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Abstract. This work presents the investigation and critical assessment,
within the framework of Dynamic Data Driven Applications Systems
(DDDAS), of two probabilistic state awareness approaches for fly-by-
feel aerial vehicles based on (i) stochastic adaptive time-dependent time
series models and (ii) Bayesian learning via homoscedastic and het-
eroscedastic Gaussian process regression models (GPRMs). Stochastic
time-dependent autoregressive (TAR) time series models with adaptive
parameters are estimated via a recursive maximum likelihood (RML)
scheme and used to represent the dynamic response of a self-sensing
composite wing under varying flight states. Bayesian learning based on
homoscedastic and heteroscedastic versions of GPRM is assessed via the
ability to represent the nonlinear mapping between the flight state and
the vibration signal energy of the wing. The experimental assessment is
based on a prototype self-sensing UAV wing that is subjected to a series
of wind tunnel experiments under multiple flight states.

1 Introduction

Future intelligent aerial vehicles will be able to “feel,” “think,” and “react” in real
time based on high-resolution ubiquitous sensing leading to autonomous opera-
tion based on unprecedented self-awareness and self-diagnostic capabilities. But
flight in complex dynamic environments requires unprecedented levels of sensing,
awareness and diagnostic capabilities. Such capabilities can be enabled via the
concept of “fly-by-feel” aerial vehicles, i.e., vehicles that can “feel,” “think,” and
“react” inspired by avian flight. Such systems fall within the core of Dynamic
Data-Driven Application Systems (DDDAS) concept as they have to dynami-
cally incorporate real-time data into the modeling, learning and decision making
application phases, and in reverse, steer the data measurement process based on
the system’s dynamic data integration and interpretation [5, 3, 8, 4].

Towards the “fly-by-feel” concept, in this study two dynamic data-driven
state awareness approaches based on stochastic time series models and Bayesian
Gaussian process regression models (GPRMs) are presented and experimentally
assessed on a prototype self-sensing composite wing subjected to a series of
wind tunnel experiments under multiple flight states —defined by a pair of angle
of attack (AoA) and airspeed [9, 8]. Adaptive parametric time-dependent autore-
gressive (TAR) models are used to represent the time-varying dynamics of the
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wing as it undergoes different flight states. Model parameter estimation is based
on a recursive maximum likelihood (RML) statistical scheme that allows the AR
parameters to adapt with time in order to capture the non-stationary dynamic
response of the wing [12, 14]. In addition, non-parametric Bayesian learning via
GPRMs [13,10] is used to “learn” the nonlinear relationship between sensor sig-
nal energy and the flight state, as defined by the AoA and airspeed (GPRM
covariates). Both homoscedastic [13, 1], i.e. model observations’ noise is assumed
constant throughout the input space, and heteroscedastic [10], i.e. considering
input-dependent variance, GPRM versions are presented and critically assessed.

This study is a continuation of recent DDDAS work by the authors and co-
workers [8,7,4,3], with the main novel contributions related to addressing the
DDDAS fly-by-feel state awareness concept within (i) a non-stationary frame-
work via adaptive time series models with unstructured time-dependent param-
eter evolution, and (ii) a Bayesian learning framework that represents the rela-
tionship between several flight-state inputs (covariates) and data-driven flight-
state-sensitive features accounting for potential input-dependent noise variance.

2 Bayesian learning via Gaussian process regression

Being kernel-based linear regression models, GPRMs allow for the modeling of
complex, nonlinear relationships between observations (targets) and covariates
(inputs), and the extraction of prediction confidence intervals (CIs) at a rela-
tively small computational cost [13]. As a result, they have been widely used
in many applications in the machine learning community [13] and recently in
Structural Health Monitoring (SHM) applications [2, 1]. However, the inherent
and oftentimes unrealistic assumption of a fixed noise variance across the input
space [13, Chapter 2, pp. 16] that governs standard (homoscedastic) GPRMs,
makes them inappropriate in modeling many real-life processes. As such, het-
eroscedastic GPRMs have been proposed [10, 6] that allow for input-dependent
variance with the cost that the predictive density and marginal likelihood are
no longer analytically tractable [10].

2.1 Homoscedastic Gaussian process regression

In this section, a concise overview of homoscedastic GPRMs will be provided.
For a full treatment, the reader is directed to [13]. Given a training data set
D containing n inputs-observation pairs {(x; € RD,y; eR, i=1,23,...,n}, a
standard GPRM can be formulated as follows:

y=fx +e, f(x)~GP(m(x),k(x,x)), €~iid N(,o?) (1)

where, in a Bayesian setting, a GP prior with mean m(x) and covariance k(x,x")
is placed on the latent function f(x), and an independent, identically-distributed
(iid), zero-mean Gaussian prior with variance o2 is placed on the noise term e.
N(,-) indicates normal distribution with the indicated mean and variance. The
mean m(x) may be set to zero and the squared exponential covariance function
(kernel) is used for the latent function GP k(x,x’) = o exp(—3 (x —x/)T A7 (x -
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x)). O'g is the output variance and A~! designates the inverse of a diagonal
matrix of the characteristic input length scales corresponding to each dimension
(D, i.e each covariate) in the input data.

Training involves optimizing the hyperparameters (6 = 0'02,A, o), which is
typically done via Type I Maximum Likelihood [13, Chapter 5, pp. 109], whereas
the marginal likelihood (evidence) of the training observations is maximized, or
its negative log is minimized with respect to 6:

1 _ 1 n
—log p(y|X,0) = _§yT(KXX +oa) 7y - §1Og |Kxx + oI — §1og27r (2)

Prediction can be achieved by assuming joint Gaussian distribution between
the training observations y, and a test observation (to be predicted) at the set
of test inputs (x.) [13].

2.2 Heteroscedastic Gaussian process regression

One of the inherent drawbacks of homoscedastic GPRMs is the assumption of
a fixed noise variance throughout the input space, which, in many real-life ap-
plications, is impractical. Thus, a number of extensions have been proposed to
allow for the noise variance to vary with the input within a heteroscedastic GP
(HGP) framework. In this work, we have implemented the variational inference
that is based on variational Bayes and Gaussian approximation [10]:

y=fx)+e®), e~N(@Or(x) 3)

The added complexity of the heteroscedastic formulation results in not analyt-
ically tractable marginal likelihood and predictive distribution. One of the pro-
posed approaches for their approximation was put forward by Lazaro-Gredilla
and Titsias and is based on variational inference [10].

For training, the number of free variational heteroscedastic GPRM (VHG-
PRM) parameters to be determined becomes n + n(n + 1)/2, which makes the
training process computationally exhaustive. Thus, Lazaro-Gredilla and Titsias
[10] proposed a reparametrization of y and ¥ at the maxima of the marginal
variational bound. The predictive distribution for a new point in terms of the
first two moments can be calculated analytically [10].

2.3 GPRM-based flight awareness results

The demonstration and assessment of the methods presented is based on wind-
tunnel experiments for a self-sensing composite UAV wing under varying AoA

Table 1. Performance of standard GPRMs and VHGPRMs based on validation data.

GPRM Input |Standard GPRMs VHGPRMs
AoA — MSE“ 5.7337 5.7624
AoA — NMSEP 0.0947 0.0952
AS - MSE 0.0822 0.0816
AS - NMSE 0.1124 0.1115

@Mean Square Error; PNormalized Mean Square Error [10].
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Fig. 1. Indicative GPRM results: (a) standard and (b) variational heteroscedastic
(right) GPRMs representing the evolution of signal energy vs AoA (set airspeed of
15 m/s; top row); and (c) (d) airspeed (set AoA of 10 deg; bottom row).

(from 0 to 17 degrees) and airspeed (0 m/s to 20 m/s); for details see [9, 8]. Em-
bedded piezoelectric sensors recorded stochastic vibration 90, 000-sample-long
(90 s) signals (sampling frequency f; = 100 Hz) for which the signal energy for
varying time-windows was calculated (indicative results are currently presented
for one-second-long windows). Model inputs (covariates) are represented via a
flight state vector consisting of the AoA and airspeed values, and the signal en-
ergy is the output. For training, after an initial investigation in terms of model
effectiveness versus computational cost, 1000 signal energy points were randomly
selected under the considered flight states, and 486 and 183 test points were used
for the AoA and airspeed, respectively. In the said format, the trained GPRMs
are capable of predicting signal energy for a given flight state; however, the flight
state can be identified via the trained GPRMs based on the predictive confidence
intervals (Cls) at the test signal energies and the calculation of the probability
that a point sampled from the predictive distribution of each set of flight states
falls within the calculated CIs. The flight state that has the highest probability
is determined as the actual state corresponding to the observed test signal en-
ergy. Figure 1 presents indicative GPRM results for the standard and VHGPRM
cases for varying AoA (top row; Figure la and b) and airspeed (bottom row;
Figure 1c and d). It can be readily observed that the VHGPRM predictive mean
and variance can accurately represent the evolution of the signal energy along
with the corresponding variance that varies with the input state. On the other
hand, the standard GPRM, as expected, fails to capture the predictive variance,
as evident by either too narrow or too broad Cls.

Figure 2 presents indicative results of the flight state prediction based on
the standard and VHGPRM models. It can be observed that the VHGPRM
provides more accurate predictions especially in the case of the airspeed for
which the standard GPRM fails to capture the variance (see Figure 1). Table 1
presents the comparison of the standard GPRM and VHGPRM performance.
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Fig. 2. Indicative flight state probabilities: (top) AoA predictions at an airspeed of 15
m/s for (a) standard and (b) VHGPRM models; (bottom) airspeed predictions at an
AoA of 10 degrees for (c) standard and (d) VHGPRM models.

3 Adaptive modeling via time-dependent AR models

The dynamic response of aerial vehicles is governed by non-stationary stochas-
tic vibrations under varying operating and environmental states characterized
by time-dependent (evolutionary) characteristics. From a physical standpoint,
non-stationary behavior is due to time-dependent and/or inherently non-linear
dynamics. Non-stationary models can be based on non-parametric or paramet-
ric representations [12,14, 11]; for a review of non-stationary random vibration
modeling and analysis see [12]. In this study, TAR models are used to represent
stochastic time-varying vibration signals recorded from piezoelectric sensors em-
bedded within the composite layup of the wing under the aforementioned flight
states (for details see [9,7]). TAR models resemble their stationary AR coun-
terparts allowing their parameters depend upon time and can adapt based on
the time-dependent dynamics of the system [12]. A TAR(na) model, with na
designating its AR order, is thus of the form:

na

y[t] +Za,-[t] y[t—il=e[t] with e[t] ~ iidN(0,02[t]) (4)

i=1

with ¢ designating discrete time, y[¢] the signal to be modeled, e[f] an (unob-
servable) uncorrelated innovations sequence with zero mean and time-dependent
variance o2[¢], and a;[¢], the time-dependent AR model parameters. The TAR
representation imposes no “structure” on the evolution of its parameters, which
are thus “free” to change with time, and is thus directly parameterized in terms
of time-dependent parameters a;[t] and innovations variance o2 [t].

Given a single, N-sample-long, non-stationary signal record {y[1],...,y[N]},
TAR model identification involves selecting the corresponding model structure,

and estimating the model parameters a;[t] and the innovations variance o-2[¢]
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Fig. 3. Top: indicative non-stationary signals under continuously varying (a) airspeed
and (b) AoA. Bottom: RML-TAR(40)9.998-based time-dependent power spectral den-
sity estimates under continuously varying (a) airspeed and (b) AoA.

that “best” fit the available data. The TAR model is parameterized via the
parameter vector 0[t] = [a1[t] ... anal[t]] to be estimated based on the recorded
non-stationary signal. For a detailed review see [12]. In this work, parameter
estimation is based on an exponentially weighted prediction error criterion and a
recursive estimation scheme accomplished via the recursive maximum likelihood
(RML) method [12,11].

3.1 Adaptive TAR-based flight awareness results
The parametric identification via TAR models is based on 60,100 (601 s) and
6,100 (61 s) sample-long response signals (sampling frequency f; = 100 Hz) un-
der continuously varying AoA (from 0 to 15 degrees) and airspeed (decreasing
from 20 m/s to 0 m/s), respectively, recorded via embedded piezoelectric sensors
(see Figure 3a and b). The model structure selection problem, i.e. determina-
tion of the model order and forgetting factor [12], is based on the successive
estimation of TAR(na) models for orders na = 2,...,50 and forgetting factors
0.900,...,0.999, with the best model selected based on the combined consider-
ation of the Bayesian Information Criterion [12] and the comparison with the
corresponding non-parametric power spectral density (PSD) estimates. This pro-
cess resulted in RML-TAR(40)g.99s models for representing the non-stationary
dynamics due to time-dependent evolution of the AoA and airspeed of the wing.
Figure 3c and d presents indicative RML-TAR(40)g.99s-based time-dependent
PSD estimates for continuously varying airspeed and AoA, respectively. Observe
the time-dependent nature of the wing dynamics; in the case of varying airspeed
(Figure 3c) observe the separation of the 9 Hz natural frequency at 20 s, as the
two vibrational modes are decoupled as the airspeed decreases and the aeroelas-
tic flutter diminishes. Figure 4(a-c) presents the first three RML-TAR(40)0.90s-
based time-dependent AR parameters along with their estimated 95% Cls for a
close-up time window of one second. Again, the time-dependent nature of the
parameters is evident with the evolution of the flight state dynamics. In addi-
tion, observe the narrow confidence intervals of the model parameters that are
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Fig.4. Top (a-c): RML-TAR(40)9.998-based time-dependent evolution of three in-
dicative model parameters. Bottom (d-e): identified RML-TAR(40)9.998-based time-
dependent (d) natural frequencies and (e) damping rations in the [0 — 15] Hz range.

based on the recursive estimation of the parameter covariance matrix. Figure 4d
and e depicts RML-TAR(40).99s-based the time-dependent natural frequencies
of the wing and their identified damping ratios within the frequency bandwidth
of [0—15] Hz. Again, observe the time-dependent nature of the identified modes
based on the RML-TAR model and compare with Figure 3.

4 Conclusions

The investigation and assessment of non-parametric Bayesian Gaussian process
regression homoscedastic and variational heteroscedastic models, and adaptive
time-dependent models for flight awareness, were presented based on experi-
mental data collected from a UAV wing during wind tunnel experiments under
varying flight states. The VHGPRMs outperformed their homoscedastic counter-
parts in terms of the predictive input-dependent variance estimation accuracy.
Stochastic adaptive RML-TAR models were shown to be capable of identify-
ing the time-dependent stochastic wing vibration dynamics under continuously
varying AoA and airspeed by imposing no structure on the time evolution of
their parameters. Ongoing work addresses the investigation of time-dependent
stochastic models that impose structured stochastic (parameters are random
variables allowed to change with time) and deterministic (parameters are pro-
jected on time-dependent functional subspaces) evolution on their parameters.
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