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Abstract Safety envelopes are meant to determine under which conditions and
state space regions a probabilistic property of a data-driven system can be asserted
with high confidence. Dynamic data-driven applications systems (DDDAS) can
make use of safety envelopes to be cognizant of the formal warranties derived from
their models and assumptions. An example of safety envelopes is presented as
the intersection of two simpler concepts: 𝑧-predictability and 𝜏-confidence; which
correspond to state estimation and classification, respectively. To illustrate safety
envelopes, stall detection from signal energy is shown with data gathered by piezo-
electric sensors in a composite wing inside a wind tunnel under varying angles
of attack and airspeed configuration. A formalization of these safety envelopes is
presented in the Agda proof assistant, from which formally proven sentinel code
can be generated.

1 Introduction

Aerospace systems will be increasingly autonomous in terms of self-diagnosis, self-
healing, and overall self-awareness. They will be capable of sensing, reasoning, and
reacting in real-time to their actual operating conditions, allowing for optimal control and
decision-making abilities [13]. This will be aided by access to an unprecedented amount
of real-time data from onboard sensors which can be interpreted to sense the aeroelastic
state, environmental conditions, and structural conditions of aerospace systems [14].
Smart aerospace systems will be capable of detecting aerodynamic conditions – e.g.,
stall or flutter, using data from piezo-electric and other sensors placed on the wings of an
aircraft [13,12]. Dynamic data-driven applications systems (DDDAS) [8] can use this
data to create accurate aerodynamic models that can be updated to reflect the real-time
aerodynamic performance of such systems [18].

Since the failure of safety-critical aerospace systems can cause harm to human life,
the environment, or property [22], it is necessary to verify the correctness of the software
used in these systems. Model checking and formal methods can be used for verification of
such software [1], e.g., by writing mechanically-verified proofs of correctness. However,
formal proofs usually only hold under some conditions which may not necessarily be
true during actual operation [19]. Breese et al. [6] have proposed an approach for
classifying a system’s state space into distinct regions with respect to a formal proof.
They introduce safety envelopes to represent the subset of the state space where the
formal proof of a probabilistic statement holds. The extent of a safety envelope depends
on a data-driven model of the system and parameters to quantify the certainty of state
estimation. Safety envelopes can only guarantee behavior for stochastic systems that



follow the underlying statistical assumptions on the data, e.g., Gaussian distributions.
Special runtime programs called sentinels can analyze real-time data against a safety
envelope and determine whether the system conditions fall within the envelope or not.
DDDAS can use safety envelopes formalize data-driven probabilistic guarantees that
hold in real-time.

The contributions of this paper are: a definition of safety envelopes as regions
delimited by a model and user-definable parameters, an example of a safety envelope
that warranties 𝑧-predictability and 𝜏-confidence for state estimation and classification
respectively (Section 2), and the formalization of the safety envelope concepts in Agda
[17] and generation of Haskell [16] code from the formal specification (Section 3).

2 Signal Energy Safety Envelopes as Parameterized Statements

Safety envelopes are a step forward for provably robust dynamic data-driven applications
systems (DDDAS). This section presents a definition for safety envelopes and exemplifies
the construction of safety envelopes for the prediction of stall for a self-sensing composite
wing given a single energy signal input.

A flight state can be identified as a quadruple ⟨𝑥, 𝛼, 𝑣, stall⟩, where 𝑥 is the signal
energy received from a sensor in a wing, 𝛼 the angle of attack, 𝑣 is the airspeed and stall
is a boolean value that indicates whether the wing is stalled or not. A model 𝑀 is a
⟨𝑆𝑀, 𝑓𝑀⟩, where 𝑆𝑀 is a subset of ℝ × ℝ (all possible airspeeds and angles of attack),
and 𝑓𝑀 is a map with the signature 𝑆𝑀 → 𝒩 × 𝔹. A map 𝑓𝑀 receives a valid input
(𝑣, 𝛼) and returns a ⟨𝒩 (𝜇, 𝜎2), stall⟩ where 𝒩 (𝜇, 𝜎2) is the normal distribution that the
energy signal is assumed to follow. This means, a model 𝑀 is a collection of probability
distributions each drawn from a partial flight state denoted by ⟨𝛼, 𝑣, stall⟩.

Amodel𝑀 is computed from data collected in wind tunnel experiments. The example
model considered in this paper has been constructed from the experiments presented by
Kopsaftopoulos & Chang in [13].

Definition 1. Signal Energy Safety Envelope: Given a model 𝑀 and parameters Π, a
safety envelope for the signal energy is the region 𝜉 ⊆ ℝ under which a probabilistic
statement1 𝑃 with arguments 𝑀 and Π holds, i.e., a safety envelope is the region defined
by 𝜉 = {𝑥 ∈ ℝ ∶ 𝑃 (𝑀, Π, 𝑥) = true}, where 𝑥 is a signal energy measurement.

For a simple and slightly contrived example of safety envelopes, suppose that all
signal energy measurements follow the normal distribution with parameters 𝒩 (10, 1)
(the model 𝑀) and consider the statement “the signal energy measurement falls within
the 95.4% prediction interval (PI) around the mean” (the statement 𝑃 with model 𝑀 and
at least 95.4% PI as Π), then the safety envelope defined by the statement is the region
contained inside [𝜇 − 2𝜎, 𝜇 + 2𝜎] = [8, 12].

1 A probabilistic statement is a statement that includes probabilistic assertions as part of its
definition, e.g., the expected value after flipping a fair coin (0 = heads; 1 = tails) is 1

2
.



2.1 Data Consistency with Model using 𝑧-predictability

Definition 2. An energy signal 𝑥 is 𝑧-predictable iff there exist ⟨𝑑𝑖, 𝑏𝑖⟩ ∈ Im(𝑓𝑀) such
that 𝑥 ∈ 𝑝𝑟𝑒𝑑_𝑖(𝑑𝑖, 𝑧), where 𝑝𝑟𝑒𝑑_𝑖 is the prediction interval for the 𝑧 score, i.e.,
𝑝𝑟𝑒𝑑_𝑖(𝒩 (𝜇, 𝜎2), 𝑧) = [𝜇 − 𝑧𝜎, 𝜇 + 𝑧𝜎].

In statistics 𝑧 is called the 𝑧-score. The main idea of 𝑧-predictability is to determine
whether a single measurement of signal energy is consistent with the model at hand. For
a 𝑧 score of 3, around 99.7% of the measurements are 𝑧-predictable. A value that falls
outside the prediction interval is considered to be not 𝑧-predictable and it is treated as a
possible error.

From the definition of 𝑧-predictability it can be proven that (see subsection 3):

Theorem 1. An energy signal 𝑥 is 𝑧-predictable iff there exist ⟨𝛼, 𝑣⟩ ∈ 𝑆𝑀 such that
𝑓𝑀(⟨𝛼, 𝑣⟩)1 = 𝑑𝑖 and 𝑥 ∈ 𝑝𝑟𝑒𝑑_𝑖(𝑑𝑖, 𝑧).

On the top row of Figures 1 and 2, a region generated by the 𝑧 predictability can be
seen. The 𝑧-score in Figures 1 and 2 is 2 and 4, respectively.
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Figure 1. Rows: Top row: Prediction intervals for each angle of attack. The black dot is the
mean, blue indicates no stall, and orange indicates stall. The gray line below is the region of
𝑧-predictability — i.e., the region {𝑥 ∈ ℝ ∶ ∃ ⟨𝛼, 𝑣⟩ ∈ 𝑆𝑀.𝑓𝑀(⟨𝛼, 𝑣⟩)1 = 𝑑𝑖 ∧ 𝑥 ∈ 𝑝𝑟𝑒𝑑_𝑖(𝑑𝑖, 𝑧)}
— with 𝑧 = 2. Middle row: Probability function 𝑃 [stall ∣ 𝑋 = 𝑥], which indicates the
probability of the wing to be in stall given a single measurement of the signal energy. The
classification regions for stall and no stall are shown below with confidence of 𝜏 = 90%, i.e.,
the 𝜏-confident region is the union of both colored regions, blue and red, where blue indicates
no-stall and red stall. Bottom row: The green region indicates the safety envelopes, the region
where a signal energy measurement is both 𝑧-predictable and 𝜏-confident. Columns: Left column:
The model 𝑀 includes all flight states with an airspeed of 6𝑚/𝑠. Center column: Only flight
states with an airspeed of 20𝑚/𝑠. Right column: All flight states recorded, all airspeeds (𝑣 ∈
{6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22}𝑚/𝑠) and angles of attack (𝛼 ∈ [1, 18]) are
considered in the model 𝑀.



2.2 Stall Detection using Statistical Inference

This section presents a procedure using statistical inference to classify the stall condition
of a wing, then it is shown how this classification can be parameterized to delimit a
confidence region of classification.

Definition 3. Conditional probability of stall: Given a model 𝑀 and a measurement 𝑥,
the probability of stall is defined as:

𝑃 [stall ∣ 𝑋 = 𝑥] =
𝑃 [stall]𝑓(𝑥 ∣stall)

𝑓(𝑥)

=
∑⟨𝛼,𝑣⟩∈𝑆𝑀 (𝑓𝑠(𝑥)𝑃 [⟨𝛼, 𝑣⟩]𝑃 [stall ∣ ⟨𝛼, 𝑣⟩])

∑⟨𝛼,𝑣⟩∈𝑆𝑀 (𝑓𝑠(𝑥)𝑃 [⟨𝛼, 𝑣⟩])

(1)

where 𝑓𝑠 corresponds to the probability density function for the distribution 𝑑𝑠 =
𝑓𝑀(⟨𝛼, 𝑣⟩)1, the conditional probability 𝑃 [stall ∣ ⟨𝛼, 𝑣⟩] is either 0 or 1 and de-
termined by 𝑓𝑀 (⟨𝛼, 𝑣⟩)2, and the distribution 𝑃 [⟨𝛼, 𝑣⟩] uniform for all ⟨𝛼, 𝑣⟩ ∈ 𝑆𝑀
(𝑃 [⟨𝛼, 𝑣⟩] = 1

|𝑆𝑀|
).

The probability of stall can be seen in the middle row of Figures 1 and 2. The
following is the definition of a classification procedure from the conditional probability
function:

Definition 4. Classification function: Given a model 𝑀, an energy signal 𝑥 can be
classified in one of three categories as:

𝑐(𝑀, 𝜏, 𝑥) =
⎧⎪
⎨
⎪⎩

stall 𝑃 [stall ∣ 𝑋 = 𝑥] ≥ 𝜏
nostall 𝑃 [¬stall ∣ 𝑋 = 𝑥] ≥ 𝜏
uncertain in any other case.

where 𝜏, the threshold, is a real number in the range (0.5, 1] and indicates the
level of confidence wanted from the classification (alternatively, 1 − 𝜏 indicates the risk
that will be accepted for the classification [3]). The signature of 𝑐 is 𝑀 × ℝ × ℝ →
{stall, nostall, uncertain}.

The classification region can be seen at the bottom of the middle row in Figures 1
and 2, for 𝜏 = 90% and 99.9%, respectively.

Definition 5. A classification 𝑐(𝑀, 𝜏, 𝑥) = 𝑘 is 𝜏-confident iff 𝑘 ≠ uncertain.

A 𝜏-confident classification is one in which the risk of misclassification is below the
threshold 𝜏. Alternatively, 𝜏-confidence can be defined as:

Theorem 2. A classification 𝑘 is 𝜏-confident iff 𝑃 [𝑘∣𝑥] ≥ 𝜏.



2.3 Safety Envelopes as 𝜏-confident Classifications on 𝑧-predictable
Measurements

Definition 6. A safety envelope 𝑠𝑒(𝑀, 𝑧, 𝜏) for stall detection is the region 𝑥 ∈ 𝒫 (ℝ)
with parameters Π = ⟨𝑧, 𝜏⟩, where the following probabilistic statement holds: 𝑥 is
𝑧-predictable and 𝑐(𝑀, 𝜏, 𝑥) is 𝜏-confident.

As a corollary from Theorems 1 and 2:
Theorem 3. An energy signal 𝑥 belongs to a safety envelope 𝑠𝑒(𝑀, 𝑧, 𝜏) iff there exist
⟨𝛼, 𝑣⟩ ∈ 𝑆𝑀 such that 𝑓𝑀(⟨𝛼, 𝑣⟩)1 = 𝑑𝑖 and 𝑥 ∈ 𝑝𝑟𝑒𝑑_𝑖(𝑑𝑖, 𝑧), and the classification
𝑘 = 𝑐(𝑀, 𝜏, 𝑥) has a confidence bigger than 𝜏, i.e., 𝑃 [𝑘∣𝑥] ≥ 𝜏.

The last row of Figures 1 and 2 shows the safety envelopes derived from three different
data-driven models with varying 𝑧-scores and 𝜏 thresholds. For easily separable stall/no-
stall conditions, such as 6𝑚/𝑠, the safety envelope is the same as the region defined by
the 𝑧-predictability; in other cases, the region defined by the 𝜏-confidence reduces the
region described by 𝑧-predictability, or viceversa.

Notice that when safety envelopes are applied to a model where all airspeeds and
angles of attack have been taken into account, the safety envelopes become significantly
smaller. This means that it is not possible to assert with high confidence whether a signal
energy entails a stall condition. In Figure 2 rightmost column, safety envelopes do not
include any signal with values from around 200 and until 8000.
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Figure 2. Rows and Columns as in Figure 1 but with parameters 𝑧 = 4 and 𝜏 = 99.9%. Notice
that compared with the 𝜏-confident region displayed in Figure 1 with an airspeed 𝑣 = 20𝑚/𝑠 (red
and blue regions in the middle-center plot), the 𝜏-confident region for a value of 𝜏 = 99.9% is
smaller, it has a wider gap, which shows that the higher the 𝜏 the smaller the safety envelope will
be. Conversely, the more samples admitted as 𝑧-consistent, the bigger the safety envelope will be,
as it can be seen comparing the gray regions on the top row from Figure 1. The optimum values
for 𝑧 and 𝜏 will depend on the application, but a meaningful range of values for 𝑧 would be [2, 6]
(which correspond to 5% or less data thrown away) and for 𝜏 around 95% and upwards.



3 Formalization and Sentinel Generation

Formally proving properties of DDDAS using a proof assistant is a necessary step to
ensure fault-free or near fault-free certified software. Signal energy safety envelopes
have been implemented in Agda2, a formal verification system, in order to prove their
properties mechanically. Three procedures have been implemented: computing whether
an energy signal input is 𝑧-predictable, 𝜏-confident, and whether it falls inside the safety
envelope defined by a model 𝑀 with parameters Π = ⟨𝑧, 𝜏⟩. The following is an excerpt
of the formalization, where 𝑧-predictability is defined:

inside : NormalDist → ℝ → ℝ →Bool
inside nd z x = ((𝜇 - z * 𝜎) <b x) ∧ (x <b (𝜇 + z * 𝜎)) where open NormalDist nd using (𝜇; 𝜎)

z-predictable : Model → ℝ → ℝ → ℝ × Bool
z-predictableM z x = ⟨ x , any (𝜆 nd→ inside nd z x) (map (proj1 ∘ proj2) (Model.fM M)) ⟩

The power of formalization comes from the fact that properties can be mechanically
proven, i.e., it can be proven that the definition entails the implementation. Such is the
case presented in the proof below, where Theorem 1 is formally proven using the proof
that the implementation in Agda (above) follows from the Definition 2. In the same
manner, theorems 2 and 3 have been encoded in Agda and proven formally, i.e., in a
mechanized manner.

-- In words: Given a Model `M` and parameter `z`, `x` is z-predictable iff
-- there exists a pair ⟨𝛼,v⟩ (angle of attack and velocity) such that they are
-- associated to a `nd` (Normal Distribution) and `x` falls withing the
-- Predictable Interval
theorem1← : ∀ (M z x)

→ z-predictableM z x ≡ ⟨ x , true ⟩
→Any (𝜆{⟨ ⟨𝛼,v⟩ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)

theorem1← M z x res≡x,true = any-map (proj1 ∘ proj2) (follows-def←M z x res≡x,true)
theorem1→ : ∀ (M z x)

→ Any (𝜆{⟨ ⟨𝛼,v⟩ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)
→ z-predictableM z x ≡ ⟨ x , true ⟩

theorem1→ M z x proofAny = follows-def→M z x (any-map-rev (proj1 ∘ proj2) proofAny)

A sentinel is a binary, a program, whose job is to monitor for the consistency and
correctness of the data received and generated in flight. Agda has the capability of
generating Haskell code which can be executed and tested. From the formalization
shown above, a sentinel has been built such that it monitors when a stream of floating-
point numbers is 𝑧-predictable. The implementation uses floating-point numbers as an
approximation to real numbers.

To write the sentinel, a wrapper was written around the generated Agda code to pass
data from the standard input. The resulting binary can process a continuous stream of data
and outputs to the standard output a stream of booleans representing the 𝑧-predictability.
The implementation and proofs occupy a total of 760 lines in Agda and 130 lines of code
in Haskell. From the Agda code, a total of 1160 lines of Haskell code were generated.
2 Full implementation and proofs can be found at http://wcl.cs.rpi.edu/pilots/fvdddas
(repository name: safety-envelopes-sentinels, version 0.1.1.0)

http://wcl.cs.rpi.edu/pilots/fvdddas


4 Related Work

HOL and Isabelle are interactive proof assistants with a rich history of proofs from
discrete and continuous probability theory [10,9,20,5]. Agda, opposed to HOL and
Isabelle, is a a programming language and proof assistant built on top of a constructive
theory [15]. Copilot [19] and PILOTS [7,11] have presented strategies to find and
recover from faulty data-streams due to hardware errors in airplane systems and dynamic
data-driven applications systems (DDDAS), respectively. Those systems do not yet
incorporate formal verification. Veridrone [21] and other Coq initiatives (e.g., [4]) have
incorporated formal verification into working systems to formally prove aircraft safety
properties. In this work, an approach to build a formally verified monitor/sentinel from a
specification was presented and applied to aircraft safety.

5 Conclusion

An extension and modularization of the concepts put forward by Breese et al. [6] was
presented. The modularization included the separation of what it means to be consistent,
𝑧-predictability, and how to quantify confidence in the stall classification of an aircraft,
𝜏-confidence. It was shown that knowing only a single energy signal measurement from
a piezo-electric sensor is not enough to confidently determine the stall state of a wing.
Knowing the airspeed of the aircraft significantly improves the classification confidence.

A formalization of safety envelopes in Agda was also presented. From it, formally
verified Haskell code was generated, wrapped and extended to process a stream of data.
Safety envelopes are an important step forward in the direction of formally correct and
robust dynamic data-driven applications systems (DDDAS).

Future work includes the definition of safety envelopes for a sequence of signal
energy measurements as opposed to single, isolated values, as in Ahmed et al. [2]; and
the implementation of runnable real number arithmetic as opposed to floating-point
arithmetic operations.

Acknowledgment: This research was partially supported by the National Science Foundation
(NSF), Grant No. – CNS-1816307, and the Air Force Office of Scientific Research (AFOSR),
DDDAS Grant No. – FA9550-19-1-0054.
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