until the end. Fig. 5(a)(b) shows the flight
state estimation deviating from true value and estimated CRLB begin to drop
lower then baseline CRLB when testing data begins to include corrupted data
at t = 26.09375 s. Additional results can be found in Appendix.

5 Conclusions

This investigating on the application of formally verified Cramer-Rao lower
bound theorem in flight state awareness via VFP-AR model is presented based
on data collected from a wing structure subjected to multiple flight states in
wind tunnel experiments. The VFP-AR model achieves flight state awareness
and provides acceptable state estimation for most test cases. The comparison
between pristine CRLB and CRLB derived from corrupted data sets shows that
violation of data normality asserted by formally verified CRLB theorem may
causes invalidity in estimated CRLB. The case of sub-optimal model exhibits
the capability of CRLB for determining the performance of a model. In general,
CRLB-based formal verification framework has great potential in state estima-
tion via stochastic FP time series models.
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A Appendix

A.1 Additional information on machine-checked proof of the CRLB
theorem

define Cov_Prod_Property :=
(forall W Y . ((RealExt.pow (Random.cov W Y) 2)
<= (* (Random.var W) (Random.var Y))))
conclude Cov_Prod_Property
(!force Cov_Prod_Property)

Fig.6: A conjecture specified in Athena, the proof for which has been forced.

We adopted a top-down approach of proof development in which the proofs of
the higher-level theories are developed first followed by the proofs of the required
lower-level theories that support them. Our proof of CRLB-THEOREM, therefore,
currently relies on the following conjectures (under some assumptions) that have
not yet been proven as theorems in our library:

(Cov[W,Y])? < V[W|V[Y]

Cov [T(X), % log f(X; 9)} = %E[T(X)]

(5100 f(Xae)ﬂ

Currently, we have specified these conjectures in our Athena library and have
“forced” their proofs to pass the mechanical verification process (Fig. 6), but we
aim to develop these proofs in the future.

\% {gelogf(X;H)} =F

A.2 State estimation error analysis

Based on VFP — AR(20)19, state estimation error at each flight state varies
from 1% to 20% and depends on flight states.

A.3 Additional cases of model/data corruption

Fig. 8 shows the 1-D form of CRLB (velocity and angle of attack) converging
as data length increase. In Fig. 13, additional noise to the signal affect flight
state estimation, especially airspeed. In this case, it can also be observed that
CRLB at estimated states drops below the true CRLB. Corrupting the data by
'skewing’ and ’clipping’ the signal, Fig. 11 and 12 shows good state estimation
results comparable to using pristine data and no violation of true CRLB is
observed. The results from sub-optimal model in Fig. 14(a)(b)(d)(e) shows less
accurate flight state estimation comparing to that of optimal model. The CRLB
of sub-optimal model campared to that of optimal model in Fig. 14(c)(f).
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Fig. 7: Indicative VFP-AR results: state estimation error with respect to (a) AoA
and (b) Velocity.
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Fig. 8: Indicative CRLB estimation results based on uncorrupted data and op-
timal model at flight states: (a)(b)(c) fixed angle of attack of {3,9,15} deg
J(d)(e)(f) fixed flow velocity of {8,14,20} m/s.

A.4 Real-time monitoring of flight state estimation CRLB

The real-time monitoring of flight state CRLB is implemented by introducing
an persistent data corruption onset within a 64 s signal at flight states: { AoA =
7Tdeg,V = 8 m/s} and {AoA = 13deg,V = 14 m/s}. Real-time test data
segment (N = 2000) is taken from the ¢ = 0 s with a 1000 sample overlap
until the end of signal. The “notching” corruption is applied at ¢ = 30 s. Fig.
15(a)(b) shows that flight state estimation deviates from true value when testing
data segment begins to include corrupted data at t = 26.09375 s. Estimated
CRLB begin to drop lower then pristine CRLB in Fig. 15(b) and shows jumps
in estimated values.
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Fig. 11: Indicative CRLB estimation results based on corrupted data with 10%
value compression in negative readings and 10% value expansion in positive
readings at flight states: (a)(b) Velocity = 10 m/s and AoA = 1 deg ,(c)(d)
Velocity = 8 m/s and AoA = 7 deg.(c)(f) shows CRLB in ellipsoid presentation
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Fig. 12: Indicative CRLB estimation results based on corrupted data suffering
from signal clipping that is 50% of maximum sigal value at flight states: (a)(b)
Velocity = 10 m/s and AoA = 1 deg ,(d)(e) Velocity = 8 m/s and AoA =
7 deg.(c)(f) shows CRLB in ellipsoid presentation
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Fig. 13: Indicative CRLB estimation results based on corrupted data with and
additional white noise of 10% signal standard deviation at flight states: (a)(b)
Velocity = 10 m/s and AoA =1 deg ,(c)(d) Velocity = 8 m/s and AoA = 7 deg.
(c)(f) shows CRLB in ellipsoid presentation
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Fig. 14: Indicative CRLB estimation results based on sub-optimal model esti-
mated with 9 VFP basis (p = 9) at flight states: (a)(b) Velocity = 10 m/s and
AoA =1 deg ,(c)(d) Velocity = 8 m/s and AoA = 7 deg. (c)(f) shows CRLB in

ellipsoid presentation
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Fig. 15: Indicative CRLB real-time monitoring results based on data corrupted
by zeros at t = 30 s at flight states: Velocity = 8 m/s and AoA = 7 deg



