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Abstract—Loss of thrust (LOT) emergencies create the need
for quickly providing pilots with valid trajectories for safely
landing the aircraft. It is easy to pre-compute total lost of thrust
trajectories for every possible initial point in a 3D flight plan,
but it is impossible to predict variables like the availability of
partial power, wing surface damage, and wind aloft in advance.
Availability of partial power can affect the glide ratio of an
aircraft while the presence of wind can significantly affect the
trajectory of a gliding aircraft with respect to the ground, e.g. –
a tailwind or a headwind can aid or hinder straight line glide
by increasing or decreasing the ground speed. Wind can also
change the shape of turns from circular to trochoidal, moving
an aircraft away from its intended position. In this paper, we
present a robust trajectory generation system that can take
these dynamic factors into consideration. Our approach outputs
valid trajectories to a target runway in the presence of constant,
horizontal wind, by using purely geometric criteria for computing
flyable trajectories. We model the effect of wind on different
components of a possible trajectory by taking into account the
observed glide ratio of the aircraft (computed from actual flight
performance data) and the horizontal wind vector. We also take
into account the effect of wind on ground-speed, the effective
glide ratio with respect to the ground, and the shape of turns to
calculate trajectories to a virtual point in 3D space which can lead
an aircraft to an actual target runway. We introduce an analytical
approach for calculating the virtual point for trajectories with
left-straight-left or right-straight-right Dubins path segments and
a heuristic iterative approach for other cases. Our approach
generates trajectories that can lead an aircraft from an initial
configuration (latitude, longitude, altitude, heading) to a target
configuration in the presence of a constant horizontal wind. In
our experiments, the computation time for trajectories ranged
from 40 milliseconds to 60 milliseconds.

I. INTRODUCTION

Aircraft loss of thrust emergencies may be caused by various
factors, e.g. – fuel exhaustion and bird strike in the cases
of Tuninter Flight-1153 [1] and US Airways Flight-1549 [2]
incidents respectively. In such situations, the response time
is critical and it becomes necessary to provide pilots with
feasible trajectories to nearby runways as quickly as possible.
A feasible trajectory is one which the aircraft is capable of
following under the emergency conditions. It is not possible
to anticipate dynamic factors such as the availability of partial
power, wing-surface damage, and wind aloft, all of which need
to be taken into consideration for computing accurate and valid
trajectories in case of a LOT emergency. Dynamic Data-Driven

Applications and Systems (DDDAS), used in prediction-based
applications, use sensor data to dynamically update a system’s
model in order to improve the accuracy and effectiveness of
the model [3]. In [4], we have investigated Dynamic Data-
Driven Avionics Software in decision support systems for LOT
emergency scenarios. We presented a system for generating
feasible trajectories for LOT scenarios by distilling a complex
aerodynamic model to two variables: glide ratio and radius
of turn for discrete bank angles and drag configurations. Our
model predicts different glide ratios and different radii of turns
by using the aircraft’s baseline glide ratio – the glide ratio for
a clean configuration assuming best gliding airspeed in straight
flight. However, the algorithm does not take into account the
effect of wind while generating trajectories to target runways.

Wind has a profound effect on the shape of trajectories
flown with respect to the ground, leading to significant changes
in the shape and position of the resulting ground projections.
Wind also affects ground-speed in a non-linear way, thus
impacting the overall gliding range of an aircraft. Owing to
these factors, in the presence of wind, both the horizontal and
vertical profiles of a trajectory, that is valid under no-wind
conditions, are significantly altered, enough to potentially ren-
der the trajectory infeasible. Therefore, it calls for the need of
an inclusive system that can compute accurate trajectories by
taking into account both the observed baseline glide ratio (g0)
of an aircraft and the horizontal wind vector (−→w ). In this
paper, we complement our preliminary work by presenting an
approach for modeling the effect of wind on the different types
of trajectories defined in [4]. This wind model is then used by
our dynamic data-driven system to predict the effect of wind
and generate trajectories that are feasible in the presence of
wind.

We define an air trajectory to be a three-dimensional path
with respect to the moving airmass while its corresponding
ground trajectory is the three-dimensional projection with
respect to the ground frame of reference. A no-wind air
trajectory to a target runway is not corrected for wind and
might take an aircraft away from the runway. Our approach
generates a wind-aware air trajectory to a virtual runway –
a point that lies on the wind vector passing through the
actual target runway. The ground trajectory of this wind-aware
air trajectory can successfully bring an aircraft down to the
target runway, assuming that the aircraft always maintains the
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best gliding airspeed. We present an analytical approach for
computing the required position of the virtual runway and a
heuristic iterative approach for cases which are not considered
by our analytical approach. We make decision making easy for
the pilots by providing them with trajectories that consist of a
series of standard maneuvers (constant-bank turns and straight
line gliding segments).

The rest of the paper is divided as follows: Section II
discusses prior work on avionics systems and related work
on flight path planning in the presence of wind, Section III
describes the aircraft aerodynamic model used in our work,
Section IV describes how the effect of horizontal wind on a
three-dimensional trajectory can be modeled, Section V de-
scribes the strategy for generating wind-aware air trajectories
proposed in this paper, Section VI describes the details of the
experiments performed and Section VII discusses conclusions
and possible directions of future work.

II. RELATED WORK

Dubins curves [5] are used for generating two-dimensional
trajectories for vehicles with a bounded turning radius. The
problem of computing optimal paths in the presence of a
constant wind using Dubins paths has previously been inves-
tigated. McGee et al. [6] explored a method for computing
shortest paths by formulating an optimization problem to find
the optimal path in a two-dimensional plane. Techy et al. [7]
described a framework for minimum-time path planning in
which they characterize paths in the ground frame of reference
by using kinematic equations in the trochoidal frame and
derive a condition for optimality. Both of these approaches
refined the problem of finding a valid trajectory in the presence
of wind to that of intercepting a target (the virtual runway)
moving away from the actual runway in the upwind direction.
However, their work was focused on trajectory planning in
the two-dimensional horizontal plane for aircraft flying at a
constant altitude and did not take into account the change in
altitude of the aircraft or its flight capabilities.

Dubins curves have also been implemented for computing
three-dimensional aircraft paths. Atkins et al [8], [9] defined
emergency trajectories which had intermediate ’S’ turns to lose
excess altitude that might take an aircraft too far away from the
runway. Owen et al [10] proposed trajectories for UAVs with
power for maneuverability and introduced intermediate arcs
for losing altitude. In [4] we presented an algorithm based
on a dynamic data-driven approach for generating trajectories
in LOT emergencies by computing a value of the baseline
glide ratio from aircraft sensor data. Our trajectories removed
the need for ’S’ turns and intermediate arcs, thus minimizing
the variety of maneuvers in a trajectory. We also ranked
the trajectories by a utility function based on certain safety
metrics. Nevertheless, previous work on three-dimensional
trajectory generation did not consider the effect of wind on
trajectories during the generation phase.

In this paper, we improve upon previous work by introduc-
ing a new wind modeling paradigm that takes into account
the real-time wind conditions and the observed baseline glide
ratio of an aircraft in the event of a LOT emergency. This

wind model allows our dynamic data-driven system to predict
the effect of horizontal wind on a no-wind air trajectory. This
prediction is then used for generating an accurate wind-aware
air trajectory to a virtual runway.

Our prior work on data streaming application for avionics
systems include PILOTS – a ProgrammIng Language for
spatiO-Temporal data Streaming applications which can detect
sensor failures from data and estimate quantities of interest
like aircraft airspeed and fuel quantity upon fault detection and
isolation [11], development of failure models to detect errors in
aircraft sensor data [12], simulation of error detection and cor-
rection using real data from flights [13], development of error
signatures to detect abnormal conditions from aircraft sensor
data and classify them [14], developing formal definition of
error signatures and error recovery from sensor data [15]
and programming model to reason about spatio-temporal data
streams [16]. We have also successfully implemented PILOTS
using data from real-life incidents, as in the case of Tuninter
1153, where a wrong fuel quantity indicator resulted in fuel
exhaustion and engine failure [17].

III. AIRCRAFT MODEL

Stengel [18] defines the position of a point with respect to
a three-dimensional inertial frame as:

[x y z]
>

Therefore, the velocity (v) and linear momentum (p) of a
particle are given by:

v =
d [x y z]

>

dt
= [ẋ ẏ ż]

>
= [vx vy vz]

>

p = mv = m [vx vy vz]
>

where m = mass of the particle. Fig 1b shows the inertial
velocity of a point mass in polar coordinates, where γ is the
vertical flight path angle and λ is the horizontal flight path
angle. Considering the motion to be a straight line motion in
a particular direction, we can use vx to denote motion in the
xy horizontal plane. Two dimensional equations for motion of
a point mass, which coincides with the center of mass of an
aircraft, restricted to the vertical plane are given below:

[ẋ ż v̇x v̇z]
>

= [vx vz fx/m fz/m]
>

Transforming velocity to polar coordinates:[
ẋ
ż

]
=

[
vx
vz

]
=

[
v cos γ
−v sin γ

]
=⇒

[
v
γ

]
=

[ √
v2x + v2z

− sin−1(vz/v)

]
Therefore, rates of change of velocity and flight path angle
are given by: [

v̇
γ̇

]
=

[
d
dt

√
v2x + v2z

− d
dt sin−1(vz/v)

]
Longitudinal equations of motion for a point mass are given
by:

ẋ(t) = vx = v(t) cos γ(t) (1)
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(a) Position of a particle with respect to a 3D inertial frame. (b) Inertial velocity expressed in polar coordinates.

Fig. 1: Position and inertial velocity of a point mass in a 3D frame.

(a) Forces on a gliding flight. (b) Weight vs lift in banked turns.

Fig. 2: Forces on a glider in straight line motion and banked turns.

ż(t) = vz = −v(t) sin γ(t) (2)

v̇(t) =
(CT cosα− CD) 1

2ρ(z)v2(t)S −mG sin γ(t)

m

γ̇(t) =
(CT sinα+ CL) 1

2ρ(z)v2(t)S −mG cos γ(t)

mv(t)

where CT is side force coefficient, CD is drag coefficient ρ is
density of air, α is the angle of attack, CL is lift coefficient,
S is the surface area of the wing and G is the gravitational
constant (11.29 kn2ft−1). Lift and Drag are given by L =
CL

1
2ρv

2S, D = CD
1
2ρv

2S. Thus, for a gliding flight, the
condition of equilibrium is defined by the following equations:

L = CL
1

2
ρv2S = W cos γ

D = CD
1

2
ρv2S = W sin γ

where W is the weight of the aircraft.
Therefore, the gliding flight path angle (Fig. 2a) can be found:

cot γ =
L

D
(3)

From equations 1 and 2 , we have ẋ = v cos γ, ż = −v sin γ.
Therefore,

cot γ =
ẋ

−ż
=

∆x

−∆z
= g0 (4)

where g0 is the baseline glide ratio. Hence, from equations
3 and 4, we can conclude that g0 = L

D . Therefore, glide
range is maximum when (L/D) is maximum. For banked

turns, if the bank angle is θ, the vertical component of lift,
L′ = L cos θ (Fig. 2b).

g(θ, k) =
L′

D
=

(
L

D

)
cos θ = g(k) cos θ

where k is the drag configuration. The drag multiplier function
δ(k) is a ratio that can be used to obtain the baseline glide
ratio g(k) for a drag configuration k from the baseline glide
ratio of clean configuration g0.

g(k) = g0δ(k)

Given the baseline glide ratio g0 and a drag configuration
k, the glide ratio for a bank angle θ can be obtained from
equation 5.

g(θ, k) = g0δ(k) cos θ (5)

Given the horizontal aircraft airspeed vx, the radius of turn
r(θ, vx) for a bank angle θ can be obtained from equation 6.

r(θ, vx) =
v2x

G× tan θ
(6)

Equations 5 and 6, form the basis of our geometrical model
of a gliding flight. In the rest of the paper, we will use v to
refer to vx.

IV. MODELLING THE EFFECT OF WIND ON TRAJECTORIES

In the case of a LOT emergency, the nature of trajectories
depends upon several factors – the baseline glide ratio of the
aircraft, the aircraft airspeed, the heading and location of the
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emergency, the heading and location of the runway and the
wind conditions. In [4], we have defined valid no-wind air
trajectories that take into account all of the above factors
except for the wind conditions. These no-wind air trajectories
consist of three-dimensional Dubins paths followed by spiral
maneuvers and extended runway segments. The presence of
wind can significantly alter the ground trajectories of these air
trajectories. In this section, we model the effect of horizontal
wind on an air trajectory.

There are five unique segments of a trajectory as defined
in [4] (Fig. 3). They are:

1) Curve 1 of the Dubins path - C1.
2) Straight Line Segment of the Dubins Path - S1.
3) Curve 2 of the Dubins path - C2.
4) Spiral Segment - C3.
5) Extended Runway Segment - S2.

Each of these segments (if present) in a trajectory is affected
in a different way. Hence, in order to model the effect of wind
on the entire trajectory, we need to model the effect of wind
on each segment independently and calculate the amount of
shift (ψ) of the endpoint, the time (t) of flight and the total
altitude loss (δz) for each of them.

Aircraft paths are composed of two basic movements:
banked turns and straight line segments. In the case of banked
turns, the original circular arcs are affected by the wind
to produce trochoidal tracks above the ground. A trochoid
(Fig. 4a) is a geometrical figure that is formed by the locus of a
fixed point (x, y) on the circumference of a circle, the centre
(cx, cy) of which moves along a straight line. The general
equations which define a point on a trochoid are:

x(t) = cx(t) + r cosφ

y(t) = cy(t) + r sinφ

cx(t) = cx0
+ (wx × t)

cy(t) = cy0 + (wy × t)

where φ is the angular distance of the point from the centre,
(cx0 , cy0) is the initial centre and (wx,wy) are the velocities
of the movement of the centre in the two-dimensional plane
given the horizontal wind vector −→w (w, λw).

In the case of straight line segments, the aircraft still
follows a linear path with respect to the ground, but the actual
direction of that line is different from the original intended
path (Fig. 4b). The new path can be calculated by calculating
the lateral shift (ψ) arising due to the crosswind component
of the wind:

ψ = w sinα× t

where t is the time taken to fly the intended linear path, α
is the angle between the heading of the aircraft and the wind
direction and w sinα is the crosswind component.

Effect of Wind on Turns

Let the initial and final points of the airmass curve
C be (xi, yi, zi, λi) and (xf , yf , zf , λf ) respectively where
x, y, z and λ represent the latitude, longitude, altitude and

heading of the aircraft at a point. If the radius of turn is r (Eq.
6), then the inscribed angle of C is given by:

∆φ = cos−1
(

1− (xi − xf )2 + (yi − yf )2

2× r2

)
The time taken tC can now be derived as:

tC =
∆φ× r

v

where v is the aircraft airspeed. Therefore, the total shift of
the centre of rotation for Ĉ, which is the ground trajectory of
C, is given by:

ψC = tC × w

Now, the effective glide ratio (ge(t)) throughout Ĉ is given by:

ge(t) = g0 × cos θ × (vg)

v
(7)

where vg(t) is the ground-speed given by:

vg(t) = v + (w× cosα(t))

where α(t) = (λv(t)− λw) and λv(t) is the direction of the
aircraft airspeed which varies with time in a turn.

Therefore, the total loss in altitude (δz)Ĉ in Ĉ is given by:

(δz)Ĉ = zi − zf

The above model applies to parts C1, C2 and C3 of a
trajectory which are all constant-bank turns.

Effect of Wind on Straight Line Segments

Let the initial and final points of a straight line part
of the no-wind trajectory be A = (xA, yA, zA, λA) and
B = (xB , yB , zB , λA) respectively (Fig. 4b). Therefore,
the original straight line part of the no-wind air trajectory
is
−−→
AB, represented by S. Now, let the final point of the

straight line part in the corresponding ground trajectory Ŝ be
C = (xC , yC , zC , λA). Time (tS ) required to cover distance−−→
AB is given by:

tS =
|
−−→
AB|
v

We know that the heading of aircraft airspeed throughout
−→
AC

is λA. Therefore, the ground-speed throughout the
−→
AC is given

by:
vg = v + w× cosα

where α = λA − λw.
Therefore, the new distance |

−→
AC| = tS ∗ vg . Let the angle

between
−−→
AB and

−→
AC be Θ.

Θ = tan−1
w× sinα

v

The shift |
−−→
BC| is given by:

|
−−→
BC| = tS × w× sinα = ψS

The total loss in altitude is given by:

δzŜ = zA − zC = zA −
|
−→
AC|
ge
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(a) 2D view of a typical trajectory. (b) 3D view of a typical trajectory.

Fig. 3: Parts of a trajectory.

(a) Effect of wind on turns. (b) Effect of wind on straight line glide.

Fig. 4: Effect of wind on turns and straight line glide.

where ge is the effective glide ratio in the straight line segment
given by:

ge = g0 ×
vg
v

(8)

The above model applies to parts S1 and S2 of a trajectory
as both represent straight line gliding.

V. WIND-AWARE TRAJECTORY GENERATION

When an aircraft follows a no-wind air trajectory with
respect to the airmass, in the presence of wind, the resultant
ground trajectory is significantly different. For a wind-aware
trajectory to be able to successfully lead a gliding aircraft to
a target runway, two conditions have to be met:
• Condition I: The trajectory must be able to bring the

aircraft down to the altitude of the runway.
In order for the ground trajectory of a no-wind air

trajectory to bring the aircraft down to the required
altitude, the total loss in altitude should be equal to the
difference between the altitude of the initial position of
the aircraft and the altitude of the target runway.

(δz)C1 + (δz)S1 + (δz)C2 + (δz)C3 + (δz)S2 = ∆z

where ∆z is the altitude difference between the initial
configuration of the aircraft and the target runway.

• Condition II: The end of the trajectory must meet the
coordinates of the runway in the two-dimensional space.

In the presence of wind, the ground trajectory of a no-
wind air trajectory changes significantly as described in
the previous section. It has been previously demonstrated
in [6] that in the presence of a constant horizontal wind,
the final position of the ground trajectory lies on a line
which is parallel to the wind vector and passes through
the endpoint of the no-wind air trajectory. Therefore, the
problem of finding a wind-aware air trajectory is distilled
to the problem of intercepting a virtual target moving
away from the actual runway in the upwind direction.

Therefore, if T is the total time of flight for the original
no-wind trajectory, for the wind augmented trajectory to
intercept the runway, the following condition must be
met:

ψC1 + ψS1 + ψC2 + ψC3 + ψS2 = T × w

Now, we know that,

T = tC1 + tS1 + tC2 + tC3 + tS2



6

Therefore,

(tC1 + tS1 + tC2 + tC3 + tS2)× w
= ψC1 + ψS1 + ψC2 + ψC3 + ψS2 (9)

In the presence of wind, the effective glide ratio of a gliding
aircraft is different from the aerodynamic glide ratio (Eq. 7,
Eq. 8), but the rate of descent (σ) remains unaffected by
horizontal wind (Fig. 5b). Therefore, if an aircraft glides with
the best gliding airspeed for time t, then the loss of altitude
will always be equal to σt, even though the horizontal distance
covered will be different in case of tailwind, headwind, and
no - wind conditions.

∆z(t) = σt (10)

Therefore, in order to compute valid wind-aware air trajecto-
ries, we make the following assumptions:

1) The aircraft always flies with the best gliding airspeed v.
2) For each segment in an air trajectory, time t is required

to fly that segment with respect to the airmass.
3) The aircraft follows each segment of the air trajectory for

time t.
Assumptions 1, 2 and 3 imply that a ground trajectory will lose
exactly the same amount of altitude as the corresponding air
trajectory since the time in air is equal for both. This ensures
that Condition I holds. Therefore, the problem of generating
a wind-aware air trajectory is reduced to the problem of
generating a no-wind air trajectory, the ground trajectory of
which can bring an aircraft to the correct position in the
horizontal plane: R = (x, y, λ). This can be achieved by
generating a wind-aware air trajectory to a virtual runway
R′ = (x′, y′, λ′ = λ) in the horizontal plane such that
Condition II (Eq. 9) is met.

Analytical Solution for Finding R′

For being able to analytically compute the location of the
virtual runway, we need to be able to predict the total shift
caused by the various segments of the trajectory. In order to
simplify the task of prediction, we first generate an initial no-
wind air trajectory (P ) to the actual runway to model the effect
of wind on it and then compute a new wind-aware air trajectory
to a virtual runway that has the same type of initial Dubins
path, the same integral number of spirals, and an extended
runway segment that has the same length and orientation with
respect to the wind vector. This allows us to compute ψC1, ψC2,
ψC3, ψS1, and ψS2 for P and argue that for the new wind-
aware air trajectory P ′, ψC3′ and ψS2′ will have the same
value as that of ψC3 and ψS2 respectively. This is because
the same integral number of spirals will always produce the
same amount of shift in the presence of a constant horizontal
wind, irrespective of their position and two extended runway
segments of equal length and orientation with respect to the
wind vector will also produce the same shift.

The total shift Ψ(P ′) caused by the effect of wind on P ′

is given by:

Ψ(P ′) = ψC1′ + ψC2′ + ψS1′ + ψC3′ + ψS2′

For a trajectory in the horizontal plane to be valid, it must
satisfy the following constraint, which follows directly from
Condition II:

Ψ(P ′) = |RR′|

Since P and P ′ have similar C3 and S2, the end point of C2′
should lie on a line passing through the end point of C2 in
the upwind direction. Hence, a valid P ′ satisfies the following
condition:

Ψ(P ′)− (ψC3′ + ψS2′) = ψC1′ + ψC2′ + ψS1′ = |ee′| (11)

where e and e′ are the end points of C2 and C2′.
For trajectories whose initial Dubins paths are of the form

left - straight - left or right - straight - right, the total heading
change and thus the total curve length of C1 and C2 is the same
for all variations of trajectories given that the aforementioned
constraints are satisfied. Hence we can conclude that:

ψC1′ + ψC2′ = ψC1 + ψC2 (12)

Therefore, from equations 11 and 12, we get

|ee′| = (ψC1 + ψC2) + ψS1′ (13)

Let the lengths of S1 and S1′ be l and l′ respectively and the
angle between the heading of S1 and −→w be α and the angle
between the heading of S1′ and −→w be α′ (Fig. 6a). Now, time
to fly S1′ is given by:

tS1′ =
l′

v + w cosα′
(14)

and
ψS1′ = tS1′ × w sinα′ (15)

Since the total heading change and thus the total curve
length of (C1 + C2) and (C1′ + C2′) are the same, therefore,
(δz)C1 + (δz)C2 = (δz)C1′ + (δz)C2′ . By construction, the
total change in altitude for the entire Dubins path segments of
P and P ′ are equal. Therefore,

(δz)C1 + (δz)C2 + (δz)S1 = (δz)C1′ + (δz)C2′ + (δz)S1′

or, (δz)S1 = (δz)S1′

or, σtS1′ = σtS1 (from Eq. 10)
or, tS1′ = tS1

From symmetry (Fig. 6a), distance between the end points
of C2 and C2′ (|ee′|) is equal to the distance between their
centres (|cc′|). Hence, from equations 13 and 15, we get:

|cc′| = ψS1′ + (ψC1 + ψC2)

= (tS1′ × w sinα′) + (ψC1 + ψC2) (16)

From geometry, we can see that (Fig. 6a),

|cc′| = k

(
1

tanα
− 1

tanα′

)
where k is the perpendicular distance between the centre of C1
and the line parallel to −→w and passing through c. Therefore,

(tS1′ × w sinα′) + (ψC1 + ψC2) = k

(
1

tanα
− 1

tanα′

)
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(a) Glide ratio of a gliding aircraft. (b) Effect of horizontal wind on a gliding aircraft.

Fig. 5: Effect of horizontal wind on glide ratio.

Let K1 = tS1′ × w, K2 = (ψC1 + ψC2) and
K3 = k

tanα− K2. These are values that can be pre-computed
by modeling the effect of wind on P . Therefore, we get:

K1sinα
′ + K2 =

k

tanα
− k

tanα′

or, K1sinα
′ + k

sinα′

cosα′
=

k

tanα
− K2

or, K1sinα
′ + k

sinα′

cosα′
= K3

which can be expanded into the following quartic equation in
terms of sinα′:

K2
1 sin4 α′−2K1K3 sin3 α′+(K2

3+k2) sin2 α′−k2 = 0 (17)

From Fig. 6a, we can see that l′ = k/ sinα′. Therefore,
from Eq. 14, we get:

l′

v + w cosα′
= tS1′

or,
k

sinα′(v + w cosα′)
= tS1′

or, tS1′ × sinα′(v + w cosα′) = k

or, tS1′ × v sinα′ + tS1′ × w sinα′ cosα′ = k

or, K4 sinα′ + K1 sinα′ cosα′ = k

where K4 = tS1′ × v. The above equation can be expanded
into another quartic equation in sinα′:

K2
1 sin4 α′ + (K2

4 −K2
1) sin2 α′ − 2K4k sinα′ + k2 = 0 (18)

Since we have two quartic equations, it now becomes possible
to derive the following cubic equation in terms of sinα′ from
equations 17 and 18:

2K1K3 sin3 α′ + (K2
4 − K2

1 − K2
3 − k2) sin2 α′

− 2K4k sinα′ + 2k2 = 0 (19)

Now, a real value of sinα′ can be computed from Eq. 19 which
can be used to calculate |cc′| and therefore |ee′| using Eq. 16.
Finally, we can compute the shift of P ′ by using Eq. 11, which
is the required distance of the virtual target from the actual
runway in the upwind direction.

The above approach, however, cannot be implemented for
trajectories whose initial Dubins paths are of the type right -
straight - left or left - straight - right. This is because in these
types of Dubins paths, the total curve length of C1 and C2
differ for different variations (Fig. 6b). This makes us unable
to use ψC1 + ψC2 calculated from P as a constant in P ′.

Iterative Solution for Finding R′

When the analytical solution for finding R′ cannot be ap-
plied, we can use a heuristic iterative approach for computing
R′ as given in Pseudo-code 1.

f i nd _ v i r t ua l_ ru nw ay ( i n i t i a l _ n o _ w i n d , runway ,
↪→ wind_head ing )

i n i t i a l _ w i n d = model_wind ( i n i t i a l _ n o _ w i n d )
l a s t _ p o i n t = f i n a l _ p o i n t ( i n i t i a l _ w i n d )
d e v i a t i o n = d i f f e r e n c e ( runway , l a s t _ p o i n t )
d i s t a n c e = 0
v i r t u a l _ p o i n t = n u l l
whi l e ( d e v i a t i o n > 0)

d i s t a n c e = d i s t a n c e + d e v i a t i o n
r e v e r s e _ w i n d _ h e a d i n g = r e v e r s e ( wind_head ing )
v i r t u a l _ p o i n t = a l o n g _ h e a d i n g _ a t _ d i s t a n c e ( runway
↪→ , r e v e r s e _ w i n d _ h e a d i n g , d i s t a n c e )
temp_no_wind = f i n d _ n o _ w i n d _ a i r _ t r a j e c t o r y (
↪→ v i r t u a l _ p o i n t )
temp_wind = model_wind ( temp_no_wind )
t e m p _ l a s t _ p o i n t = f i n a l _ p o i n t ( temp_wind )
d e v i a t i o n = d i f f e r e n c e ( runway , t e m p _ l a s t _ p o i n t )

re turn v i r t u a l _ p o i n t

Pseudocode 1: Heuristic iterative approach for computing R′

VI. EXPERIMENTATION AND RESULTS

In our experiments, we generated a no-wind air trajectory
from an altitude of 10,000 feet and an initial configuration –
{longitude: -73.8767, latitude: 40.8513, heading: 0.698798},
to LGA31 of LaGuardia airport, New York and then imple-
mented our wind model as described in section IV. For the
first case, we modeled the effect of a 40 knot wind coming
from North, South, East and West (Fig. 7) and for the second
case, we modeled the effect of a West-wind of 10, 20, 30
and 40 knots on the same no-wind air trajectory (Fig. 8). We
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(a) RSR path. (b) LSR path.

Fig. 6: Geometry of RSR (symmetrical to LSL) and LSR (symmetrical to RSL) paths.

(a) 2D view. (b) 3D view.

Fig. 7: Effect of a 40 knot wind from different directions on a trajectory from 10000 feet.

(a) 2D view. (b) 3D view.

Fig. 8: Effect of different magnitudes of West-wind on a trajectory from 10000 feet.
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(a) 2D view. (b) 3D view.

Fig. 9: Wind-aware trajectory from 8000 feet in 40 knots West-wind.

(a) 2D view. (b) 3D view.

Fig. 10: Wind-aware trajectory from 10000 feet in 40 knots West-wind.

(a) 2D view. (b) 3D view.

Fig. 11: Wind-aware trajectory to LGA31 from 3850 feet, assisted by a 30 knots North-wind.
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also generated wind-aware air trajectories to a virtual runway
from altitudes of 8,000 and 10,000 feet in the presence of a
40 knots West-wind (Fig. 9, Fig. 10) that can lead a gliding
aircraft to LGA31. We used a clean configuration glide ratio
of 17.25:1 for straight line glide as predicted in [19] with a
dirty configuration glide ratio of 9:1 for the final extended
runway approaches. All our experiments were done for an
Airbus A320 using 30° bank angle for the turns. On an
average, it took 50 milliseconds to generate results on an Intel
Core i7-7500U CPU - 2.70GHz. Using our wind model, we
successfully generated a wind-aware trajectory to LGA31 from
an altitude of 3850 feet, assisted by a 30 knots North-wind,
even though a no-wind trajectory in the same configuration
was not possible (Fig. 11). This clearly shows the potential
of the model for generating wind-aware trajectories when no-
wind trajectories are infeasible.

VII. CONCLUSION AND FUTURE WORK

Trajectory generation algorithms which can compute valid
trajectories in a short time are crucial during an emergency.
Our experiments clearly show that with a proper wind model,
it is possible to design prediction based dynamic data-driven
systems that can be used to quickly generate wind-aware tra-
jectories in case of LOT emergencies. Trajectories computed
using this approach can be guaranteed to be of the highest
fidelity since they take into account the capabilities of the
aircraft and the wind conditions during an actual emergency.
This will allow pilots to quickly decide on a reasonable
course of action for safely landing an aircraft without having
to manually consider the feasibility of various choices, thus
reducing the response time.

Future directions of work include the implementation of
variable wind gradients, which is true for real-world scenarios
where the wind conditions change with a change in altitude.
Designing terrain-aware algorithms that can detect obstacles
and generate paths that avoid them is also an interesting direc-
tion of work. Traditional obstacle avoidance algorithms depend
on graph search techniques which have a high computational
time. Therefore, it is necessary to design heuristic obstacle
detection algorithms that can produce accurate results in the
shortest possible time. Willcox et al. [20] compute failure
probabilities of maneuvers for aerospace vehicles. Uncertainty
quantification is another possible direction of work which will
help us to represent conditions such as wind speed, glide ratio,
and pilot errors as probability distributions and convert them
into a region of possibility around trajectories and allow us to
compute the failure probabilities of trajectories.
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