Dynamic Data-Driven Formal Progress
Envelopes for Distributed Algorithms

Saswata Paul, Fotis Kopsaftopoulos, Stacy Patterson, and Carlos A. Varela

Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
{pauls4, kopsaf}@rpi.edu, {sep,cvarela}@cs.rpi.edu

Abstract. This work presents formal progress envelopes applied to flight
systems for distinctly classifying a system’s state space into regions where
a formal proof of progress for a distributed algorithm holds or does not
hold. It also presents an approach for runtime integration of formal meth-
ods in the dynamic data-driven applications systems (DDDAS) architec-
ture using parameterized proofs. Finally, it showcases the development
of reusable parameterized proof libraries for high-level statistical and
stochastic reasoning in the Athena proof assistant and demonstrates their
use with a progress proof for the Paxos distributed consensus protocol.

1 Introduction

Intelligent aerospace systems of the future will be "smarter" and more self-
sufficient in terms of self-diagnosis [5, 18], self-healing [16], safe navigation [24],
and overall situational awareness. Such enhanced capabilities will stem from ac-
cess to an unprecedented amount of real-time data collected from onboard sen-
sors and a network of ground-stations, satellites, and aircraft, which we call the
Internet-of-Planes (IoP). Dynamic data-driven applications systems (DDDAS)
[6] can use this data for creating low-fidelity models in real-time that can re-
flect the operating conditions of an aerospace system almost as effectively as a
high-fidelity model [23].

Data from the IoP can be used for various mission-critical and safety-critical
applications such as conflict-aware [24] and weather-aware [7] navigation. Many
distributed consensus algorithms [19,22] allow participating aircraft to eventu-
ally reach agreement on data in a decentralized manner. However, the useful
lifetimes of navigation and weather data are usually limited, rendering them
obsolete after relatively short durations. Guarantees of eventual agreement are,
therefore, ill-suited for most data-driven applications in the IoP. Moreover, the
asynchronous and stochastic nature of real-life networks makes it impossible to
provide deterministic guarantees about the progress of consensus algorithms, as
message delays are indistinguishable from failures [8]. Under such circumstances,
guarantees of probabilistic progress properties can be provided using statistical
techniques. The failure of safety-critical aerospace systems can be catastrophic
to life, property, or the environment [26], making it necessary to verify their
correctness guarantees. Formal methods [3] can be used for the mechanical ver-
ification of such systems by writing machine-checked correctness proofs.

In this paper, we present the concept of formal progress envelopes applied to
flight systems for distributed algorithms (Section 2) and propose an approach
for integrating formal methods in the runtime architecture of DDDAS by using
parameterized proofs (Section 3). We also showcase the development of a proof
library in the Athena proof assistant [1] for reasoning about statistical properties
of dynamic data-driven systems (Section 4) and provide a simple example to
demonstrate its application (Section 5). We compare related work on runtime
and stochastic verification (Section 6) and conclude the paper with a discussion
about possible future directions of work (Section 7).

2 Formal Progress Envelopes

A formal progress envelope for a distributed algorithm is a computable subset
of the system state space where the formal proof of a progress property holds.
It is defined by a set of logical constraints parameterized by the system’s op-
erational conditions. Progress, depending on the algorithm, may refer to either
termination or the successful completion of a given sequence of message rounds.
To illustrate formal progress envelopes, let us consider asynchronous distributed
consensus algorithms for use in safety-critical applications. The asynchronous
and stochastic nature of real-life distributed systems makes it difficult to deter-
ministically predict the message delay between any two nodes. However, we can
statistically analyze the message delays — e.g., if the message delays from a node
A to another node B and vice-versa are represented by the continuous random
variables X and Y respectively, over a period of time, it is possible to statis-
tically observe the behavior of X and Y as their probability density functions
(pdf) fx(t) and fy(t). A distributed consensus algorithm may require multiple
rounds of messages between two or more nodes for making progress. If in the
worst-case scenario, a deterministic number of message rounds are required for
reaching consensus, then the total worst-case message delay can be represented
by a random variable which is the sum of the random variables representing
the delays of each message involved. Since there exist statistical theorems about
the nature of random variables (e.g., Cramér’s Decomposition Theorem [17])
it is possible to provide probabilistic guarantees about the worst-case time of
progress — e.g., " The probability that the worst-case time for consensus will be at
most 0.8 seconds is 98%". A naive progress envelope for this particular property
would be: VD € D : D ~ N(up,c%), where D is the set of all message delays and
D ~ N(pp,o%) implies that the random variable D is normally distributed.

Since the parameters that define formal progress envelopes can be quantified
and measured, the envelopes can be analyzed against real-time data. Special
runtime-accessible programs called sentinels [4] can analyze real-time data to
check if the system state satisfies the progress envelope constraints. To ensure
their correctness and effectiveness, sentinels may be generated directly from the
formal specifications of the envelopes and some underlying models of uncertainty.

3

Augmenting DDDAS with Formal Methods

Unpredictable operating conditions of dynamic data-driven systems restrict the
practicality of pre-developed formal proofs to the pre-deployment stages. It is,
therefore, desirable to develop parameterized proofs that can be augmented in
real-time, making them versatile over dynamic parameters — e.g., instead of stat-
ing a static property such as: "' The probability that the round-trip message delay
will be at most 0.9 seconds is 99%", a parameterized proof would state: "If the
one-way message delays follow normal distributions N (ux,o3%) and N'(uy,02),
then the probability that the round-trip message delay will be at most t seconds
is F(ux,ox, by, 0y, t)", where F is the cumulative distribution function (cdf).

Real-Time
Parameterized Proof Initial System
Proofs Proof Envelope N Model Model
Refinement 7 Refinement
A :
Real-Time Real-Time Updated
Proof Proof System
Parameters Envelope Model
Y Y
Real-Time —

N Guarantees

Hard
Constraints

>
Live

System

. Outputs
Sentinels

A

Real-Time Operating
Conditions

Fig. 1: A feedback loop for integrating formal methods in the DDDAS architecture.

Formal envelopes, in conjunction with parameterized proofs and runtime sen-

tinels, can be directly incorporated in the DDDAS architecture using a feedback
loop (Fig. 1). This involves four logically separate components:

The proof refinement component receives a parameterized proof with a set
of initial parameters and real-time inputs from the sentinels. If possible, it
refines the proofs with the real-time parameters and provides new envelopes.
The model refinement component receives real-time envelopes from the proof
refinement component and an initial system model. It updates the system
model according to the latest envelopes.

The sentinels analyze the real-time operating conditions of the system against
the latest envelopes. If the conditions do not conform to the envelopes, they
send real-time parameters to the proof refinement component. They also
inform the live system about guarantees that hold in real-time. Hard con-
straints dictate when possible guarantees cease to be useful.

The live system runs using the updated system model from the model re-
finement component.

To illustrate, let us consider an aircraft that is participating in distributed

consensus for collaborative flight-planning by implementing the feedback loop in

Fig. 1. It may propose a conflict-aware flight-plan p [24] that is due to start after 1
second, as there is an initial proof that traffic aircraft will reach consensus under
1 second with 99.8% probability. During runtime, the sentinels observe that the
actual message delays do not conform to the envelope of the initial proof, so
they send the actual parameters to the proof refinement component. The proof
refinement component generates new proofs which state that consensus under
1 second has a probability of only 60% and consensus under 2 seconds has a
probability of 99.5%. The model refinement component may then update the
proposal with another flight-plan p’ that is due to start after 2 seconds.

The above example shows that our approach can be used to dynamically
update formal proofs with parameters that reflect the runtime operating condi-
tions of a system. This will allow the development of highly-adaptive dynamic
data-driven applications systems that can adapt to formally-verified properties
that hold during runtime, thus extending the practicality of formal verification
techniques beyond the pre-deployment stages.

4 Proof Library for High-Level Statistical Inference

The nature of foundational verification makes the process of developing mechan-
ically verified formal proofs an arduous task. This is because when developing
the proofs of high-level properties in mechanically-verifiable languages, a signif-
icant amount of effort needs to be put in for formalizing the lower-level theory.
This calls for the development of proof libraries for formal verification languages,
which can be reused to prove higher-level properties, similar to code libraries de-
veloped for general-purpose programming languages. Mechanically verifying the
higher-level statistical properties of stochastic systems requires reasoning about
the lower-level mathematical theory of random variables, distributions of ran-
dom variables, algebra, and probability. We adopt a top-down approach of proof
development which allows us to first formalize the high-level properties and then
develop the lower-level theory required for fully verifying them. We present two
mechanically-verified results that can be used for reasoning about the statistical
properties of stochastic systems.

Lemma 1 Given two normal probability density functions fx(z) = N(ux,o%)
and fy (y) = N(uy,0%), the probability that a random variable following their
convolution will take a value of at most r is given by: f_ZOO \/%6*9”2/%& where
r—(ux+py)

Theorem 1 If two independent random variables X and Y are normally dis-
tributed with probability density functions fx(z) = N(ux,0%) and fy(y) =
N(wy,0%), then the probability that X + Y will take a value of at most r is
r—(ux+py)

2(o'§(+0'€,)

z =

given by: [7_ ﬁe‘ﬁmdx where z =

The formal proof of Theorem 1 uses Cramer’s Decomposition Theorem and
the following postulates:

Postulate 1 The standard score of a value v with respect to a normal distribu-

tion N'(ux,0%) is given by: z = Lok

Postulate 2 Given the standard score z of a value v with respect to a normal

distribution fx, the probability that a mndongl variable X following fx will take
I L7 L —x?)2

values of at most v is given by: fioo 7€ =2y

Postulate 3 Given two independent random variables X andY , the pdf of their

sum X +Y is the convolution of their individual pdfs.

conclude # Lemma 1
(forall X Y T
((and (is_normal X) (is_normal Y))
==>
(= (probability (convolution X Y) T)
(integral_SND (z_score T (convolution X Y))))))

pick-any x:Dist
pick-any y:Dist
pick-any t:Real

assume (and (is_normal x) (is_normal y))
let{xyNormal := (and (is_normal x) (is_normal y));
xyCramers := (!uspec (!uspec Cramers_Decomposition_Theorem x) vy);
xPlusyNormal := (!mp xyCramers xyNormal);
txPlusyProbability := (!uspec (!uspec probability_result t) (convolution x y))}

(!'mp txPlusyProbability xPlusyNormal)

conclude # Theorem 1
(forall x y T
(and (is_normal (pdf x)) (is_normal (pdf y))
==>
(= (probability_randvar (sum x y) T)
(integral_SND (z_score T (convolution (pdf x) (pdf y))))))
pick-any x:RandVar
pick-any y:RandVar
pick-any T:Real

assume (and (is_normal (pdf x)) (is_normal (pdf y))
let {xPDF := (pdf x);
yPDF := (pdf y);
xyPDFnormal := (and (is_normal xPDF) (is_normal yPDF));
convolutionxyPDF := (convolution xPDF yPDF);
z = (sum x y);
xySumRandVars := (luspec (!uspec sum_randVars x) V);
zPDF := (pdf z);
zPDFConvolution := (!chain [(pdf z)
= (pdf (sum x y)) [z]
= convolutionxyPDF [xySumRandVars]]);
probthml := (!'uspec (!uspec (!uspec Probability_Theoreml xPDF) yPDF) T);
probthmlresult := (!mp probthml xyPDFnormal) }
(!chain [(probability_randvVar (sum x y) T)
= (probability (pdf (sum x y)) T) [probability_randVar_axiom]
= (probability (pdf z) T) [z]

probability (convolution xPDF yPDF) T) [convolutionxyPDF]

(
(
= (probability convolutionxyPDF T) [zPDFConvolution]
(
(integral_SND (z_score T (convolution (pdf x) (pdf y)))) I[probthmlresult]])

We have used the Athena proof assistant to formalize and mechanically verify
our proofs (shown above). Our work extends the Athena proof library [2] with
theory about statistical inference that can be reused for higher-level proofs®.

! Available at http://wcl.cs.rpi.edu/pilots/fvdddas

5 A Sample Application of our Proof Library

We demonstrate how our extensions to the Athena proof library can be used
to provide a mechanically-verified proof of probabilistic progress for a simple
implementation of Paxos [20], a consensus algorithm which involves a set of
agents called proposers that propose values to be chosen and a set of agents called
acceptors that vote on those values. For our example, we consider a system in
which there is one proposer and two acceptors. Paxos assumes an asynchronous,
non-Byzantine system model where agents operate at arbitrary speed, may fail
and restart, and have stable storage. Messages can be duplicated, lost, and have
arbitrary transmission times, but are not corrupted. For the sake of simplicity, we
make some additional assumptions — all agents are always available; there is no
message loss; it is possible to observe the pdf of the message delay between any
pair of agents as a normal distribution; and it is possible to observe the pdf of the
processing time of every agent as a normal distribution. Our implementation of
Paxos involves two prepare messages from the proposer to the acceptors, followed
by two promise messages from the acceptors to the proposer, and finally, two
accept messages from the proposer to the acceptors. The agents take some time
to process each message. The algorithm makes progress when all messages have
been transmitted, received, and processed.

We can define the worst-case scenario as the sequential operation of the
protocol where no pair of actions (processing or message transmission) have
any overlap in time. The total time for progress will, therefore, be the sum
of the total processing time and the total message delay. If the message de-
lays and processing times are represented by the sets of random variables X =
{X1, X0, X3, X4, X5, X6} and Y = {Y1,Y5,Y5,Y,, Y5, Y5} respectively, then un-
der our assumptions, Cramer’s Decomposition Theorem can be recursively used
to prove that Z = Z?:1 X+ Ele Y; follows a normal distribution N (pz,0z).
Theorem 1 can then be used to prove the following stochastic progress property:

Theorem 2 The probability that Z + Yg will take a value of at most co is given
c2—(pyg+rz)

. [7 1 - —
by: f_oo ol /20y where z = \/m

A straightforward progress envelope for Theorem 2 would be the constraint
VX €X: X ~ N(ux,0%)AVY €Y:Y ~ N(uy,o).

6 Related Work

Runtime monitoring of formal properties has been previously investigated in
[21] and [25]. Formal safety envelopes for stochastic state identification have
been proposed in [4]. Formal verification of expectation and variance of discrete
random variables and tail distribution bounds have been studied in [12] and
[13]. Formalizations of the uniform random variable and continuous probability
distributions in the HOL theorem prover [15] have been presented in [11] and [10].
Probabilistic analysis of wireless systems has been studied in [14]. [9] addresses

probabilistic theorem proving as the problem of computing the probability of a
logical formula given the probabilities of a set of formulas.

The existing work does not focus on augmenting formal proofs with runtime
data or creating a dedicated proof library that can be directly reused for higher-
level statistical properties of stochastic aerospace systems. We improve upon
it by introducing runtime-modifiable formal proof techniques in the DDDAS
architecture to allow the development of safety-critical aerospace systems that
can dynamically adapt to the formal proofs that hold during runtime.

7 Conclusion

We have presented an approach for integrating formal methods directly in the
dynamic data-driven applications systems (DDDAS) architecture that will allow
the development of highly-adaptive formally-verified aerospace systems. We have
also showcased the development of formal proof libraries in the Athena proof
assistant that can be used as reusable building blocks to develop proofs of higher-
level probabilistic properties of stochastic systems.

Real-life data is seldom perfect — e.g., normality of sensor data may only be
tested up to some significant level and may also be affected by pre-processing. It
is also computationally expensive to effectively estimate the tail bounds of distri-
butions in real-time. Future directions of work, therefore, include investigating
the development of formally-verified runtime sentinels that can find accurate and
meaningful estimates from data and further expansion of our stochastic proof
library in Athena by creating parameterized proofs for lower-level theory.

Acknowledgment: This research was partially supported by the National Science
Foundation (NSF), Grant No. — CNS-1816307 and the Air Force Office of Scientific
Research (AFOSR), DDDAS Grant No. — FA9550-19-1-0054.

References

1. Arkoudas, K.: Athena. http://proofcentral.org/athena, http:
//proofcentral.org/athena

2. Arkoudas, K., Musser, D.: Athena Libraries. http://proofcentral.org/
athena/lib, http://proofcentral.org/athena/lib

3. Arkoudas, K., Musser, D.: Fundamental Proof Methods in Computer Science: A
Computer-Based Approach. MIT Press (2017)

4. Breese, S., Kopsaftopoulos, F., Varela, C.: Towards proving runtime properties of
data-driven systems using safety envelopes. In: The 12th International Workshop
on Structural Health Monitoring. Stanford, CA (Sep 2019)

5. Chen, S., Imai, S., Zhu, W., Varela, C.A.: Towards learning spatio-temporal data
stream relationships for failure detection in avionics. Handbook of Dynamic Data-
Driven Application Systems pp. 97-121 (2018)

6. Darema, F.: Dynamic data-driven application systems: A new paradigm for appli-
cation simulations and measurements. In: Computational Science-ICCS 2004. pp.
662-669. Springer (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

DeLaura, R., Robinson, M., Pawlak, M., Evans, J.: Modeling convective weather
avoidance in enroute airspace. In: 13th Conference on Aviation, Range, and
Aerospace Meteorology, AMS, New Orleans, LA (2008)

Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374-382 (1985)
Gogate, V., Domingos, P.: Probabilistic theorem proving. Communications of the
ACM 59(7), 107-115 (2016)

Hasan, O., Tahar, S.: Formalization of continuous probability distributions. In:
International Conference on Automated Deduction. pp. 3-18. Springer (2007)
Hasan, O., Tahar, S.: Formalization of the standard uniform random variable.
Theoretical Computer Science 382, 71-83 (2007)

Hasan, O., Tahar, S.: Using theorem proving to verify expectation and variance
for discrete random variables. Journal of Automated Reasoning 41(3-4), 295-323
(2008)

Hasan, O., Tahar, S.: Formal verification of tail distribution bounds in the HOL
theorem prover. Mathematical Methods in the Applied Sciences 32(4), 480-504
(2009)

Hasan, O., Tahar, S.: Probabilistic analysis of wireless systems using theorem prov-
ing. Electronic Notes in Theoretical Computer Science 242(2), 43-58 (2009)
Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge (2002)

Imai, S., Chen, S., Zhu, W., Varela, C.A.: Dynamic data-driven learn-
ing for self-healing avionics. Cluster Computing 20, 1-24 (Nov 2017).
https://doi.org/10.1007/s10586-017-1291-8

Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press
(2003)

Kopsaftopoulos, F.: Data-driven stochastic identification for fly-by-feel aerospace
structures: Critical assessment of non-parametric and parametric approaches. In:
ATAA Scitech 2019 Forum. pp. 15-34 (2019)

Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems
(TOCS) 16(2), 133-169 (1998)

Lamport, L.: Paxos Made Simple. ACM SIGACT News 32(4), 18-25 (2001)
Mitsch, S., Platzer, A.: Modelplex: Verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design 49(1-2), 33-74 (2016)
Ongaro, D., Ousterhout, J.: In Search of an Understandable Consensus Algorithm.
In: 2014 USENIX Annual Technical Conference. pp. 305-319 (2014)

Paul, S., Hole, F., Zytek, A., Varela, C.A.: Wind-aware trajectory planning for
fixed-wing aircraft in loss of thrust emergencies. In: The 37th ATIAA /IEEE Digital
Avionics Systems Conference. pp. 558-567. London, England (Sep 2018)

Paul, S., Patterson, S., Varela, C.A.: Conflict-Aware Flight Planning for Avoid-
ing Near Mid-Air Collisions. In: The 38th AIAA/IEEE Digital Avionics Systems
Conference. San Diego, CA (Sep 2019)

Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time run-
time monitor. In: International Conference on Runtime Verification. pp. 345-359.
Springer (2010)

Sommerville, I.: Software engineering. Addison-Wesley/Pearson (2011)

