Aircraft Weight Estimation During Take-off
Using Declarative Machine Learning

Sinclair Gurny, Jason Falvo, and Carlos Varela
Department of Computer Science, Rensselaer Polytechnic Institute
{gurnys@rpi.edu, falvoj@rpi.edu, cvarela@cs.rpi.edu}

Abstract—Aircraft sensors measure physical quantities to help
pilots and flight automation systems with situational awareness
and decision making. Unfortunately, some important quantities of
interest (Qol), e.g., aircraft weight, cannot be directly measured
by sensors. This may lead to accidents, exemplified by Tuninter
1153 and Cessna 172R N4207P, where the airplanes were un-
derweight (not enough fuel) and overweight (6% over maximum
gross weight) respectively. Learning models to infer Qol from
other aircraft sensor data is thus critical to safety through
analytical redundancy. In this paper, we extend PILOTS, our
declarative programming language for stream analytics, to learn
models from data. We illustrate the supervised machine learning
extensions to PILOTS with an example where we use take-
off speed profiles under different density altitudes and runway
conditions to estimate aircraft weight. Using data collected from
the X-Plane flight simulator for a Cessna 172SP, we compare the
results of several models on accuracy and timeliness. We also
consider ensemble learning to improve the accuracy of weight
estimation during takeoff from 94.3% (single model) to 97%
(multiple models). Given that the average length of a take-off
is 26.75s, this model was able to converge within 10% of the
correct weight after 10.7s and converge within 5% after 17.7s.
On August 25th, 2014, a Cessna 172R, N4207P, crashed killing the
pilot and three passengers. The National Transportation Safety
Board (NTSB) report calculated the aircraft to be 1.06 times the
maximum gross weight. We simulated the take-off in X-Plane
using information from the report. We were able to estimate
within 5% error after 8s, which is less than 200ft down the
runway, and at the point of take-off, 27s, had an error of 3%.
This implies that our model could have alerted the pilot of an
overweight condition well before the aircraft became airborne,
leaving more than 2000ft of runway to come to a stop. If this
system were to be implemented in any fixed wing aircraft, it
would create a larger safety net. Pilots would have a greater
chance of catching errors thus increasing the probability of
survival for crew and passengers.

I. INTRODUCTION

More mobile devices than ever are producing data, from
cellphones to cars, drones, and aircraft. Data from aircraft
flight recorders can provide clues into how an accident oc-
curred and how it could have been prevented. Aircraft sensors
measure physical quantities to help pilots and flight automation
systems with situational awareness and decision making. Un-
fortunately, some important quantities of interest (Qol), e.g.,
aircraft weight, cannot be directly measured from sensors. As
a consequence, accidents can happen, exemplified by Tuninter
Flight 1153 and the crash of Cessna 172R N4207P!, where the

I'see NTSB report CEN14FA453

978-1-7281-9825-5/20/$31.00 ©2020 IEEE

airplanes were underweight (2000kg less fuel than expected)
and overweight (6% over maximum gross weight) respectively.

Take-off and landing are the most dangerous phases of
flight because the most incidents occur during these times [1].
However, early into take-off is also the safest time to abort an
overweight flight. In large aircraft, V) is the take-off decision
speed: the speed above which take-off should not be aborted.
If anything occurs before the aircraft reaches Vi, the aircraft
can safely abort and come safely to a stop on the runway.
However, if anything occurs after Vj, the aircraft must try to
continue the take-off. During take-off, there is increased lift
due to ground effect. This means that an aircraft that is able to
take-off may not necessarily be able to operate properly after
the ground effect. Therefore, being able to detect dangerous
conditions, such as being overweight, during take-off is critical
to maximize safety.

The physics-based approach to estimating aircraft weight
during take-off is based on modeling the forces acting on
the aircraft. The difficulty in this approach is that the rolling
resistance depends on the coefficient of friction between the
landing gear and the runway surface as well as the force
being applied to the runway. The characteristic of different
runways, such as presence of water, oil, or characteristics of
the aircraft such as tire wear and tire pressure can impact
the coefficient of friction. Most importantly, calculating the
force on the runway requires knowing the weight, which
causes a circular dependency. However, using our data-driven
approach does not require explicitly modelling the physics,
including aerodynamics and friction. Machine learning allows
for learning models directly from data.

While general-purpose programming languages (e.g., Java
or Python) can be used to implement machine learning al-
gorithms, we advocate a declarative approach. Declarative
programming is a style which focuses on what a computation
should do while abstracting away details of how it should
be done. Declarative programming is more concise and direct
which is helpful for data scientists who might not have
a strong programming background. Removing unnecessary
details of control flow makes declarative programs faster to
write and allows for higher levels of reasoning on programs.
Declarative programming more resembles mathematical logic
than the low-level operations of a language like C. Creating a
declarative machine learning interface allows for significantly
faster prototyping of systems created by users who understand
the domain but may not understand the intricacies of differ-

ent machine learning algorithms or their implementation in
general-purpose programming languages.

This paper extends the declarative PILOTS programming
language [2]. We advance upon the work of Imai er al. [3]
by implementing and extending the declarative supervised
training grammar to maximize extensibility and ease of use.
We use this system to build a model which can estimate fixed-
wing aircraft weight in real-time during take-off.

The contributions are as follows:

o Implemented a declarative grammar to train and test
machine-learning models in a simple and model-agnostic
method.

o Developed system which allows for the creation and
integration of user-written machine learning algorithms
into data-driven applications.

o Created a data-driven aircraft weight estimation model
that can be used during take-off to maximize safety. We
also illustrate how this model could have prevented the
crash of Cessna 172R N4207P.

The rest of this paper is organized as follows. Section
2 details a brief background on the PILOTS programming
language. In Section 3 we discuss the declarative machine
learning system within PILOTS. Section 4 illustrates our data-
driven method for aircraft weight estimation during take-off
as well as experimental results. Related work is discussed in
Section 5. Lastly, section 6 concludes the paper.

II. BACKGROUND

PILOTS? is a ProgrammIng Language for spatiO-Temporal
data Streaming especially designed for building data-driven
applications on systems such as airplanes where different
sensor measurements can be viewed as correlated (in space
and time) streams [4]. PILOTS is a declarative language with
a syntax similar to Pascal. Users of PILOTS can specify how
to use spatio-temporal data streams to produce other data
streams. PILOTS programs define the high-level operations
showing how the output data streams are based on the input
data streams. As a data stream processing language, PILOTS
is unique because of its first-class support for data selection,
data interpolation, and error recovery. Previous work focuses
on the ability of PILOTS to detect and recover from sensor
failures, such as the work by Imai, Galli, and Varela [5] to
detect weight discrepancy in level-flight from data of Tuninter
1153. Imai, Hole, and Varela use multiple models of analytical
redundancy (i.e. relationships between data streams) to detect
multiple simultaneous sensor type failures [6].

Figure 1 shows Twice, a simple PILOTS program®. The
program has two input data streams a(t) and b(t) and one
output data stream, e, which outputs every second. The input
data stream b is supposed to be twice the value of a, which are
both functions of time. The output data stream e outputs the
error of how far a and b are from the correct values, defined
as b—2x*a.

2PILOTS is open source and available on http://wcl.cs.rpi.edu/pilots/
3PILOTS version 0.6: https://github.com/RPI-WCL/pilots/releases/tag/v0.6

program Twice;
inputs
a(t)
b(t)
outputs
e: b - 2 x a at every 1 sec;
end;

using closest (t);
using closest (t);

Fig. 1: Simple PILOTS program Twice.

III. DECLARATIVE SUPERVISED LEARNING

Oftentimes, finding relationships between data streams can
be extremely difficult without advanced domain knowledge.
However, these relationships can also be inferred directly from
data using machine learning. This approach is useful for its
flexibility and rapid development.

This section will detail the grammar for training machine
learning models as well as architecture the machine learning
component of PILOTS. We will also discuss briefly the way in
which new machine learning algorithms can easily be added
into PILOTS.

A. Trainer Language Abstraction

We have implemented the grammar, see Figure 2, for
training machine learning models, originally proposed by Imai
et al. [3], making the system more modular and extensible
for all users so that more machine learning algorithms can
be easily incorporated. The PILOTS grammar is extended
with a new non-terminal Trainer which abstracts over a
declarative and extremely simple interface for supervised and
potentially other training of machine learning algorithms. The
syntax of trainers is simple and consistent for every algorithm,
allowing for the programmer and data scientist to focus on the
application easily trying different machine learning algorithms.

Machine learning models, which are mathematical represen-
tations of a real-world process, can either be trained offline
or online. Offline training is completed before the use of the
model in the application. Whereas online training is done in
real-time while the model is being run. A model can be both
trained in the offline phase while being updated during the
online phase. The difference is in the implementation of the
model and not in the syntax of its use. PILOTS trainers are
used to train offline models as well as to create online models.

There are three main sections of a PILOTS trainer file:
constants, data, and model. constants is an optional
section that specifies constants. The data section specifies
where data is collected to be sent to the model for training and
validation. There are two ways to collect data: using previously
created models and files. Comma-separated values (csv) files
are the most common input method; the grammar also supports
the selection of specific columns. Lastly, the model section
specifies the data to be used to train, and possibly validate
the model as well as specify any settings of the models. The
features and labels subsections specify the inputs and
the correct output values for the corresponding input. The
model uses this information to train internal parameters. There

N\
Trainer 1= trainer Var;
[constants Constants]
data
Data
model
Features
Labels
[Test_Features]
[Test_Labels]
Algorithms
end
Constants = [(Constant;)* Constant];
Constant = Var = Exp
Data := [(Dataltem;)* Dataltem];
Dataltem := Vars using (Ezp|ModelUser)
File = file’(’String’)
ModelUser = model’(’ Vars’)
Features := features: Exps;
Labels ;= labels: Exps;
Test_Features = test_features: Fzps;
Test_Labels = test_labels: Ezps;
Algorithms := algorithm: [(Algorithm;)* Algorithm];
Algorithm = Var [‘(‘Map*)‘];
Map := Mapltem|MapItem, Map
Mapltem = Var '’ (Number|Var|Ezp)
Ezxps := Ezp|Ezp, Exps
Ezp := Func(Ezps)|Exp Func Ezp|
C Exzp’) | Value
Number := Sign Digits|Sign Digits’’ Digits
Sign = |7
Integer = Sign Digits
Digits := Digit| Digits, Digit
Digit = {0,1,2,...,9}
Vars = Var|Var, Vars
Var = {a,b,c,...}
String = {%a”, “b”, “c”, ...}

Fig. 2: PILOTS trainer grammar.

is also an optional test features and test labels,
which can be used to validate the accuracy of a trained model
without needing to create another program to test it. Validating
the model can ensure that the model has not over-fit on the
training dataset. The last subsection of the model specifies the
algorithm to use as well as specify any arguments it may
take. The arguments can signify settings such as the learning
rate of a neural network or what method of error calculation
to use. Furthermore, if multiple models are listed then each of
the models are trained and validated so the user can see which
model resulted in the best performance on the given data.

B. PILOTS Architecture

Figure 3 shows the connection between the Machine Learn-
ing (ML) component and other PILOTS programs. Within the
ML component, there are three types of files used to perform
the operations: training data, algorithm implementations, and
trained models. Training data consists of data used by models
to update internal parameters to reduce error in prediction.
Model code files are implementations of machine learning
algorithms (currently written in Python) using a specific Ap-
plication Programming Interface (API) so it can used by the
ML component. Lastly, trained models are serialized models
that can be used by PILOTS programs to predict values. In
summary, trainer files take model code files, pass them training

:

Training Data

‘_/ o

Offline training

Prediction

request
< PILOTS Program

Machine Learning

Model Code W Interface
<:| Trainer Files
Training / Training

Prediction request

fﬁ

| |

'.l |f Trained |

A\ \ Models \
Machine Learning Component

Fig. 3: PILOTS and machine learning interface.

data, and compile them into a trained model file which can be
used by other PILOTS programs.

The machine learning component consists of an HTTP
server which responds to requests from the PILOTS trainers
and PILOTS programs.

Model code is the term used to describe the Python im-
plementation of the machine learning algorithms. As long as
the Python source code implements certain API functions it
is considered a valid model code file. This means any type of
Python library or program with Python bindings can be used
within PILOTS with ease.

Model files are the serialized representation of a trained
model. They are created as the result of running a trainer file
and can be used by any PILOTS program.

The PILOTS compiler translates PILOTS programs and
trainer files into Java for platform independent execution. The
compiler consists of two parts: a parser and a code generator,
each of which has a version meant for standard PILOTS
programs and one for trainer files. The parser uses JavaCC*
to convert the grammar into an abstract syntax tree, which the
code generator then converts into a valid Java program.

Once a trainer file is compiled into the Java source file, it is
compiled using the standard Java compiler. When the program
is run in conjunction with the machine learning component
server, it creates a model file which can be used in other trainer
files or PILOTS applications.

C. Applications

A simple example of a program that uses a machine learning
model can be seen in Figure 4: the Twice program but using
a linear regression model to estimate the b data stream [3].
It uses the a data stream as input to the “twice_model”. The
other input data stream, b, is twice the value of a and the
output data stream o outputs the error of the model’s estimate
of b. This model was trained using the trainer file shown in
Figure 5.

This trainer program trains a linear regression model us-
ing the columns ¢ and b from a training dataset called
“twice_training.csv”’. In this data, b, is approximately twice

“https://javacc.github.io/javacc/

program prediction_twice;

inputs
a, b (t) using closest (t);
b_prime using model (twice_model, a);
outputs
o: b - b_prime at every 1 sec;
end

Fig. 4: PILOTS prediction_twice program.

trainer twice_model;
data
a, b using file("twice_training.csv");
model
features: a;
labels: b;
algorithm:
LinearRegression (OrdLeastSq: true);
end;

Fig. 5: PILOTS twice_model trainer program.

that of a. The linear regression model was also specified to
use the ordinary least squares method.

A more advanced trainer which trains a neural network to
learn a three input XOR gate can be seen in Figure 6. It
collects columns a, b, ¢, and = from the “data” file, where
they are listed as columns “A”, “B”, “C”, and “Q” in the file.
Also 71, 2, 73, and o are collected from the “xor” file. The
three neural network models using slightly differing settings
are trained using a, b, and c as inputs and x as the output.
Each model is also validated with the testing data given by
i1, 42, 13, and o. The program will return the final results
of training all of the models so that the user can see which
model was most effective on the dataset. Training multiple
models is no different in PILOTS which means that users can
quickly try multiple models to see what works best on the
data. These four models resulted in final accuracies, which
may vary each time the model is trained, of 90.4%, 0.5%,
99.9%, and 1.1%, respectively. These results shows several
things very quickly: that the hyperbolic tangent and logistic
activation functions severely decrease the accuracy of the
model (comparing models 1 to 2, and models 3 to 4) and that
increasing from one layer to two increased overall accuracy
(comparing model 1 to 3).

IV. AIRCRAFT WEIGHT ESTIMATION DURING TAKE-OFF

A. Background

During take-off an aircraft is accelerating due to thrust
and being slowed from friction with the air and the runway.
Knowing these forces and the aerodynamic properties of the
aircraft we can calculate the mass using Newton’s second law
of motion.

_T-D-F

T T av/at M

trainer xor_model;

data
a, b, ¢, x using file("tr_data.csv",
A, B, C, Q);
il, i2, i3, o using file("xor.csv");
model
features: a, b, c;
labels: x;

test_features: i2, 1i3;
test_labels: o;
algorithm:

NeuralNetwork (hidden_nodes: 100,
hidden_layers: 1,
relu: true);

NeuralNetwork (hidden_nodes: 100,
hidden_layers: 1,
logistic: true);

NeuralNetwork (hidden_nodes: 50,
hidden_layers: 2,
relu: true);

NeuralNetwork (hidden_nodes: 50,
hidden_layers: 2,
tanh: true);

i1,

end;

Fig. 6: Training multiple models to learn XOR.

T is thrust, D is aerodynamic drag, F' is rolling resistance,
and V is airspeed. The complexity in this approach is that
each force can be difficult to compute.

Thrust of the aircraft depends on air density, propeller pitch,
propeller diameter, propeller rpm and airspeed. There is no
simple equation to calculate it directly, and is often looked up
in tables.

Aerodynamic drag, equation 2, depends on the coefficient
of drag C'p, air density p, airspeed V, and cross sectional area
S.

_ CpxpxV?xS

D
2

2

Lastly, rolling resistance, equation 3, is dependent on the
coefficient of friction between the landing gear and the runway
surface p, and the force being applied to the runway which is
result of weight W and lift L.

F=uW-1L) (3)

Whereas the other forces can be accurately calculated using
properties of the aircraft, rolling resistance poses an issue.
Different runway surfaces and weather conditions will change
the friction between the landing gear and the runway. More
importantly, the dependency on weight to calculate rolling
resistance makes the physics approach more difficult during
take-off. We will discuss a data-driven model which can
estimate aircraft weight using only previous take-off trials that
does not require knowledge of the aerodynamic properties of
an aircraft.

B. Data-driven Weight Estimation

If an aircraft is heavier, then it takes longer to take-off,
assuming all other variables are held constant. This can be
seen in practice and in theory. This is because a heavy aircraft,
given the same engine thrust, takes longer to accelerate to take-
off speed. The model that will be discussed in this chapter uses
the relationship between weight and acceleration to estimate
weight. Furthermore, it only uses data that is available from
basic avionics on an aircraft such as the Cessna 172. This
means that this model can be used in nearly any aircraft,
as long as it has an accurate measurement of airspeed and
atmospheric conditions such as temperature, air pressure, and
altitude.

Looking at the airspeed over time gives a curve. Figure 7
shows the linear approximations of the velocity curve. As can
be seen in Figure 7a, the curve takes time at the beginning until
the curve accelerates at a roughly constant rate because during
this time the propeller is getting up to speed. The acceleration
of the aircraft would be approximated to the derivative of the
fitted curve. As mentioned previously, if the aircraft is heavier
then it takes longer to take-off, because the heavier aircraft
has less acceleration. This relationship between weight and the
velocity curve can be shown in Figures 8 for fixed atmospheric
conditions.

Furthermore, in real-life situations, aircraft do not take-off
in identical atmospheric conditions. Even within a single day,
weather conditions can change greatly, so it is important to
be able to account for atmospheric conditions. This model
uses density altitude, which is defined as the altitude with
respect to standard atmospheric conditions, as an encapsulation
of all atmospheric properties since it includes air pressure,
temperature, and altitude within a single value. However, we
are disregarding the effect of humidity and wind. For a fixed
weight, Figure 9 shows the effect of density altitude on the
take-off velocity curve.

C. Weight Estimation Method

In this section, we will discuss how the weight estimation
model predicts the weight of a given trial. Including how the
model uses the training data, and interpolates between training
data points to get a final estimate.

1) Density Altitude: Density altitude represents what al-
titude the current conditions would be at in standard at-
mospheric pressure and temperature. The calculation used
assumes completely dry air (0% humidity). Similar to density
altitude, pressure altitude (PA) is the altitude with respect to
standard air pressure, disregarding the effect of temperature.

PA = Elevation + 1000 ft % (29.92 inHG — Pressure) (4)

Elevation is the altitude of the aircraft above mean sea level
in feet and pressure is the atmospheric pressure at the location
of the aircraft in inches of mercury.

. . PA
ISA = 15°C — (1.98°C) * (1000ft> (5)

= y=4.634376%x+(-6.605568)

¥ 8 &5 5 B

Airspeed (knots)

i
=3

=

o 2 4 & B 10 12 14
Time (sec)

(a) Trial with density altitude of -1,809ft and weight of 1,8111bs.

80 1 —— y=1634653*x+(2.501774}

Airspeed (knots)
&

20

o 10 20 30 40 50
Time (sech

(b) Trial with density altitude of 6,551ft and weight of 2,9341bs.

Fig. 7: Linear approximation of velocity curve.

1811 Ibs
0 1998 Ibs
2184 Ibs

2361 Ibs
2550 Ibs
2679 Ibs
2805 Ibs | 4
2932 Ibs 8

L]
ssse

Airspeed (knots)

o 5 10 15 0 25 30
Time (sec)

Fig. 8: Effect of weight on velocity curve.

s 8

Airspeed (knots)

o 5 10 15 0 25 30
Time (sec)

Fig. 9: Effect of density altitude on velocity curve.

International Standard Atmosphere (ISA) temperature is
the temperature at a specific altitude in standard atmospheric
conditions.

DA = PA + (118.8 ft/°C) x (OAT — ISA) (6

Outside air temperature (OAT) is the current air temperature.
Finally, to calculate density altitude, we use equation 6 for
its ease of calculation and very good approximation of true
density altitude which is sufficient for our model.

2) Supervised Training: Training data of this model con-
sists of take-off trials labelled with the true weight. Each
take-off trial consists of atmospheric conditions (temperature,
pressure, and altitude) which are used to calculate the density
altitude and the velocity throughout the take-off which is used
to estimate the acceleration of the aircraft. The stored data after
training consists of three values: density altitude, estimated
acceleration, and true weight for each take-off trial.

3) Interpolation: Once all training data is collected, the
model calculates two values used to interpolate the final result.
The two values represent the effect that a change of density
altitude has on the acceleration, and the effect that a change
in acceleration has on the weight. These two values are called
dda and Jyc, given by equations 7 and 8.

Aacceleration
Oda = ———————— 7
da Adensity altitude ™
Aweight
Ogee = —————— 8
37 Aacceleration ®)

These values can be understood as quantifying the relation-
ships shown in Figures 9 and 8, respectively. However, instead
of showing the relationship in terms of the velocity curve, it is
with respect to the approximated acceleration. Figure 10 shows
the relationship between density altitude and acceleration
and Figure 11 shows the relationship between weight and
acceleration. The dg, is the slope of the linear approximation
of the relationship shown in Figure 10 and, similarly, J, is
the inverse of the slope of the linear approximation of Figure
11.

To calculate dq4,, the model finds the average of values of
04, between pairs of training data points with similar weights,
+0.1%. Similarly, to calculate d,.., the model finds the average
values of §,. between pairs of points with similar density
altitudes, +0.1%. If the dataset does not have enough data
points with similar weights and density altitudes to calculate
Oacc and g4,, then the model will not be able to accurately
estimate weight. This can be solved by adding structure to
data collection by collecting data using specific weights and
density altitudes, or increasing the size of the dataset.

An example PILOTS program to train a weight estimation
model is shown in Figure 12. The WeightEstimator model
is a custom algorithm written in Python which implements
the model described in this section. We tried using various
other algorithms including neural networks. Our approach
is far simpler to train, adjust for various parameters (e.g.,
properties of the dataset, effect of density altitude), and it

6000

2000

Liensity AITIUge (I

—2000

26 28 30 32 34 36 38 40
Acceleration {knots/s"2)

Fig. 10: Relationship between density altitude and estimated
acceleration.

2800 L

2600

2400

‘Weight (lbs)
L]

2200 .

2000 .

1800 .

275 300 325 350 375 400 425 450
Acceleration (knot/s™2)

Fig. 11: Relationship between aircraft weight and estimated
acceleration for density altitude of -1,809ft.

is more explainable than a neural network approach. This
program trains a model using data from KRNO. Furthermore,
the model uses data points with density altitude values within
+0.2% to calculate d,c and uses data points with weights
within +0.1% to calculate dq,. It is useful to tune these values
slightly for each training dataset to improve accuracy. For a
more uniform dataset these values are expected to be smaller.

4) Weight Prediction: When the model is given new data
with an unknown weight, it calculates the density altitude and
the acceleration from the slope of the velocity curve. It then
finds the closest stored data point, closest being the point
that minimizes the difference in the density altitudes and the
difference in the acceleration values as in equation 9. The

trainer weight_model_krno;
data
// Airspeed, pressure, temperature,
// altitude, and actual weight

va, prs, tmp, alt, curr_w using

file("data_krno.csv",);
model

features: va, prs, tmp, alt;

labels: curr_w;

algorithm:
WeightEstimator (da_close: 0.2, w_close:

0.1);

end;

Fig. 12: Weight estimation model trainer.

model then takes that data point and interpolates to get a final
estimate.

e = (DAl — DA2)2 —+ (a1 — a2)2 (9)

Given the closest stored data point from the training data,
equation 10 shows how to interpolate this value to improve
accuracy.

weight = (closest weight) + (Jace * (0da * Eda — Eace)) (10)

Error in density altitude, Fy4,, is the difference between the
closest point’s density altitude and the input’s density altitude.
Similarly, error in acceleration, F,.., is the difference in the
two data points’ accelerations.

Multiplying Eq4, and 64, gives the error in the acceleration
due to the density altitude. Therefore, adding the value with
E,. gives us the total error in acceleration. Note, the negative
sign on E, is due to the inverse relationship between the error
in acceleration and weight. Meaning a positive value of Fye.
would result in a negative adjustment in the weight. Lastly,
multiplying the total error in the acceleration by J,.. gives the
weight adjustment due to the error in the slope, which gives
us the updated final weight estimate.

D. Experimental Results

The data was collected in X-Plane 9 using a Cessna 172SP.
Data streams such as airspeed, temperature, air pressure, and
altitude were collected during standard procedure’ take-offs
at two airports: Albany International Aiport (KALB) and
Renoe-Tahoe International Aiport (KRNO), using a selection
of density altitudes (five for each runway), and weight classes.
There are eight weight classes: five are considered safe take-
off weights from extremely light to maximum take-off weight
and three weights which are considered overweight consisting
of 5%, 10%, and 15% over maximum take-off weight. There
are 80 total take-off trials in the training dataset.

The density altitude values for each airport are a selection
of atmospheric conditions that could happen in that location.

These weight classes were selected as a uniform partitioning
of weights that represent a reasonable possible low-end take-
off weight up to a very extreme overweight condition.

The model was validated using a wide selection of weights
and density altitudes, distinct from the training dataset. This in-
cluded take-offs from KALB, KRNO, and Minot International
Airport (KMOT). KMOT was used to see how well the model
can be used on runways that the model had no training with;
furthermore, the altitude of KMOT is between the altitudes of
KALB and KRNO.

The results of four different models were tested. There are
two models trained using data from only one airport (KALB
and KRNO), to see how the model can transfer from one
airport to another without direct knowledge. Referred to as
the KALB and KRNO models. Another model is trained on
the complete dataset and is referred to as the total model.

5 According to Cessna 172 Information Manual [7]

TABLE I: Average percent error based on runway of testing
trial.

Testing Airport | KALB Model | KRNO Model | Total Model | Ensemble Model
KALB Accuracy 3.22 13.00 10.24 332
KRNO Accuracy -14.90 1.10 1.51 2.26
KMOT Accuracy -2.07 12.34 11.63 4.68
Overall Average -6.81 6.78 5.87 2.9
Weight
3,500
3,000
% — —
5 2,500
H
2,000
1,500
13:34:00 13:34:10 13:34:20 13:34:30
Time

|— real weight = estimated we\ght‘

Fig. 13: Weight estimation curve.

Lastly, there is an ensemble model that aggregates the results
from the two models trained only on one airport. This model
uses the average density altitude between all training trials as a
transition point (approximately 6000ft). When given a density
altitude below this point the model uses the KALB model and
above which uses the KRNO model.

Table I shows the average final results of each model.
This table also shows that some models performed better on
certain runways than others. As can be seen in Table I, the
KALB model underestimated estimates on KRNO trials and
the KRNO model overestimated on KALB trials. This is likely
due to some differences between the two runways that is not
properly accounted for by the model, such as runway slope
or surface. Lastly, the ensemble model outperforms the other
models.

From a safety standpoint, it is important to be able to
quickly alert the pilot about an overweight condition so that
they have enough time to take appropriate action. For large
aircraft, V; is the take-off decision speed: the speed above
which take-off should not be aborted. Meaning, if there is an
issue before reaching V7, the pilot has enough time to abort
take-off and stop safely; however, if an issue arises after Vi,
the aircraft must complete take-off to not overrun the runway.
However, in small aircraft such as the Cessna 172SP this speed
is not calculated. To mitigate this, we have come up with a
reasonable decision point for a small aircraft: either before the
aircraft reaches 55 knots or 1000ft before the runway ends,
whichever comes first. This is because 55 knots is the speed
at which standard procedure says to begin lifting the nose
of the airplane. However, with heavy aircraft in high density
altitudes it may take time for the aircraft to reach 55 knots.
The aircraft needs to abort take-off with enough time to come
to a full stop; 1000ft is more than enough runway to stop even
on fairly short runways ©.

We used two points to indicate when the model produces
useful results. This is when the model converges within 10%

based on maximum landing distance ground roll in Cessna operating
manual

TABLE II: Speed of model convergence.

% of Trials Converged
100 3
KRNO 100 105 80 T8.1 293

Testing Airport Avg Time <10% | % of Trials Converged | Avg Time <5% | Avg Take-off Length
LB 84 90 12.6 235

KMOT 75 115 75 17.5 25
Overall 96.7 97 833 1575 2675

TABLE III: Distance traveled and speed at slowest 10%
convergence point.

Testing Airport | Slowest Trial Speed (knots) | Slowest Trial Distance (ft) | Runway Length (ft)

KALB 40.6 328 8500
KRNO 45.6 919 11001
KMOT 40 492 7700

of the actual weight and when the model converges within
5%. These points are sooner than the point where the curve
reaches a minimum which could also be used as a point of
convergence. As can be seen in the weight estimation curve
in Figure 13, the model first overestimates the weight of the
aircraft then converges to a final value. When the model first
converges within 10%, the model gives a rough estimate. This
gives us an idea of whether the estimate will be overweight or
underweight. The estimate then stabilizes and converges within
5% and gives an estimate that is close to its final estimate.
Table II shows how many testing trials converged and how
quickly. Considering only the trials which converged, Tables
IIT and IV show the speeds and distances of the slowest trials
to converge to 10% and 5%, respectively. It can be seen that
the slowest trials still converged before the decision distance
point even if the runways were half as long.

E. Cessna 172R N4207P Accident

On August 25, 2014 a Cessna 172R airplane, N4207P,
crashed in Willoughby Hills, Ohio shortly after take-off from
Cuyahoga County Airport (KCGF). The private pilot and
three passengers died in the crash. The aircraft was loaded
to 2,622lbs, approximately 166lbs over its maximum gross
weight of 2,4571bs (106% max gross weight), and was within
safe ranges for the center of gravity. The airplane became
airborne approximately 2000ft down runway 6 which is 5500ft
long. The pilot noted that the aircraft was slow to climb and
tried to turn back to land. The increased weight and steep
turning angle used likely caused the aircraft to stall.

We created a scenario using X-Plane with a Cessna 172SP
loaded to 106%, total of 2720lbs, taking off from KCGF
runway 6. We replicated the atmospheric conditions of the day
of the crash, 24°C and 30.09 inHG. Wind was reported as 10
knots from 140°, which would be a crosswind and would have
negligible effect on take-off distance. However, we omitted
wind entirely from our simulation as we currently solely use
density altitude to encapsulate atmospheric conditions; this is
an area of future work. The report noted that the aircraft had
approximately 36 gallons of fuel at the time of take-off. The

TABLE IV: Distance traveled and speed at slowest 5% con-
vergence point.

Testing Airport Slowest Trial Distance (ft) | Runway Length (ft)
KALB 1083 8500
KRNO 64 2297 11001
KMOT 61.9 1444 7700

Slowest Trial Speed (knots)
5

program weight_experiment;
inputs
// Airspeed, pressure,
altitude,
// and actual weight
va, prs, tmp, alt, curr_w
closest (t);
// Estimate weight
est_w (t) using model (N4207P_model,
prs, tmp, alt);
outputs
va, curr_w,
errors
e: (est_w-curr_w)/curr_w = 100;
end;

temperature,

(t)

using

va,

est_w, e at every 200 msec;

Fig. 14: PILOTS N4207P program.

trainer N4207P_model;

data
// Airspeed, pressure, temperature,
altitude,
// and actual weight
va, prs, tmp, alt, curr_w using

file ("N4207P_training_data.csv");
model

features: va, prs, tmp, alt;
labels: curr_w;
algorithm:

WeightEstimator () ;
end;

Fig. 15: N4207P weight estimation model trainer.

center of gravity was calculated from the information given
in the report, 4.3 inches forward from the standard center of
gravity which is within the safe range.

We collected 24 take-offs from KCGF runway 6. We used
three distinct density altitudes: 860ft, 2049ft, and 3237ft,
and the same eight weight categories from the previous
experiments. We trained a weight estimation model using this
data, see Figure 15. Figure 14 shows the full PILOTS pilots
program.

We then ran several take-off trials using the exact conditions
mentioned previously to replicate the N4207P take-off. The
entire take-off was approximately 27s, and around 1800ft long,
slightly faster then the approximate reported 2000ft of take-off
distance of N4207P. The model produces the weight estimation
curve as shown in Figure 16. However, on average, the model
was able to estimate with a final accuracy of 3% and was
able to estimate within 10% error after only 6s and within 5%
error after 8s, as can be seen in Figure 17. After 8 seconds,
our simulation only traveled 200ft. This means that the model
could have alerted the pilot of an overweight condition well
before the halfway point of the take-off giving ample time to
react safely to this alert.

Weight

3,500

3,000

2,500

Weight

2,000

1,500
13:34:00

13:34:05 13:34:10 13:34:15

Time

13:34:20 13:34:25

|— real weight == estimated we\ght‘

Fig. 16: N4207P weight estimation curve.

Error

% Error
o

-10
13:34:00 13:34:05 133410 13:34:15

Time

Fig. 17: N4207P weight estimation error curve.

13:34:20 13:34:25

V. RELATED WORK

There are many Domain Specific Languages (DSLs) for
machine learning applications [8]. OptiML is a DSL for
machine learning which can take advantage of heterogeneous
resources (CPUs and GPUs) [9]. MXNet is a ML library
which combines symbolic expression with tensor computation
[10]. These languages differ from PILOTS in that they are
far more imperative and procedural in style. ScalOps [11]
and Pig Latin [12] uses the low-level procedural style of
MapReduce but with the high-level declarative style of SQL.
The declarative SQL-like style of these DSLs is similar to
the declarative nature of PILOTS; however, these DSLs are
focused on processing large-scale data whereas PILOTS is
focused on dynamic data-driven systems, fault detection, and
fault recovery.

There exists some prior work on aircraft weight estimation.
Imai, Galli, and Varela [5] used PILOTS to detect underweight
conditions during cruise phase using data from the Tunin-
ter 1153 accident. Lee and Chatterji [13] created a model
which uses fuel usage to estimate take-off weight required
to complete a given flight plan. Similarly, Sun et al. [14]
created a model which can estimate the weight of an aircraft
by analyzing the fuel consumption at various phases of flight
and calculating a final weight probability distribution. Alligier
et al. [15] created a mass estimation system used to help
predict the rate of climb of an aircraft. Each of these models
uses detailed physics-based model whereas our model uses
the analytical redundancy to estimate weight in real-time.
Furthermore, our model aims to provide information that may
be critical to the safety of the pilot and passengers as well as
provide that information before the aircraft becomes airborne,
which none of the previous models can do.

There are several patents which detail systems to estimate
aircraft weight before or during take-off. Several use the
landing gear in some manner, either by using pressure sensors

within the landing gear [16] [17], or by measuring the bending
of structural members of the aircraft which includes landing
gear and wings [18]. Another details a system which automates
the weighing of passengers and luggage and feeds this directly
to a computer which calculates weight and center of gravity
[19]. One system [20] describes measuring the acceleration
of an aircraft, using an accelerometer, and using Newton’s
second law of motion to estimate weight of an aircraft during
take-off. This system must know aerodynamic properties in
order to calculate values such as lift. This approach differs
from our approach in that our model has no prior knowledge
of the aircraft and only uses data from previous take-offs.
Furthermore, our model requires no extra hardware such as
an accelerometer or other sensors and can be used in various
aircraft with no changes.

VI. CONCLUSIONS AND FUTURE WORK

We introduced the new declarative extensions to PILOTS to
learn models from data. Our extensions allow data scientists
to use PILOTS to create systems using machine learning
algorithms quickly and easily without a strong background
in programming. Furthermore, it allows for users with a back-
ground in programming to easily integrate machine learning
algorithms into PILOTS. These features in PILOTS are more
declarative and model-agnostic than other similar domain
specific languages and libraries.

We also discussed our method of data-driven aircraft weight
estimation. Our method can be used on most fixed-wing
aircraft with no additional hardware and provides useful results
to the pilot in real-time during take-off. We showed that our
method is capable of preventing accidents such as the August
2014 N4207P accident where an overweight condition caused
the aircraft to crash shortly after take-off.

Our weight estimation model was trained on data from small
fixed-wing single-engine aircraft. Further research can look
at other types of aircraft, such as larger multi-engine aircraft
and commercial jets, where we expect our model to produce
accurate results before reaching take-off decision speed. Future
work includes creating an ensemble system to estimate weight
during all phases of flight such as climbing, descending, land-
ing, and turning. Even taxiing could also potentially provide
enough information to detect weight discrepancies. Besides
overweight conditions, such a model would also be able to
detect certain failures of the aircraft, e.g., fuel leaking which
decreases aircraft weight, an engine failure which decreases
thrust, or wing surfaces icing which decreases lift. The exact
source of a discrepancy may not always be easy to isolate;
however, being able to alert the pilot to a potential fault is
critical to maintaining safety.

In data-driven systems, there is a lot of inherent randomness
and uncertainty: sensor errors, communication delays and
failures, and much more. Without the ability to maintain
correctness in these conditions, an application is not useful in
the real world. However, it is difficult to be able to be correct
in all possible types of conditions, due to computational,
temporal, or model-based constraints. Making models that

have a clearly defined envelope of correctness allows the
user, or other applications, to know when the result may
not be correct. Breese et al. introduce the concept of formal
safety envelopes which shows which properties of a model
hold under which assumptions [21]. Furthermore, modeling
uncertainty quantification and propagation and devising ways
to communicate uncertainty to system users, can enable better
aeronautical decision making.

ACKNOWLEDGEMENT

This research is partially supported by the Air Force Office
of Scientific Research, Grant No. FA9550-19-1-0054 and
National Science Foundation Grant No. 1816307. We would
also like to thank everyone who reviewed drafts of this paper
for their valuable feedback.

[1]

[2

—

[3

=

[4]

[5]

[6]

[7

—

[8

=

[9]

[10]

(11]

[12]

REFERENCES

S. Leasca. (2018, Feb.) When accidents are most likely to happen during
a flight. [Online]. Available: https://www.travelandleisure.com/travel-
news/when-most-fatal-accidents-occur-on-flights

S. Imai and C. A. Varela, “Programming spatio-temporal data streaming
applications with high-level specifications,” in 3rd ACM SIGSPATIAL
International Workshop on Querying and Mining Uncertain Spatio-
Temporal Data (QUeST) 2012, Redondo Beach, California, USA,
November 2012.

S. Imai, S. Chen, W. Zhu, and C. A. Varela, “Dynamic data-driven
learning for self-healing avionics,” Cluster Computing, Nov 2017.
[Online]. Available: http://rdcu.be/yJNh

S. Imai, E. Blasch, A. Galli, W. Zhu, F. Lee, and C. A. Varela,
“Airplane flight safety using error-tolerant data stream processing,” IEEE
Aerospace and Electronics Systems Magazine, vol. 32, no. 4, pp. 4-17,
2017. [Online]. Available: http://www.brightcopy.net/allen/aesm/32-
4/index.php/6

S. Imai, A. Galli, and C. A. Varela, “Dynamic data-driven avionics
systems: Inferring failure modes from data streams,” in Dynamic Data-
Driven Application Systems (DDDAS 2015), Reykjavik, Iceland, June
2015.

S. Imai, F Hole, and C. A. Varela, “Self-healing data
streams using multiple models of analytical redundancy,” in
The 38th AIAA/IEEE Digital Avionics Systems Conference (DASC
2019), San Diego, CA, September 2019. [Online]. Available:
http://wcl.cs.rpi.edu/papers/DASC2019_imai.pdf

Cessna Aircraft Company, Information manual, Cessna Aircraft Com-
pany 1981 model 172P. Cessna Aircraft Company, 1980.

I. Portugal, P. Alencar, and D. Cowan, “A preliminary survey on
domain-specific languages for machine learning in big data,” in 2016
IEEE International Conference on Software Science, Technology and
Engineering (SWSTE), June 2016, pp. 108-110.

A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi,

M. Wu, A. R. Atreya, M. Odersky, and K. Olukotun, “OptiML:
An implicitly parallel domain-specific language for machine
learning,” in [ICML, 2011, pp. 609-616. [Online]. Available:

https://icml.cc/2011/papers/373_icmlpaper.pdf

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015.

M. Weimer, T. Condie, R. Ramakrishnan et al., “Machine learning in
ScalOps, a higher order cloud computing language,” in NIPS 2011
Workshop on parallel and large-scale machine learning (BigLearn),
vol. 9, 2011, pp. 389-396.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A not-so-foreign language for data processing,” in Proceedings
of the 2008 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD °08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 1099-1110. [Online]. Available:
https://doi.org/10.1145/1376616.1376726

[13]

[14]

[15]

[16]
(17]
(18]
[19]
[20]

[21]

H. tae Lee and G. Chatterji, Closed-Form Takeoff Weight Estimation
Model for Air Transportation Simulation. Aerospace Research Central,
2012. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2010-
9156

J. Sun, J. Ellerbroek, and J. M. Hoekstra, “Aircraft initial mass estimation
using bayesian inference method,” Transportation Research Part C:
Emerging Technologies, vol. 90, pp. 59 — 73, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X 18302626
R. Alligier, D. Gianazza, and N. Durand, “Learning the aircraft
mass and thrust to improve the ground-based trajectory prediction
of climbing flights,” Transportation Research Part C: Emerging
Technologies, vol. 36, pp. 45 — 60, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X 13001708
C. K. Nance, “Aircraft weight and center of gravity indicator,” U.S.
Patent 5548517, Oct. 22, 1998.

M. A. Long and G. E. Gouette, “Aircraft weight and balance system,”
U.S. Patent 7967 244, Nov. 16, 2006.

C. D. Bateman, “Weight, balance, and tire pressure detection systems,”
U.S. Patent 4312042, Jan. 17, 1992.

R. Stefani, “Aircraft weight and balance system,” U.S. Patent 6 923 375,
Sep. 29, 2003.

H. Miller, “Takeoff weight computer apparatus for aircraft,” U.S. Patent
4490802, Jan. 04, 1982.

S. Breese, F. Kopsaftopoulos, and C. A. Varela, “Towards
proving runtime properties of data-driven systems using safety
envelopes,” in The 12th International Workshop on Structural Health
Monitoring, Stanford, CA, September 2019. [Online]. Available:
http://wcl.cs.rpi.edu/papers/IWSHM19_brees.pdf

