
Collaborative Situational Awareness for
Conflict-Aware Flight Planning

Saswata Paul, Stacy Patterson, and Carlos A. Varela

Department of Computer Science
Rensselaer Polytechnic Institute, Troy, New York, 12180

pauls4@rpi.edu, {sep, cvarela}@cs.rpi.edu

Abstract—In autonomous air-traffic management scenarios of
the future, manned and unmanned aircraft will be able to safely
navigate through the National Airspace System, independent of
centralized air-traffic controllers. They will do this by sharing
critical data necessary for maintaining standard separation with
each other. Under such conditions, every aircraft must have
sufficient knowledge about other aircraft sharing the airspace
to operate safely. In this paper, we specify a safe state of
knowledge that is necessary for aircraft to operate safely in
the absence of a centralized air-traffic controller and present
a distributed knowledge propagation protocol to attain this safe
state. This protocol can be used by network-connected aircraft to
achieve collaborative situational awareness for cooperative flight
planning. We identify certain system conditions necessary to
guarantee two correctness properties for our protocol – safety
and progress. We use the TLA+ Specification Language to
formally specify our protocol, the correctness properties, and
the conditions necessary to guarantee the properties. Using
the formal specifications, we also provide mechanically-verified
proofs of the correctness properties in the TLA+ Proof System.

I. INTRODUCTION

In the near future, civilian applications of unmanned aerial
vehicles (UAVs) for purposes such as package delivery and
scientific surveillance, and the use of micro-aircraft for urban
transportation will lead to a significant increase in the density
of aircraft in the National Airspace System (NAS). The current
system of human-operated air-traffic control (ATC) is prone
to human errors and is not scalable in the face of high-
density air-traffic, rendering it ill-suited for use in Urban
Air Mobility (UAM) scenarios. ATC errors can cause loss
of standard separation between aircraft, leading to near mid-
air collisions (NMACs) and wake-vortex induced rolls, which
can be catastrophic. For this reason, it will be imperative for
both manned and unmanned aircraft to have the ability to
independently navigate through the NAS while maintaining
standard separation from other aircraft. The future of aviation
will see the advent of "smarter" air-traffic management (ATM)
protocols that will be capable of gathering real-time data from
multiple sources and using it to enhance the overall situational
awareness of pilots and flight-control systems. Aircraft naviga-
tion systems will, therefore, be capable of autonomously and
safely navigating through the NAS without being dependent
on human-operated ATC (free-flight). The advantages of such
automated techniques over traditional human-operated ATC
include that they are faster [1], can be formally verified for

correctness [2], and can be efficiently scaled over significantly
larger numbers of aircraft [3].

NMAC
Detection
Algorithm

Signal
Receivers/

Broadcasters

Flight Planning
Algorithm

Traffic Flightplans

Safe Flightplans

Unsafe Flightplans
Traffic Flightplans

Safe Flightplans IoP

Ownship

Fig. 1: Data-driven feedback loop for NMAC detection.

We envision a formally verified approach for achieving
collaborative situational awareness among network-connected
aircraft in the NAS. This capability will stem from the avail-
ability of a vast amount of real-time data that will be shared
among them via a dedicated vehicle-to-vehicle (V2V) network
which we term as the Internet-of-Planes (IoP). Heightened
collaborative situational awareness will, in turn, allow the
aircraft in the NAS to maintain standard separation among
themselves by employing a cooperative conflict-aware flight
planning approach. In conflict-aware flight planning [4], flight
data from all traffic aircraft is used by an ownship to avoid pos-
sible NMACs in the flight planning stage itself (Fig. 1). This
reduces the reliance on tactical collision avoidance approaches
like TCAS [5] which often require instantaneous responses
from pilots or flight-control systems and cannot be used in
low-altitude terminal areas.

In our vision of a decentralized air-traffic control system,
if there are N aircraft already inside an airspace (owners),
any new aircraft that wants to enter the airspace (candidate)
has to obtain permission from the owners (Fig. 2). For this,
a candidate has to first compute a provably conflict-free set
of N + 1 flight-plans with the owners and then get them to
agree on this set. A conflict-free set of flight-plans can be
computed locally by a candidate by using a conflict-aware
flight planning algorithm [4]. Then the candidate may employ
a fault-tolerant distributed consensus protocol like Paxos [6]



Aircraft competing
to enter airspace

Controlled
airspace

Fig. 2: Aircraft trying to enter a controlled airspace (top view).

to have the owners reach an agreement on the new set of
flight-plans.

Using Paxos, multiple candidates may compete for entry
into an airspace. However, a candidate will not consider other
candidates while computing its conflict-free set of flight-plans
with the owners, thereby generating a solution which is only
valid if the set of owners does not change. This implies that
the owners can allow entry to only one candidate by reaching
consensus on only one of the proposed sets of flight-plans.
This is necessary because when a candidate is allowed entry,
the set of owners changes, invalidating the conflict-free sets
computed by the other candidates. It has been formally proven
that Paxos will guarantee that only one value is chosen [7],
thus guaranteeing that only one candidate will be allowed entry
by the owners.

When the set of owners changes, all aircraft "relevant" to
an airspace must be informed so that they can update their
set of owners. Aircraft relevant to an airspace comprises of
the set of new owners and the set of aircraft expected to try
to enter the airspace in the future (which also includes the
candidates who may have been previously denied entry). Paxos
only guarantees that the participants will reach consensus on a
single value, which requires only a majority of the participants
to chose that value. The successful completion of Paxos will
not necessarily guarantee that all relevant aircraft will learn
the set of new owners. It will, however, guarantee that a non-
zero number of the relevant aircraft will learn the set of new
owners. Therefore, a knowledge propagation protocol will be
required to propagate the knowledge of the set of new owners
(and their flight-plans) to all relevant aircraft.

Any knowledge propagation protocol used in cooperative
flight planning should ensure a safe state of knowledge in
which all aircraft can "feel safe" to operate. In knowledge
logic [8], the expression kiφ represents that an agent i knows
the fact φ and Eφ represents that all agents in the system know
φ. The expression EEφ (or E2φ) represents a higher state
of knowledge than Eφ and implies that every agent knows
two facts – (1) φ, and (2) Eφ. In the context of cooperative
flight-planning, φ represents the set of new owners (and their
flight-plans). We believe that if all aircraft operating in the
NAS are autonomous, then Eφ is sufficient for safety since
autonomous agents will have an implicit trust in the system.

However, if there are human pilots involved, then the absence
of E2φ will create a scenario in which the pilots will not be
able to trust the safety of the system. Fagin et al. [8] succinctly
explain this concern with the following example – even if all
drivers in a society know the rules for following traffic lights
and follow them, that is not enough to make a driver "feel
safe". This is because unless a driver knows that everyone
else knows the rules and will follow them, then the driver
may consider it possible that some other driver, who does not
know the rules, may run a red light. Therefore, we define a
safe state of knowledge as the state E2φ.

The failure of safety-critical1 aerospace systems can be
catastrophic [9]. Therefore, for any software that is used in
such systems, the guarantees provided by the software must
be extensively verified to ensure correctness. Formal methods
facilitate the verification of such software by providing tech-
niques and tools for mechanically checking the proofs of these
guarantees. The TLA+ [10] specification language is designed
for specifying concurrent systems and their properties, and
verifying them using the TLA+ Proof System (TLAPS) [11].
TLAPS can be used to write structured hierarchical proofs
[12] which are automatically converted to individual proof
obligations and solved by automated theorem provers like
Isabelle [13], Zenon [14], Yices [15], CVC3 [16], Z3 [17],
and veriT [18].

In this paper, we formalize the definition of a safe state
of knowledge E2φ and present a protocol for distributed
knowledge propagation that can be used to achieve E2φ after
the set of owners for an airspace changes to a new set φ. This
will give aircraft pilots the ability to operate in the airspace
with explicit confidence in the safety of the system (we assume
that all aircraft are non-Byzantine and non-adversarial). Our
protocol allows an aircraft to propagate φ among all other
aircraft and learn when E2φ has been successfully achieved.
We also identify certain system conditions under which it can
be guaranteed that our protocol satisfies two main correctness
properties – safety2 and progress. We use these conditions
to provide formal proofs of the correctness properties. Fur-
thermore, we specify our protocol in TLA+ and mechanically
verify the proofs of the correctness properties in TLAPS.

The rest of the paper is arranged as follows: in Section II,
we discuss related work on knowledge states in distributed
systems and formal verification of knowledge propagation
protocols; in Section III, we formalize "relevant set" for an
airspace and present the problem statement; in Section IV, we
present our knowledge propagation protocol and its correctness
properties; in Section V, we identify the conditions required
for proving the correctness properties for our protocol and
informally analyze them; in Section VI we discuss how our
protocol can be implemented for cooperative flight planning
applications; in Section VII, we formally specify our protocol
and introduce two theorems corresponding to the correctness
properties; in Section VIII, we present some lemmas, informal

1“Safety" here implies protection from harm to life, environment, or
property

2Not to be confused with "safety" in "safety-critical"



intuitions behind the proofs of the lemmas and theorems, and
detailed proof sketches for readers interested in replicating our
results; and finally, in Section IX, we conclude the paper with
a discussion about future directions of work.

II. RELATED WORK

There exists prior work in the literature on reasoning
about knowledge states in distributed multi-agent systems.
Halpern and Fagin [19] present a formal model to capture
the interaction between knowledge and action in distributed
systems by modeling the distributed system as a set of runs.
They define a run as a function from time to global states of
the system. They define knowledge based protocols where a
process’ actions depend on its knowledge and can be used
to describe high-level descriptions of a process’ behavior
depending on its local state. Ksehmkalyani [20] examines the
feasibility of achieving Enφ for n > 1 and use a restricted
distributed messaging framework to explore the possibility
of achieving Enφ in asynchronous systems by using only
logical clocks. They also explore the use of different types
of logical clocks for attaining concurrent common knowledge
by using their framework. Fagin and Halpern [21] provide a
model for explicitly incorporating probability in knowledge
logic formulas to reason about knowledge and probability.
They introduce a probabilistic variant of common knowledge
in multi-agent systems and provide fundamental axioms for
reasoning about the same. Fagin and Vardi [22] investigate
a model of distributed communication and provide a logical
formalization of runs. They also analyze the logic of implicit
knowledge, which is the knowledge that can be attained by
combining the knowledge of a group. Their work explores
the dependence of knowledge in a distributed system on the
way processes communicate with one another. Guzmán et al.
[23] introduce the theory of group space functions to reason
about the information distributed among the members of a
potentially infinite group. They develop the semantic founda-
tions and algorithms to reason about distributed knowledge in
multi-agent systems and analyze the properties of distributed
spaces for reasoning about the distributed knowledge of such
systems. Matteo [24] analyzes the use of Datalog [25] to
reason about the knowledge of a group of distributed nodes
and develop Knowlog, which is a variant of Datalog that
can express nodes’ state of knowledge using a set of epis-
temic modal operators. Their approach abstracts the modes
of communication exchange from states of knowledge so
that reasoning is simplified. They use an implementation of
the Two-Phase Commit protocol to analyze their approach.
Fagin et al. [26] present a formal model for the analysis
of attainable knowledge states in distributed systems under
certain assumptions. Their model can be used to formalize as-
sumptions about distributed systems, such as whether they are
deterministic or non-deterministic and whether the knowledge
is cumulative or non-cumulative. They also provide a complete
axiomatization of knowledge for some important cases of
interest. Van Der Mayden [27] establish the completeness of
a logic of knowledge and time for all classes of systems that

satisfy the perfect recall property which is true if, at all times,
a processor’s state includes a record of its previous states.
They also provide an abstract characterization of systems with
perfect recall that can be used to prove completeness. Kuznets
et al. [28] propose a framework for reasoning about knowledge
in multi-agent asynchronous systems with Byzantine fault fail-
ures. Their framework combines epistemic and temporal logic
for specifying distributed protocols and their behaviors. The
modularity of their approach allows modeling of any timing
and synchrony properties of distributed systems. Knight et al.
[29] propose a logic for reasoning about epistemic messages in
asynchronous distributed systems where knowledge is true at
the start of announcement and agents can predict messages that
have been sent, but not yet received. They extend the Public
Announcement Logic [30] in which announcements from an
external source can be used to model messages broadcast
by agents within the system. Halpern [31] presents a survey
of formalizations of distributed knowledge in asynchronous
and unreliable distributed systems, and provides examples
to argue why this formalization of distributed knowledge is
important for analyzing distributed systems. Dwork et al. [32]
present a general framework for formalizing and reasoning
about knowledge in distributed systems. They formalize the
relationship between common knowledge, global knowledge,
and other states of distributed knowledge, and show that in
real-life distributed systems, common knowledge cannot be at-
tained. They also investigate other weaker states of distributed
knowledge that are practically attainable. Halpern et al. [33]
present a categorization of epistemic and temporal logic along
two dimensions: the language used and the assumptions about
the underlying distributed systems. They use these categoriza-
tions to introduce ninety-six logics, which they investigate
by characterizing their complexity and their dependence on
parameter combinations. Choi et al. [34] introduce a class of
new consensus protocols for distributed networks using a di-
rected acyclic graph-based structure called the OPERA chain.
They prove eventual consensus for their protocols without
using partial synchrony, leader-election, round-robin, or proof-
of-work. They present an analysis of their approach using
Lamport time-stamps and concurrent common knowledge.
However, none of this work has presented any mechanically-
verified knowledge propagation protocols.

Previous work on formal verification of atomic-commit
protocols has been limited to model checking. Popovic et
al. [35] have presented a model checking based approach for
analysis of distributed transaction management protocols using
the SMV formal verification tool and have used their approach
for the verification of the Two-Phase Commit protocol. Atif
[36] has presented an analysis of Two-Phase Commit protocol
and its variant, the Three-Phase Commit protocol, by using
the process algebra mCRL2 and modal µ-calculus. They have
model checked both variants of the protocol under different
communication settings to analyze their behavior in practical
distributed networks. None of the above work has presented
any mechanically-verified theorems that can guarantee that
correctness properties will hold in infinite input states.



We improve upon prior work by presenting a formally-
verified distributed knowledge propagation protocol that can
be used to attain a safe state of knowledge in multi-agent dis-
tributed systems like the IoP and providing machine-checked
formal proofs of some correctness guarantees necessary for
safety-critical aerospace applications.

III. COLLABORATIVE SITUATIONAL AWARENESS

In this section, we present our problem statement for
achieving collaborative situational awareness for cooperative
flight planning.

As discussed in Section I, the following sets of aircraft are
relevant to an airspace for cooperative flight planning:

C1 The aircraft allowed entry by the agreement on φ.
C2 The aircraft already inside the airspace.
C3 The aircraft expected to try to enter the airspace.

By definition, φ contains information about all aircraft in C1
and C2. We assume that there is some mechanism, perhaps
one that uses ADS-B [37] based intent-broadcast [38], that
provides the information of aircraft in C3. The set S : S =
C1 ∪ C2 ∪ C3 represents all aircraft relevant to an airspace.

Section I describes the mechanism by which only a subset
of S is aware of the set of new owners (and their flight-plans)
φ when a candidate aircraft is allowed entry into an airspace.
The goal of the knowledge propagation phase is to ensure
E2φ in the set S. The problem of knowledge propagation for
cooperative flight planning can, therefore, be precisely stated
as – “Given a set of aircraft K : K ⊂ S in which all aircraft
know the same value φ and the membership of S, but not the
membership of K, each aircraft in K should try to propagate
the knowledge of φ to all aircraft in S for attaining E2φ and
at least one aircraft in K should eventually learn that E2φ
has been attained."

The knowledge of φ can be propagated to all aircraft in S
by using atomic-commit protocols [39] which can ensure that
a value is committed at all nodes. In the next section, we will
introduce an atomic-commit-inspired distributed knowledge
propagation protocol that can be used for attaining a safe state
of knowledge for safety-critical applications.

IV. OUR KNOWLEDGE PROPAGATION PROTOCOL

In this section, we propose a distributed knowledge propa-
gation protocol that can be used for propagating a value φ to
a group of distributed nodes to eventually achieve E2φ.

The System Model

We consider an asynchronous, non-Byzantine system model
in which agents operate at arbitrary speed and may fail
temporarily. We also assume reliable messaging [40] where
message delivery is guaranteed. Messages can be duplicated
and have arbitrary transmission times, but cannot be corrupted.

The Protocol

There is a non-empty set of coordinators, and a logically
separate non-empty set of replicas. Each coordinator has
knowledge of the set of all replicas. A single value φ is known
to all coordinators. E2φ, in the context of our protocol, implies
that all replicas know that all other replicas know φ. The goal
of every coordinator is to propagate φ and eventually learn
that E2φ has been achieved. Coordinators and replicas are
logical abstractions and may be functionally implemented by
the same physical node (e.g., an aircraft) simultaneously.

The protocol operates in the following phases:

• Phase 1
(a) A coordinator sends a learn ("1a") message with a

value φ to all replicas.
(b) A replica learns a value φ if and only if it receives a

learn message with the value φ from a coordinator and
it replies back to the coordinator with a learnt ("1b")
message if and only if it has learnt a value φ.

• Phase 2
(a) A coordinator sends an all-know ("2a") message to

each replica if and only if it has received a learnt
message from all replicas.

(b) A replica learns that all replicas know the value φ if
and only if it receives an all-know message from a
coordinator and it replies back to the coordinator with
an acknowledgement ("2b") message if and only if it
has learnt that all replicas know the value φ.

(c) A coordinator learns E2φ if and only if it has received
acknowledgement message from all replicas.

Required Correctness Properties

For use in safety-critical systems, the protocol must satisfy
the following correctness properties:

• Safety - This property implies that a coordinator will learn
that E2φ has been attained if and only if all replicas know
Eφ and φ. This property is important because it ensures
the safe state of knowledge that is described in Section III.

• Progress - The protocol should ensure that eventually,
E2φ is attained. This property is important for applica-
tions where an eventual outcome is necessary.

Informal Analysis of the Protocol

The system model described earlier in this section is not
sufficient to guarantee that the required correctness properties
will be satisfied – e.g., if even one replica fails, the protocol
will never be able to make progress. Therefore, to guarantee
the correctness properties, we need to make certain additional
assumptions about the system. We list some important obser-
vations that will be helpful for identifying such assumptions.

• All the coordinators try to commit the same value,
removing the competition for votes. Therefore, a replica
can respond to "1b" and "2b" messages from multiple
coordinators, even if they have already committed a value.



• Since successful propagation requires a value to be repli-
cated in all replicas, the protocol cannot tolerate the
failure of even one replica.

• The non-Byzantine behavior of available agents directs
that some sets of operations are atomic in nature – e.g., a
coordinator has to send "2a" messages if it has received
"1b" messages from all replicas and it has to receive "1b"
messages from all replicas to send "2a" messages.

• If an agent receives messages that had not been sent, then
its non-Byzantine behavior cannot ensure correctness –
e.g., if a replica receives "2a" messages that had not been
sent, it will incorrectly learn that all replicas know a value
and respond with "2b" messages, affecting safety.

From the above observations, we can see that a replica
can handle requests from multiple coordinators. However,
the protocol cannot tolerate the failure of even one replica.
Therefore, in the next section, we will identify a set of
conditions that will allow us to formally prove the correctness
properties and mechanically verify the proofs.

V. IDENTIFYING THE CONDITIONS FOR FORMALLY
PROVING CORRECTNESS

The famous Fischer, Lynch, and Patterson [41] impossibility
result states that in asynchronous systems, it is impossible to
reach agreement among a set of agents even if only one of the
agents fails. This is because, in asynchronous systems, there
is no bound on message delivery and processing times, which
makes it difficult to distinguish agent failures from processing
delays. This suggests that to formally prove progress in a
knowledge propagation protocol, we need some conservative
assumptions. We identify a set of suitable conditions below
for formally proving the correctness properties.

The Conditions

It is easy to identify the following general condition about
the availability of agents that can be useful for proving
correctness for most distributed protocols in an asynchronous
setting:

G1 All agents are always eventually available.

In asynchronous systems with reliable message delivery, mes-
sage delays can be arbitrarily long and processing can also
take arbitrarily long. In such systems, if an agent is "always
eventually available", it is equivalent to the agent being
"always available" since there is no way to differentiate
temporary failures from processing delays. Furthermore, our
protocol only needs one coordinator to be always eventually
available. Therefore, we can identify the following availability
requirements:

G1a At least one coordinator is always available.
G1b All replicas are always available.

In Section VII, we will formally specify these conditions as
some assertions for use in the formal proofs.

Informal Analysis of the Conditions and the System Model

Below, we informally analyze the conditions and our system
model with respect to the correctness properties:

• For the protocol to make progress, there must be some
coordinator to send "1a" and "2b" messages and to
eventually learn of E2φ. G1a ensures that at least one
coordinator is always available.

• The protocol cannot make progress in each phase unless
a coordinator receives "1b" and "2b" messages from
all replicas. G1b ensures that all replicas are always
available.

• If a particular message is always lost, this will prevent
the protocol from making progress. Reliable message de-
livery ensures that all messages are eventually delivered.

• If an agent delivers any message that has not been sent,
that will cause it to incorrectly perform some action,
thereby affecting safety. Since messages cannot be cor-
rupt and agents are non-Byzantine, this ensures that only
a message that has been sent may be delivered.

We can see that the conditions identified are necessary for
proving correctness under our system model. It is difficult
to prove that these conditions are the weakest conditions
required because there may be multiple equally-weak sets of
conditions under which the proofs can be completed. Proving
the weakest set, therefore, requires formalizing the meaning
of "weakness" in the context of these conditions. Moreover,
the strong guarantees provided by mechanically-verified proofs
justify the possibly-conservative conditions in the context of
safety-critical applications. Therefore, for now, we are satisfied
with the informal analysis of the necessity of the conditions
and will consider the set {G1a,G1b} to be one of the weakest
sets of conditions required for proving correctness under our
system model.

VI. APPLICATION OF THE PROTOCOL IN COOPERATIVE
FLIGHT PLANNING

The protocol defined in Section IV is a general-purpose
distributed knowledge propagation protocol that can be used
in asynchronous systems. In line with their definitions, coor-
dinators and replicas are logical abstractions and a particular
physical node may functionally implement both abstractions
simultaneously. If the protocol is used in a scenario where the
physical nodes exclusively implement either a coordinator or a
replica, but not both, then the system can withstand the failure
of multiple coordinators as long as G1a holds.

Since the IoP is a distributed network where the physical
nodes are aircraft, our knowledge propagation protocol can
be used for applications like cooperative flight planning.
However, in the particular use case of cooperative flight
planning, the set of aircraft K, which are responsible for
propagating a value φ, do not have any knowledge about the
membership of the set K, making it difficult to physically
separate the set of coordinators and replicas. Therefore, this
application necessitates the pessimistic implementation of the
protocol where all aircraft in the set S functionally implement



a replica and all aircraft in the set K functionally implement
an additional coordinator. This implies that an implementation
of our protocol for cooperative flight planning will require all
aircraft relevant to an airspace to implement a replica and all
aircraft which are aware of φ (the set of new owners and their
flight-plans) to implement both a replica and a coordinator.

As a consequence of the above implementation, the set of
physical nodes implementing coordinators will be a subset of
the physical nodes implementing replicas. Under such circum-
stances, the condition that all replicas are always available
will imply that all coordinators are always available. Since
the set of coordinators and replicas are non-empty, G1b will
imply G1a under such circumstances. Nevertheless, we will
still use the weaker condition G1a for our proofs because
this will allow the proofs to be pertinent, without loss of
generality, even for applications where the implementation
may not necessarily warrant G1b to imply G1a.

VII. THE FORMAL SPECIFICATION

In this section, we will formally specify a system im-
plementing our protocol and introduce some assertions by
formalizing the conditions and the system model.

The Network of Aircraft as a Distributed State Machine

We represent a distributed system implementing our proto-
col as a distributed state machine [42] that has a current state
at any given time and changes its state by performing some
action. There are the following sets:

• C – The set of all coordinators in the system.
• R – The set of all replicas in the system.
• V – The set of all values in the system.
• T – The set of discrete logical times.
• M – The set of all possible messages in the system.
Time is represented by natural numbers and every mes-

sage in the system is represented by a tuple (ρ, δ, ν, γ)
such that ρ ∈ C, δ ∈ R, ν ∈ V , and γ ∈ Γ where
Γ = {“1a”, “1b”, “2a”, “2b”}.

Let us assume that the value chosen for propagation after
consensus is φ. The following global variables represent the
current state of the system at any time:

• κ – κ[r] is True for a replica r if and only if it knows
φ.

• ε̇ – ε̇[r] is True for a replica r if and only if it knows
Eφ.

• ε̈ – ε̈[c] is True for a coordinator c if and only if it
knows E2φ.

• µ – The set of all messages in the current state.
• τ – The time at which the current state was recorded.

Important Notations and Predicates

We introduce the predicates below to detect various types
of messages in the system state:

• Φ1a(c, v) is True if there is a message m of type "1a",
value v, and coordinator ID c.

Φ1a(c, v) ≡ ∃m ∈ µ :m.γ = “1a” ∧m.ρ = c ∧m.ν = v

• Φ1b(r, c) is True if there is a message m of type "1b",
replica ID r, and coordinator ID c.

Φ1b(r, c) ≡ ∃m ∈ µ :m.γ = “1b” ∧m.δ = r ∧m.ρ = c

• Φ2a(c) is True if there is a message m of type "2a" and
coordinator ID c.

Φ2a(c) ≡ ∃m ∈ µ :m.γ = “2a” ∧m.ρ = c

• Φ2b(r, c) is True if there is a message m of type "2b",
replica ID r, and coordinator ID c.

Φ2b(r, c) ≡ ∃m ∈ µ :m.γ = “2b” ∧m.δ = r ∧m.ρ = c

When the initial state holds, there is no message in µ and all
state variables have their default initial values. As the protocol
progresses, the agents take actions depending upon the receipt
of certain messages. The protocol makes progress by reaching
some distinct intermediate states which are specified by the
following predicates:

• ∆0(t) - This is the initial state when the system state
contains no messages.

∆0(t) ≡ (τ = t) ∧ (µ = {})

• ∆1a(c, t) - This is true when the system state contains
"1a" messages from a coordinator c.

∆1a(c, t) ≡ (τ = t) ∧ (∃v ∈ V :Φ1a(c, v))

• ∆1b(c, t) - This is true when the system state contains
"1b" messages for a coordinator c from all replicas.

∆1b(c, t) ≡ (τ = t) ∧ (∀r ∈ R : Φ1b(r, c))

• ∆2a(c, t) - This is true when the system state contains
"2a" messages from a coordinator c.

∆2a(c, t) ≡ (τ = t) ∧ (∃v ∈ V :Φ2a(c))

• ∆2b(c, t) - This is true when the system state contains
"2b" messages for a coordinator c from all replicas.

∆2b(c, t) ≡ (τ = t) ∧ (∀r ∈ R : Φ2b(r, c))

The following predicates are used for specifying message
transmission, agent availability, and state of knowledge:

• §(m, t) denotes sending of message m at time t.
• ¶(m, t) denotes delivery of message m at time t.
• α(x, t) denotes that agent x is available at time t.



• E(x, t) denotes that agent x knows φ at time t.
• Ė(x, t) denotes that agent x knows Eφ at time t.
• Ë(x, t) denotes that agent x knows E2φ at time t.

Assertions Implied by the Conditions and the System Model

A1 By G1a there is a coordinator which is always available.

∃c ∈ C : ∀t ∈ T : α(c, t)

A2 By G1b all replicas are always available.

∀r ∈ R : ∀t ∈ T : α(r, t)

A3 By reliable message delivery, all messages which are sent
must be eventually delivered at a later time.

∀ts ∈ T : ∀m ∈M : (§(m, ts) =⇒ ∃td ∈ T :
(td > ts) ∧ ¶(m, td))

A4 Since messages cannot be corrupted, by non-Byzantine
nature of the system, if at any time a message is delivered
by an agent, there must have been a time when it was
sent.

∀td ∈ T : ∀m ∈M : (¶(m, td) =⇒ ∃ts ∈ T :
(td > ts) ∧ §(m, ts))

We can split the assertions into two sets As = {A2,A4}
and Ap = {A1,A2,A3} as per their use in proving safety and
progress respectively.

The Formal Correctness Properties

The safety property implies that a coordinator will know
E2φ if and only if all replicas know both Eφ and φ. Theo-
rem 1 formally specifies this property in terms of our formal
specification.

Theorem 1. (Safety) Given As, if an available coordinator
knows about E2φ, then all replicas know about φ and Eφ.

As =⇒ (∀t ∈ T : ∀c ∈ C : ((τ = t ∧ α(c, t) ∧ Ë(c, t)) =⇒
(∀r ∈ R : E(r, t) ∧ Ė(r, t))))

The progress property implies that eventually E2φ will be
attained. Since there is no external agent that can monitor
the state of the system, it will be necessary and sufficient to
show that eventually at least one coordinator will learn E2φ.
Theorem 2 formally specifies this property in terms of our
formal specification.

Theorem 2. (Progress) Given Ap, eventually, a coordinator
will know about E2φ.

Ap =⇒ ∃t ∈ T : ∃c ∈ C : Ë(c, t)

VIII. THE PROOFS

In this section, we will introduce some important lemmas,
present some informal intuitions about how the lemmas can be
used to prove the safety and progress properties, and provide
comprehensive proof sketches for interested readers.

Some Important Lemmas
Lemma 1. Given Ap, for all coordinators, if there exists a
time such that the coordinator c is available it has not received
"1b" messages from all replicas, then "1a" messages from c
will eventually be delivered.

Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ α(c, t) ∧ ¬(∀r ∈ R :
Φ1b(r, c))) =⇒ (∃t2 ∈ T : τ = t2 ∧ (∃v ∈ V : Φ1a(c, v))))

Lemma 2. Given Ap, for all coordinators, if there exists a
time such that "1a" messages from a coordinator c have been
delivered, then "1b" messages from all replicas will eventually
be delivered.

Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ (∃v ∈ V :
Φ1a(c, v))) =⇒ (∃t2 ∈ T : τ = t2 ∧ (∀r ∈ R : Φ1b(r, c))))

Lemma 3. Given Ap, for all coordinators, if there exists a time
such that the coordinator c is available and it has received
"1b" messages from all replicas, then "2a" messages from c
will eventually be delivered.

Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ α(c, t) ∧ (∀r ∈ R :
Φ1b(r, c))) =⇒ (∃t2 ∈ T : τ = t2 ∧ (∃v ∈ V : Φ2a(c))))

Lemma 4. Given Ap, for all coordinators, if there exists a
time such that "2a" messages from a coordinator c have been
delivered, then "2b" messages from all replicas will eventually
be delivered.

Ap =⇒ (∀c ∈ C : (∃t ∈ T : τ = t ∧ (∃v ∈ V :
Φ2a(c))) =⇒ (∃t2 ∈ T : τ = t2 ∧ (∀r ∈ R : Φ2b(r, c))))

Lemma 5. Given Ap, there will be a coordinator c such that
∆1a(c, t) will eventually be true .

Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆1a(c, t))

Lemma 6. Given Ap, there will be a coordinator c such that
∆1b(c, t) will eventually be true .

Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆1b(c, t))

Lemma 7. Given Ap, there will be a coordinator c such that
∆2a(c, t) will eventually be true .

Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆2a(c, t))



Lemma 8. Given Ap, there will be a coordinator c such that
∆2b(c, t) will eventually be true .

Ap =⇒ (∃c ∈ C : ∃t ∈ T : ∆2b(c, t))

Lemma 9. Given As, always, if an available coordinator c
knows E2φ, then all replicas will know Eφ.

As =⇒ (∀t ∈ T : ∀c ∈ C : ((τ = t ∧ α(c, t) ∧ Ë(c, t)) =⇒
(∀r ∈ R : Ė(r, t))))

Lemma 10. Given As, always, if an available replica r knows
Eφ, then all replicas will know φ.

As =⇒ (∀t ∈ T : ∀r ∈ R : ((τ =
t ∧ α(r, t) ∧ Ė(r, t)) =⇒ (∀r ∈ R : E(r, t))))

Informal Intuitions Behind our Formal Proofs

We present some informal intuitions behind our proofs of
safety and progress to give readers a clear understanding of
our approach behind developing the formal proofs.

Proof of Safety: In order to prove safety, it is important
to show that a coordinator can know E2φ if and only if all
replicas know both Eφ and φ. Lemma 9 and Lemma 10
can be used to prove that the safety property, represented
by Theorem 1, is satisfied by our protocol at all times. The
lemmas can be proven directly by using the system model and
the set of assertions As.

Proof of Progress: In order to prove progress, we use the set
of assertions Ap and the system model to show that eventually,
at least one coordinator will learn E2φ. Lemma 1 to Lemma 4
state some temporal guarantees about how the protocol will
proceed under some system conditions. By A1, there is at
least one coordinator which is always available. Using A1,
Lemma 5 to Lemma 8 can be used to show that at least
one coordinator will eventually receive "2b" messages from
all replicas, thereby learning E2φ by non-Byzantine behavior.
Lemma 5 to Lemma 8 are proven with the help of Lemma 1
to Lemma 4. Lemma 8 is then used to prove Theorem 2.

Proof Sketches of the Lemmas and Theorems

We present detailed proof sketches for the lemmas and the
theorems that may be useful as a reference for the open-source
TLAPS proofs3 to readers interested in replicating our results.
Proof Sketch of Lemma 1 :-
(1) By non-Byzantine behavior of coordinators, an available

coordinator will eventually send "1a" messages.
(2) By (1) and A3, eventually "1a" messages from the

coordinator will be delivered.

Proof Sketch of Lemma 2 :-
(1) By A2, all replicas are always available.

3Complete TLAPS proofs available at http://wcl.cs.rpi.edu/pilots/fvcafp

(2) By non-Byzantine behavior of replicas, an available
replica will eventually send "1b" messages.

(3) By (1), (2), and A3, eventually "1b" messages from all
replicas will be delivered.

Proof Sketch of Lemma 3 :-
(1) By non-Byzantine behavior of coordinators, an available

coordinator will eventually send "2a" messages.
(2) By (1) and A3, eventually "2a" messages from the

coordinator will be delivered.

Proof Sketch of Lemma 4 :-
(1) By A2, all replicas are always available.
(2) By non-Byzantine behavior of replicas, an available

replica will eventually send "2b" messages.
(3) By (1), (2), and A3, eventually "2b" messages from all

replicas will be delivered.

Proof Sketch of Lemma 5 :-
(1) By A1, a coordinator is always available.
(2) ∃t ∈ T : ∆0(t) since µ = {} in the initial state.
(3) By (1), (2), and Lemma 1, eventually "1a" messages from

a coordinator will be delivered.

Proof Sketch of Lemma 6 :-
(1) By Lemma 5, eventually "1a" messages from an available

coordinator will be delivered.
(2) By (1) and Lemma 2, eventually "1b" messages from all

replicas will be delivered.

Proof Sketch of Lemma 7 :-
(1) By A1, a coordinator is always available.
(2) By Lemma 6, eventually "1b" messages from all replicas

will be delivered to the coordinator.
(3) By (1), (2), and Lemma 3, eventually "2a" messages from

the coordinator will be delivered.

Proof Sketch of Lemma 8 :-
(1) By Lemma 7, eventually "2a" messages from an available

coordinator will be delivered.
(2) By (1) and Lemma 4, eventually "2b" messages from all

replicas will be delivered.

Proof Sketch of Lemma 9 :-
(1) By non-Byzantine behavior of coordinators, an available

coordinator can only learn E2φ if it has received "2b"
messages from all replicas.

(2) By A4, if "2b" messages from all replicas have been
received, they must have been sent by the replicas.

(3) By non-Byzantine behavior of available replicas, a replica
can only send "2b" messages if it knows Eφ.

(4) By A2, all replicas are always available.
(5) By (1), (2), (3), and (4), all replicas know Eφ.



Proof Sketch of Lemma 10 :-
(1) By non-Byzantine behavior of replicas, an available

replica can only learn Eφ if it has received "2a" messages
from a coordinator.

(2) By A4, if "2a" messages from a coordinator have been
received, they must have been sent by the coordinator.

(3) By non-Byzantine behavior of available coordinator, a
coordinator can only send "2a" messages if it has received
"1b" messages from all replicas.

(4) By non-Byzantine behavior of available replicas, a replica
can only send "1b" messages if it knows φ.

(5) By A2, all replicas are always available.
(6) By (1), (2), (3), (4), and (5), all replicas know φ.

Proof Sketch of Theorem 1 :-
(1) Trivially by Lemma 9 and Lemma 10.

Proof Sketch of Theorem 2 :-
(1) By non-Byzantine behavior of available coordinator, a

coordinator will learn about E2φ if it has received "2b"
messages from all replicas.

(2) By Lemma 8, an available coordinator will eventually
receive "2b" messages from all replicas.

(3) By (1) and (2) an available coordinator will eventually
know E2φ.

We have specified our protocol in TLA+ and mechan-
ically verified all our proofs using TLAPS. Since TLAPS
does not currently support first-order temporal logic we have
incorporated time explicitly in our specification using first-
order temporal logic4. The TLA+ specification includes some
additional temporal axioms required for verifying the proofs
in TLAPS. The proofs and specifications are about 1500 lines
of TLA code.

IX. CONCLUSION

In this paper, we have specified a safe state of knowl-
edge for safety-critical aerospace applications and presented a
knowledge propagation protocol for attaining the safe state of
knowledge. This protocol can be used in a network of aircraft
to achieve collaborative situational awareness for cooperative
flight planning applications. We have specified two correctness
properties (safety and progress) and identified a set of system
conditions under which our protocol can guarantee these
correctness properties. Since there may be multiple weak sets
of conditions under which the properties can be guaranteed,
we informally argue that the set we have identified is one of
the weakest sets. We have also provided mechanically-verified
proofs of our guarantees in the TLA+ Proof System that make
our protocol suitable for safety-critical aerospace applications.

Since aircraft have limited fuel capacity, we realize that
guarantees of eventual progress for knowledge propagation
are not sufficient for practical purposes. A potential future

4TLAPS 1.4.5. as of June 2020 only supports propositional temporal logic

direction of work would be to investigate the development
of formal proofs for stochastic properties about progress by
using data-driven statistical results. This will allow us to pro-
vide guarantees about stochastic progress properties by using
statistical observations about message delivery and processing
times. Our current protocol also relies on the assumption that
all aircraft are non-Byzantine, requiring them to be cooperative
and "perfectly behaved". This is a strong assumption and does
not consider pilot errors and other uncertainties presented by
real-world applications. Therefore, another potential direction
of work would be to expand our system model to accommo-
date the Byzantine behavior of aircraft.

ACKNOWLEDGMENT

This research was partially supported by the National Science
Foundation (NSF), Grant Nos. – CNS-1816307 and CNS-1553340,
and the Air Force Office of Scientific Research (AFOSR), Grant No.
– FA9550-19-1-0054.

REFERENCES

[1] S. Paul, F. Hole, A. Zytek, and C. Varela, “Wind-aware trajectory
planning for fixed-wing aircraft in loss of thrust emergencies,” in Proc.
37th AIAA/IEEE Digit. Avionics Syst. Conf., London, England, UK, Sep.
2018, pp. 558–567.

[2] J. Souyris, V. Wiels, D. Delmas, and H. Delseny, “Formal verification
of avionics software products,” in International symposium on formal
methods. Springer, 2009, pp. 532–546.

[3] M. Prandini, L. Piroddi, S. Puechmorel, and S. L. Brázdilová, “Toward
air traffic complexity assessment in new generation air traffic manage-
ment systems,” IEEE transactions on intelligent transportation systems,
vol. 12, no. 3, pp. 809–818, 2011.

[4] S. Paul, S. Patterson, and C. A. Varela, “Conflict-Aware Flight Planning
for Avoiding Near Mid-Air Collisions,” in The 38th AIAA/IEEE Digital
Avionics Systems Conference (DASC 2019), San Diego, CA, Sep. 2019.

[5] Federal Aviation Administration, “Introduction to TCAS-II Version 7.1,”
2011.

[6] L. Lamport, “Paxos Made Simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[7] L. Lamport, S. Merz, and D. Doligez, “A TLA+ specification of the
Paxos Consensus algorithm described in Paxos Made Simple and a
TLAPS-checked proof of its correctness,” https://github.com/tlaplus/v1-
tlapm/blob/master/examples/paxos/Paxos.tla, last modified Fri Nov 28
10:39:17 PST 2014 by Lamport, Accessed: May 1, 2019.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi, Reasoning about
knowledge. MIT press, 2004.

[9] I. Sommerville, Software engineering. Addison-Wesley/Pearson, 2011.
[10] L. Lamport, Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley Longman Pub-
lishing Co., Inc., 2002.

[11] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying Safety
Properties with the TLA+ Proof System,” in International Joint Confer-
ence on Automated Reasoning. Springer, 2010, pp. 142–148.

[12] L. Lamport, “How to Write a Proof,” The American mathematical
monthly, vol. 102, no. 7, pp. 600–608, 1995.

[13] L. C. Paulson, Isabelle: A Generic Theorem Prover. Springer Science
& Business Media, 1994, vol. 828.

[14] R. Bonichon, D. Delahaye, and D. Doligez, “Zenon: An Extensible
Automated Theorem Prover Producing Checkable Proofs,” in Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning. Springer, 2007, pp. 151–165.

[15] B. Dutertre and L. De Moura, “The Yices SMT Solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, pp. 1–2, 2006.

[16] C. Barrett and C. Tinelli, “Cvc3,” in International Conference on
Computer Aided Verification. Springer, 2007, pp. 298–302.

[17] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.



[18] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine, “veriT: An
Open, Trustable and Efficient SMT-Solver,” in International Conference
on Automated Deduction. Springer, 2009, pp. 151–156.

[19] J. Y. Halpern and R. Fagin, “Modelling knowledge and action in
distributed systems,” Distributed computing, vol. 3, no. 4, pp. 159–177,
1989.

[20] A. Kshemkalyani, “On continuously attaining levels of concurrent
knowledge without control messages,” Technical Report UIC-EECS-98-
6, University of Illinois at Chicago, Tech. Rep., 1998.

[21] R. Fagin and J. Y. Halpern, “Reasoning about knowledge and probabil-
ity,” Journal of the ACM (JACM), vol. 41, no. 2, pp. 340–367, 1994.

[22] R. Fagin and M. Y. Vardi, “Knowledge and implicit knowledge in a
distributed environment: Preliminary report,” in Theoretical Aspects of
Reasoning About Knowledge. Elsevier, 1986, pp. 187–206.

[23] M. Guzmán, S. R. Knight, S. Quintero, S. Ramírez, C. Rueda, and F. Va-
lencia, “Reasoning about distributed knowledge of groups with infinitely
many agents,” in 30th International Conference on Concurrency Theory
(CONCUR), 2019.

[24] M. Interlandi, “Reasoning about knowledge in distributed systems using
datalog,” in International Datalog 2.0 Workshop. Springer, 2012, pp.
99–110.

[25] T. Eiter, G. Gottlob, and H. Mannila, “Disjunctive datalog,” ACM
Transactions on Database Systems (TODS), vol. 22, no. 3, pp. 364–418,
1997.

[26] R. Fagin, J. Y. Halpern, and M. Y. Vardi, “What can machines know?
on the properties of knowledge in distributed systems,” Journal of the
ACM (JACM), vol. 39, no. 2, pp. 328–376, 1992.

[27] R. Van Der Meyden, “Axioms for knowledge and time in distributed
systems with perfect recall,” in Proceedings of the Ninth Annual IEEE
Symposium on Logic in Computer Science, 1994, pp. 448–449.

[28] R. Kuznets, L. Prosperi, U. Schmid, and K. Fruzsa, “Epistemic reasoning
with byzantine-faulty agents,” in International Symposium on Frontiers
of Combining Systems. Springer, 2019, pp. 259–276.

[29] S. Knight, B. Maubert, and F. Schwarzentruber, “Reasoning about
knowledge and messages in asynchronous multi-agent systems,” Math-
ematical Structures in Computer Science, vol. 29, no. 1, pp. 127–168,
2019.

[30] J. Plaza, “Logics of public announcements,” in Proceedings 4th Inter-
national Symposium on Methodologies for Intelligent Systems, 1989.

[31] J. Y. Halpern, “Using reasoning about knowledge to analyze distributed
systems,” Annual review of computer science, vol. 2, no. 1, pp. 37–68,
1987.

[32] C. Dwork and Y. Moses, “Knowledge and common knowledge in
a byzantine environment: crash failures,” in Theoretical Aspects of
Reasoning about Knowledge. Elsevier, 1986, pp. 149–169.

[33] J. Y. Halpern and M. Y. Vardi, “The complexity of reasoning about
knowledge and Time. I. Lower Bounds,” Journal of Computer and
System Sciences, vol. 38, no. 1, pp. 195–237, 1989.

[34] S.-M. Choi, J. Park, Q. Nguyen, A. Cronje, K. Jang, H. Cheon, Y.-
S. Han, and B.-I. Ahn, “Opera: Reasoning about continuous com-
mon knowledge in asynchronous distributed systems,” arXiv preprint
arXiv:1810.02186, 2018.

[35] I. Popovic, V. Vrtunski, and M. Popovic, “Formal verification of
distributed transaction management in a SOA based control system,”
in 2011 18th IEEE International Conference and Workshops on Engi-
neering of Computer-Based Systems. IEEE, 2011, pp. 206–215.

[36] M. Atif, “Analysis and verification of two-phase commit & three-
phase commit protocols,” in 2009 International Conference on Emerging
Technologies. IEEE, 2009, pp. 326–331.

[37] E. A. Lester, “Benefits and incentives for ADS-B equipage in the
national airspace system,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2007.

[38] R. Barhydt and A. Warren, “Newly enacted intent changes to ADS-B
MASPS: Emphasis on operations, compatibility, and integrity,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2002, p.
4932.

[39] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-wesley New York, 1987,
vol. 370.

[40] L. Gönczy, M. Kovács, and D. Varró, “Modeling and verification of
reliable messaging by graph transformation systems,” Electronic Notes
in Theoretical Computer Science, vol. 175, no. 4, pp. 37–50, 2007.

[41] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[42] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.


