
1

Conflict-Aware Flight Planning for Avoiding Near
Mid-Air Collisions

Saswata Paul, Stacy Patterson, and Carlos A. Varela
Department of Computer Science

Rensselaer Polytechnic Institute, Troy, New York, 12180
pauls4@rpi.edu, sep@cs.rpi.edu, cvarela@cs.rpi.edu

Abstract—We present a novel conflict-aware flight planning
approach that avoids the possibility of near mid-air collisions
(NMACs) in the flight planning stage. Our algorithm computes
a valid flight-plan for an aircraft (ownship) based on a start-
ing time, a set of discrete way-points in 3D space, discrete
values of ground speed, and a set of available flight-plans
for traffic aircraft. A valid solution is one that avoids loss of
standard separation with available traffic flight-plans. Solutions
are restricted to permutations of constant ground speed and
constant vertical speed for the ownship between consecutive way-
points. Since the course between two consecutive way-points
is not changed, this strategy can be used in situations where
vertical or lateral constraints due to terrain or weather may
restrict deviations from the original flight-plan. This makes
our approach particularly suitable for unmanned aerial systems
(UAS) integration into urban air traffic management airspace.
Our approach has been formally verified using the Athena proof
assistant. Our work, therefore, complements the state-of-the-art
pairwise tactical conflict resolution approaches by enabling an
ownship to generate strategic flight-plans that ensure standard
separation with multiple traffic aircraft, while conforming to
possible restrictions on deviation from its flight path.

I. INTRODUCTION

Loss of standard separation between aircraft can have
hazardous consequences such as mid-air collisions and wake-
vortex induced rolls. According to Air Route Traffic Control
Center (ARTCC) reports, losses of standard separation rose to
10.6% in 2017 [1]. With the integration of unmanned aircraft
systems (UAS) for civilian applications, the density of aircraft
in the National Airspace System (NAS) is expected to increase
significantly in the near future. This will make it necessary
to implement smarter air traffic management (ATM) systems
that can ensure required separation between airborne aircraft
in the NAS. Under such circumstances, the concept of free-
flight, which involves a system of dynamic, automated, and
distributed air traffic control, may become popular. It will be
imperative for pilots and UAS computers to have the ability to
independently generate flight-plans that avoid loss of standard
separation with other aircraft.

Tactical collision avoidance systems like the Traffic Colli-
sion Avoidance System (TCAS) can advise pilots to resolve
pairwise conflicts where tactical vertical resolutions are possi-
ble [2]. However, TCAS cannot be used for conflict avoidance
in scenarios that present vertical constraints on maneuvers, for
example, busy reduced vertical separation minima (RVSM)
airspaces and terminal areas where aircraft are already flying
too close to the ground to perform downward resolutions.

Therefore, there is a need for strategic conflict management
such as traffic flow management (TFM), which deals with
capacity handling, air-traffic flow management and flexible
use of the NAS [3]. With the introduction of Automatic
Dependent Surveillance-Broadcast (ADS-B) in the NAS, pilots
and flight computers will be equipped with better information
about traffic aircraft. The data made available by ADS-B will
give way to new techniques for efficiently ensuring minimum
standard separation with traffic aircraft.

In this paper, we present a formally verified approach for
strategic conflict-aware flight planning. We assume that with
the advancement of ADS-B technology, aircraft will be able
to transmit and receive multi-segment flight-plans. A flight-
plan is a collection of way-points in three-dimensional space
that an aircraft is expected to follow. Each way-point has an
associated configuration that expresses the aircraft’s position,
velocity, and the expected course of the aircraft’s flight to the
next way-point. Conflict-detection is based on the assumption
that aircraft follow constant-velocity, straight-line segments
between consecutive way-points and a set of flight-plans for
traffic aircraft is available. Given a set of flight-plans for
traffic aircraft, a set of 3D way-points, a set of discrete values
of ground speed, and a start time, our algorithm generates,
when feasible, a flight-plan for the ownship that will allow the
ownship to always maintain standard separation with all traffic
aircraft. This is done by assigning a suitable value of ground
speed to each straight-line segment between consecutive way-
points in the ownship’s flight-plan.

Since the 3D heading of the velocity vector between way-
points is not changed, the only changes observed in the
solution flight-plan are the times of arrival for the way-points.
Therefore, our approach can be advantageous in situations
where spatial deviation from the original way-points is re-
stricted by lateral and/or vertical constraints. These restrictions
may be imposed by terrain, restricted airspace, weather, or
airspace capacity. This is usually true for terminal areas where
aircraft are appointed standard terminal arrival routes (STAR)
just before the final approach. Civilian applications of UAS,
such as package delivery and urban transportation, are also
important use cases for this approach since urban environments
usually provide little room for lateral and vertical maneuvers.
Our technique is therefore highly suitable for UAS integration
into the urban air-traffic management airspace.

A flight-plan generated for an ownship by our approach
can only guarantee that the ownship will maintain standard

2

separation with the given set of traffic flight-plans. Possible
conflicts between flight-plans in the given set of traffic flight-
plans cannot be resolved using our approach. Therefore, a
practical implementation would require the presence of a cen-
tralized or decentralized controller for a designated airspace
(outside the scope of this paper). The controller may be elected
from aircraft that are already inside the airspace using a leader
election protocol. The controller would maintain a dynamic
set of traffic flight-plans for the airspace and decide if a
new flight-plan proposed by an aircraft can be accommodated
in the airspace. If the flight-plan cannot be accommodated,
the controller would try to compute a solution flight-plan.
However, due to the restrictions on the nature of a solution
flight-plan in our approach, a solution may not always exist. If
no solution flight-plan can be computed, the controller would
delay the entry of the new aircraft in the airspace by delaying
its take-off or by assigning it a holding pattern outside the
airspace (e.g., see Fig. 1). If a solution can be computed or
the proposed flight-plan itself can be accommodated in the
airspace, the controller would add the flight-plan to the set of
traffic flight-plans and wait for new proposals by other aircraft.

Fig. 1: Top view of a scenario where an aircraft cannot
be currently accommodated in an airspace, so it is assigned
a holding pattern to delay entry into the airspace (aircraft
markers represent the direction of flight-plans and not actual
positions).

We have formally verified using the Athena proof language
[4]–[6] that our algorithm generates flight-plans for an own-
ship that guarantee standard separation with a given set of
traffic flight-plans at all times. Thus, our work contributes to
automated strategic traffic flow management by giving aircraft
pilots or UAS flight computers the ability to check if their
desired flight-plans are safe and otherwise generate conflict-
aware flight-plans if possible.

The rest of the paper is divided as follows: Section II
discusses prior work on conflict detection and avoidance
techniques and our prior work on aircraft trajectory generation;
Section III describes the problem statement of our conflict-
aware flight planning approach and our strategy for computing
a conflict-free flight-plan; Section IV describes our algorithm
for computing a conflict-free flight-plan; Section V formally

describes the properties of our approach; Section VI describes
the simulations we performed using our approach; and finally
Section VII concludes the paper with some future directions
of work.

II. RELATED WORK

Pairwise conflict detection and avoidance have been previ-
ously investigated. Pritchett et al. [7] have presented a decen-
tralized algorithm for aircraft conflict resolution that is based
on negotiated bargaining. The resolutions proposed by them
are multi-dimensional, i.e., an aircraft can either move up,
down, right or left, or increase or decrease its velocity. They
associate a cost to each type of resolution and find the solution
that entails the least cost. They do this by using the game
theory concept of bargaining. Since both aircraft maneuver in
this approach, the total cost of maneuvers is divided between
the ownship and the traffic aircraft, reducing the cost involved
for each individual aircraft. Dowek et al. [8] have proposed
a formally verified pairwise coordinated technique for conflict
avoidance in which only one component of the velocity vector
is modified. Their solutions are coordinated such that the
ownship and the traffic aircraft independently choose different
directions for their conflict avoidance maneuvers. This makes
sure that if either one or both the aircraft maneuver, then the
potential conflict is avoided. Galdino et al. [9] have proposed
an optimization over of Dowek et al.’s work by considering
maneuvers in the horizontal plane that include combined
modifications of the ground speed and heading of the ownship.
In both these approaches, the ownship’s course is modified so
that it deviates from its original path. Balachandran et al. [10]
have presented an approach for scheduling multiple unmanned
aerial vehicles (UAV) moving towards an intersection in an
urban environment. In this approach, UAVs can adjust their
time of arrival by modifying their speed and using lateral
deviations. They use the RAFT consensus algorithm [11] to
synchronize information across all vehicles and a scheduling
algorithm to compute a schedule for the UAVs. Alejo et
al. [12] have proposed a technique for finding collision-free
trajectories for autonomous quadrotors or helicopters whose
minimum speed can be zero. Their approach involves adding
new way-points to a proposed trajectory and changing the
speeds of the UAVs. They initially find a non-optimal solution
and then use particle swarm optimization [13] to find better so-
lutions. In contrast to the above work, the solutions generated
by our approach do not include lateral or vertical deviations
in order to resolve conflicts. Therefore, making it suitable in
situations where additional way-points cannot be added due to
restrictions imposed by terrain, weather, or airspace capacity.

Work has been done by NASA on formally verified sense
and avoid systems for integration of UAS in the NAS [14],
[15]. Muñoz et al. [16] have presented an enhancement of
the TCAS conflict detection and resolution system. They
provide a formally verified algorithm for predicting the is-
suance of TCAS resolution advisories so that pilots and
UAS flight computers can take preventive actions to avoid
issuance of TCAS resolution advisories. Given a look-ahead
interval, they detect resolution advisories instead of conflicts.

3

NASA’s DAIDALUS [17] suite of algorithms are aimed at
increasing situational awareness of UAS pilots. DAIDALUS
contains algorithms for detecting possible violations of well-
clear volumes and alerting the pilots. It also includes algo-
rithms for providing maneuvering guidance to successfully
avoid conflicts. These algorithms are integral components of
NASA’s ICAROUS [18] and DANTi [19] systems. Our work
improves upon the state of the art see-and-avoid tactical
conflict resolution systems by extending the existing conflict
detection and resolution approaches to detect and resolve
conflicts between multi-segment flight-plans.

Our previous work on aircraft trajectory planning includes
trajectory planning for fixed-wing aircraft in total or partial
loss of thrust emergencies. In [20], we have presented a
dynamic data-driven approach for computing trajectories to
reachable runways in loss of thrust situations. Our approach
takes into consideration dynamic factors like partial power and
aircraft surface damage that can not be predicted in advance.
We have further extended our work by considering wind in
the trajectory generation phase [21], [22]. Our wind-model
considers the baseline glide ratio of the accident aircraft and
the horizontal wind conditions. This model can be used to
generate high fidelity wind-aware trajectories that are feasible
in the presence of a steady, horizontal wind.

III. CONFLICT-AWARE FLIGHT PLANNING

In this section, we present the mathematical foundation
of our conflict-aware flight planning approach. We introduce
important definitions and terms, the problem statement, and
the strategy for computing valid conflict-aware flight-plans.
Our geometrical model of the conflict detection problem is
based on a flat-Earth assumption with a global frame of
reference. We also assume that aircraft are capable of sending
and receiving multi-segment flight-plans with configuration
information for each way-point.

Type Specification Set Domain

Configuration 〈sx, sy , sz , vg , λ, vz〉 C R3 × R ≥ 0× [0, 2π)× R
State 〈sx, sy , sz , vx, vy , vz〉 S R6

Flight-plan 〈t,Cn〉 F R ≥ 0× Cn∈N

TABLE I: Semantic domains.

Definitions:

• The configuration of an aircraft is a vector
〈sx, sy, sz, vg, λ, vz〉 where sx, sy , and sz are the
coordinates in the x, y, and z dimensions, vg is the
ground speed, λ is the course or actual direction of
motion of the aircraft with respect to the ground, and
vz is the vertical speed. The set C is the set of all
configurations (Table. I).

• The state of an aircraft is a vector 〈sx, sy, sz, vx, vy, vz〉
where sx, sy , and sz are the coordinates and vx vy , and
vz are the components of the velocity vector in the x,
y, and z dimensions. The set S is the set of all states
(Table. I).

• A way-point is a position in 3D space and is represented
by 〈sx, sy, sz〉 where sx, sy , and sz are the coordinates
in the x, y, and z dimensions.

• A segment is the 3D straight-line flight segment between
two consecutive way-points. A segment is represented by
its initial and final way-points.

• A flight-plan is a pair 〈t,Cn〉 containing a start time t
and a vector of configurations Cn that represent n way-
points in the flight-plan. Two consecutive way-points in
a flight-plan are connected by a segment. In a flight-plan
with n way-points, there are always n−1 segments. The
set F is the set of all flight-plans (Table. I).

Conflict Between Two Flight-Plans:

Given the states of two aircraft a and b at time t0
as Sa,t0 = 〈sx,a,t0 , sy,a,t0 , sz,a,t0 , vx,a,t0 , vy,a,t0 , vz,a,t0〉 and
Sb,t0 = 〈sx,b,t0 , sy,b,t0 , sz,b,t0 , vx,b,t0 , vy,b,t0 , vz,b,t0〉, their 2D
horizontal position vectors and 2D horizontal velocity vectors
are written as:

sxy,a,t0 = 〈sx,a,t0 , sy,a,t0〉

sxy,b,t0 = 〈sx,b,t0 , sy,b,t0〉

vxy,a,t0 = 〈vx,a,t0 , vy,a,t0〉

vxy,b,t0 = 〈vx,b,t0 , vy,b,t0〉

Assuming both aircraft maintain constant velocity flight, the
relative position and relative velocity of the two aircraft in the
horizontal (xy) and vertical dimensions (z) at time t0 can now
be obtained by the following equations:

sxy,t0 = sxy,a,t0 − sxy,b,t0

vxy,t0 = vxy,a,t0 − vxy,b,t0

sz,t0 = sz,a,t0 − sz,b,t0
vz,t0 = vz,a,t0 − vz,b,t0

Their relative horizontal and vertical positions at any time
t ≥ t0 can be computed as:

sxy,t = sxy,t0 + (t− t0)vxy,t0

sz,t = sz,t0 + (t− t0)vz,t0

We will be using s and v to denote sxy and vxy in the rest
of the paper.

Fig. 2: Well-clear volume around an aircraft.

The well-clear volume of an aircraft is defined as a cylinder
of diameter D and height H around the center of the aircraft,

4

where D is the horizontal separation threshold and H is the
vertical separation threshold [8]. Two aircraft a and b are
said to be at safe distance from each other if their well-clear
volumes do not intersect. They are said to be in conflict at
time t if their well-clear volumes intersect, i.e., their horizontal
distance is less than D and vertical distance is less than H
simultaneously at time t. Therefore, if there is a conflict at
time t, both of the following equations are satisfied:

‖st‖ < D (1)

|sz,t| < H (2)

Fig. 3: Periods of interest for two flight-plans.

Conflict detection by using equations (1) and (2) is ap-
plicable only when the states of two aircraft a and b at a
time t0 are available as Sa,t0 and Sb,t0 , along with a known
period of interest during which both aircraft are expected to
maintain their constant-velocity flight. Given two flight-plans
Fa and Fb, it is, therefore, necessary to discretize the temporal
dimension into discrete periods of interest. This can be done
by creating a non-decreasing vector T (which ranges over Rn)
of the times corresponding to the way-points comprising the
flight-plans. The time between consecutive temporal points in
T can then be used as discrete periods of interest for conflict
detection. For example, in Figure 3, which shows the top-
view of two flight-plans, the times corresponding to the way-
points in Fa are t1, t4, t7, and t9, and the times corresponding
to the way-points in Fb are t0, t2, t3, t5, t6, and t8. The
vector of times T = 〈t0, t1, t2, t3, t4, t5, t6, t7, t8, t9〉. Each
pair of consecutive times in T has been used to discretize
the temporal dimension (represented by the dotted line) into
periods of interest. It should, however, be noted that periods of
interest are only valid if two flight-plans have temporal overlap
during that period. For example, in Figure 3, the periods t0 to
t1 and t8 to t9 are not valid periods of interest.

Given two flight-plans Fa and Fb, a horizontal threshold
D, and a vertical threshold H the conflict(Fa, Fb, D,H)
function can check if a possible conflict exists
between the two flight-plans. It first uses the function
get-all-times(Fa, Fb) to generate a non-decreasing
vector of times corresponding to the way-points
in FA and FB as T . conflict returns True if
T-violation(T, Fa, Fb, D,H) returns True.

conflict(Fa, Fb, D,H):
Let
T = get-all-times(Fa, Fb)

in
if T-violation(T, Fa, Fb, D,H)

return True
else

return False
endif

Id Input Output

check-safety {0, 1}n×m × F× Fk × Rm × R2 Bool
complete {0, 1}n×m Bool
conflict F2 × R2 Bool

exists-violation R2 × F2 × R2 Bool
get-all-times F2 Rn

get-config R× F C
get-index Rm × R N

plan {0, 1}n×m × F× Rm F
safe Fk × R2 Bool
set {0, 1}n×m × N2 {0, 1}n×m

solve {0, 1}n×m × N× F× Fk × Rm × R2 F
T-violation Rn × F2 × R2 Bool
unassigned {0, 1}n×m N

valid {0, 1}n×m × N× F× Fk × Rm × R3 Bool

TABLE II: Function signatures.

The function T-violation(T, Fa, Fb, D,H) recursively
checks for possible conflicts in the period of interest between
every pair of consecutive times in T and returns True if a
conflict is detected.

T-violation(T, Fa, Fb, D,H):
Let
T = 〈t1, t2, T ′〉

in
if T == Null

return False
else

if exists-violation(t1, t2, Fa, Fb, D,H)
return True

else
return T-violation(〈t2, T ′〉, Fa, Fb, D,H)

endif
endif

The exists-violation(t1, t2, Fa, Fb, D,H) function
returns True if there exists a time t : t1 < t ≤ t2 & ‖s(t)‖ <
D & |sz(t)| < H . It uses the get-config(t, F) function
to get the configurations of aircraft a and b at time t1
as Ca,t1 = 〈sx,a,t1 , sy,a,t1 , sz,a,t1 , vg,a,t1 , λa,t1 , vz,a,t1〉 and
Cb,t1 = 〈sx,b,t1 , sy,b,t1 , sz,b,t1 , vg,b,t1 , λb,t1 , vz,b,t1〉. Then the
x and y components of the velocity vectors of a and b at time
t1 are computed as:

vx,a,t1 = vg,a,t1 × cosλa,t1

vy,a,t1 = vg,a,t1 × sinλa,t1

vx,b,t1 = vg,b,t1 × cosλb,t1

vy,b,t1 = vg,b,t1 × sinλb,t1

Therefore, their initial states for the period of interest t1 to
t2, are given by:

Sa,t1 = 〈sx,a,t1 , sy,a,t1 , sz,a,t1 , vx,a,t1 , vy,a,t1 , vz,a,t1〉

Sb,t1 = 〈sx,b,t1 , sy,b,t1 , sz,b,t1 , vx,b,t1 , vy,b,t1 , vz,b,t1〉

Now equations (1) and (2) can be used to determine if a
violation of the well-clear volumes of the two aircraft is

5

possible between t1 and t2. exists-violation returns
True if a possible violation is detected.

exists-violation(t1, t2, Fa, Fb, D,H):
Let
〈sx,a,t1 , sy,a,t1 , sz,a,t1 , vg,a,t1 , λa,t1 , vz,a,t1 〉

= get-config(t1, Fa)
〈sx,b,t1 , sy,b,t1 , sz,b,t1 , vg,b,t1 , λb,t1 , vz,b,t1 〉

= get-config(t1, Fb)
vx,a,t1 = vg,a,t1 × cosλa,t1
vy,a,t1 = vg,a,t1 × sinλa,t1
vx,b,t1 = vg,b,t1 × cosλb,t1
vy,b,t1 = vg,b,t1 × sinλb,t1
Sa,t1 = 〈sx,a,t1 , sy,a,t1 , sz,a,t1 , vx,a,t1 , vy,a,t1 , vz,a,t1 〉
Sb,t1 = 〈sx,b,t1 , sy,b,t1 , sz,b,t1 , vx,b,t1 , vy,b,t1 , vz,b,t1 〉
sa,t1 = 〈sx,a,t1 , sy,a,t1 〉
sb,t1 = 〈sx,b,t1 , sy,b,t1 〉
va,t1 = 〈vx,a,t1 , vy,a,t1 〉
vb,t1 = 〈vx,b,t1 , vy,b,t1 〉
st1 = sa,t1 − sb,t1
vt1 = va,t1 − vb,t1
st = st1 + (t− t1)vt1
sz,t1 = sz,a,t1 − sz,b,t1
vz,t1 = vz,a,t1 − vz,b,t1
sz,t = sz,t1 + (t− t1)vz,t1

in
if ∃ t . ‖st‖ < D & |sz,t| < H & t1 < t ≤ t2

return True
else

return False
endif

The Problem

Given a set of flight-plans Φ (which ranges over Fk, k ∈
N), the set is considered to be safe if there ex-
ists no conflict between any pair of elements in Φ.
The safe(Φ, D,H) function returns True if for all
Fi, Fj ∈ Φ, conflict(Fi, Fj , D,H) returns False. Thus,
safe(Φ, D,H), implies that the set Φ is safe.

safe(Φ, D,H):
if ∀Fi, Fj ∈ Φ : ¬conflict(Fi, Fj , D,H)

return True
else

return False
endif

The problem statement can now be expressed as: Given a
set of immutable traffic flight-plans Φ, a horizontal threshold
D, a vertical threshold H , and a proposal flight-plan Fa such
that safe(Φ, D,H) but ¬safe(Φ∪{Fa}, D,H), the goal
is to find a valid solution flight-plan F̄a such that safe(Φ∪
{F̄a}, D,H).

The Strategy for Computing F̄a:

We have shown how conflicts between two given flight-
plans can be detected using the conflict function and how
the safe function can determine if a set of flight-plans is
safe. As expressed in the problem statement, the goal is to
find a solution flight-plan F̄a given a safe set of immutable
flight-plans Φ and a proposal Fa. Since the flight-plans in
Φ are immutable, only the proposal flight-plan Fa may be
adjusted to find a solution. Let us consider an aircraft a that
proposes Fa to be the ownship and another traffic aircraft b
such that Fb ∈ Φ. For the well-clear volumes of a and b to
intersect, there needs to exist a time t such that equations (1)

and (2) are simultaneously satisfied. Therefore, our strategy
for avoiding conflicts between a and b is to assign suitable
values of ground speed (vg) to the different segments of Fa,
such that intersection of the well-clear volumes of a and b can
be avoided. Our algorithm takes as input a vector ξair (which
ranges over Rn, n ∈ N) of discrete values of airspeed that
the ownship can fly with. Given the horizontal wind vector
w, a corresponding vector ξ = ξair(w) (which ranges over
Rn, n ∈ N) of values of ground speed for the ownship can
be computed. The algorithm assigns a value of ground speed
vg ∈ ξ to each segment in the ownship’s flight-plan to create
a solution F̄a such that ¬conflict(F̄a, Fb, D,H). The
vertical speed for each segment is then adjusted accordingly
to ensure that the 3D profile of F̄a is similar to that of the
original flight-plan Fa. We assume that aircraft can change
their ground speed and vertical speed instantaneously. This
pairwise strategy for conflict avoidance is extended to the set
Φ so that a valid F̄a will avoid conflict with every Fb ∈ Φ,
i.e., ∀Fb ∈ Φ : ¬conflict(F̄a, Fb, D,H). Our solution
space is limited to different permutations of vg ∈ ξ in the
segments comprising Fa. Therefore, it should be noted that
this conservative approach may not always be able to compute
a solution flight-plan.

Since the heading of the velocity is not changed in a
segment, only two components of the velocity vector are
altered – the ground speed and the vertical speed. This
restricts the introduction of new way-points in the solution
flight-plan. Thus, for a flight-plan Fa =

〈
t, 〈C1, C2, ..., Cn〉

〉
,

where Ci = 〈sx, sy, sz, vg, λ, vz〉, a valid solution F̄a =〈
t, 〈C ′1, C ′2, ..., C ′n〉

〉
satisfies the condition that C ′i =

〈sx, sy, sz, vg ′, λ, v′z〉.
There are two steps involved in the computation of a

solution flight-plan:
1) Finding a value of ground speed vg ∈ ξ for every segment

L ∈ Fa.
2) Adjusting the vertical speed to maintain the 3D profile of

the flight-plan
In the next section, we will present the algorithm for comput-
ing a valid assignment of ground speed for the segments, that
has been formally verified to result in a conflict-free flight-plan
if a solution is found.

When the ground speed in a flight segment between two
consecutive way-points is changed from vg to vg

′
, in order

to maintain the 3D profile of the flight segment, the vertical
speed vz for that flight segment needs to be adjusted.

Fig. 4: Vertical flight path angle.

6

The angle that the straight-line flight path makes with the
horizontal is given by the following equation:

γ = tan−1
∆h

∆x
=
vz
vg

For the vertical profile to remain same, the angle γ needs to
remain unchanged. Therefore, the required vertical speed v

′

z

for a segment can be computed by using equation 3.

v
′

z = vg
′
× vz
vg

(3)

IV. ALGORITHM FOR COMPUTING THE GROUND SPEED
ASSIGNMENTS IN F̄a:

In this section, we present an algorithm for assigning a
discrete value of ground speed to each segment of a flight-plan
Fa to create a valid solution flight-plan F̄a. We also describe
certain properties of the algorithm that are later formally
specified.

The assignment of ground speed to the segments can be
arranged as an assignment matrix M of dimension n × m
where n ∈ N is the number of segments in Fa and m ∈ N
is the number of discrete values of ground speed in ξ (M
ranges over {0, 1}n×m). Each row r represents a segment of
F̄a and each column c represents a value of ground speed in
ξ. Initially, all the cells of M are marked with 0’s. A matrix
comprised of only 0’s is represented by M0. When a value
of ground speed corresponding to column c is assigned to a
segment corresponding to row r, the cell M [r, c] is marked
with a 1. An example assignment matrix is given in Fig. 5.
It represents a flight-plan with 5 segments that have been
assigned ground speeds of 140, 200, 120, 140, and 240 kts
respectively.

Fig. 5: Example assignment matrix for a solution flight-plan.

An algorithm that solves the above matrix assignment
problem should satisfy the following properties:
• Safety - The algorithm should return an assignment matrix
M if and only if adding the corresponding flight-plan F
to the given set of traffic flight-plans Φ creates a safe set
of flight-plans Φ ∪ {F}.

This property ensures that if a solution flight-plan is
found, the resulting set of flight-plans in the airspace is
safe.

• Completeness - If there is a value of ground speed that
can be assigned to a segment such that it leads to a valid
solution, then the algorithm will not return M0.

This property ensures that if a valid permutation of
values of ground speed exists, the algorithm will find
the corresponding assignment matrix and not incorrectly
terminate by returning M0.

We propose a backtracking algorithm for finding the as-
signment matrix M corresponding to a valid F̄a. It returns
a solution only if it can find an assignment matrix such that
the corresponding flight-plan can be safely added to the set of
traffic flight-plans. It returns M0 if no such solution exists.

complete(M):
if ∀ row ∈ M : assigned(row)
return True
else
return False

check-safety(M,Fa,Φ, ξ,D,H):
Let
F = plan(M,Fa, ξ)

in
if safe(Φ ∪ {F}, D,H)

return True
else

return False
endif

valid(v,M, Fa,Φ, ξ,D,H):
Let
M ′ = set(M,unassigned(M),getindex(ξ, v))
safety = check-safety(M ′, Fa,Φ, ξ,D,H)
succeeding = solve(M ′, Fa,Φ, ξ,D,H)
in
if (safety & succeeding 6= M0)
return True

else
return False

endif

solve(M,Fa,Φ, ξ,D,H):
if complete(M) & check-safety(M,Fa,Φ, ξ,D,H)
return M
endif
if complete(M) & ¬check-safety(M,Fa,Φ, ξ,D,H)
return M0

endif
if ¬complete(M)&∃v : v ∈ ξ&valid(v,M, Fa,Φ, ξ,D,H)
Let
M ′ = set(M,unassigned(M),getindex(ξ, v))
in
return solve(M ′, Fa,Φ, ξ,D,H)

endif
if ¬complete(M)&¬(∃v : v ∈ ξ&valid(v,M, Fa,Φ, ξ,D,H))
return M0

endif

Our algorithm comprises of four primary functions: solve,
check-safety, complete, and valid. The solve
function takes as input an assignment matrix M , the proposal
flight-plan Fa, a set of traffic flight-plans Φ, a vector ξ of dis-
crete values of ground speed for aircraft a, and the thresholds
D and H . It tries to assign a value of ground speed to the first
unassigned row of M (given by unassigned(M)).

The complete function takes as input an assignment
matrix M and returns True only if all the rows of M
have a ground speed assignment. An assignment matrix M
is complete if complete(M) returns True and incomplete
otherwise.

7

The check-safety function can determine if the flight-
plan corresponding to an assignment matrix M can be safely
added to Φ. It takes as input an assignment matrix M , the
proposal flight-plan Fa, a set of traffic flight-plans Φ, a vector
ξ of discrete values of ground speed for aircraft a, and the
thresholds D and H . It uses the plan function to create a
flight-plan F corresponding to M and returns True only if
the set Φ ∪ {F} is safe.
solve returns the assignment matrix M if it is complete

and check-safety returns True for M . If M is incom-
plete, then solve checks if a valid assignment of ground speed
is possible for the first unassigned row.

An assignment of ground speed for a row is valid only if
the following conditions are satisfied:
• The corresponding intermediate flight-plan can be safely

added to the set Φ.
• The assignment allows assignments of ground speed for

succeeding rows.
The valid function can be used to check the validity of
an assignment. It takes as input a value of ground speed
v, an assignment matrix M , the proposal flight-plan Fa, a
set of traffic flight-plans Φ, a vector ξ of discrete values of
ground speed for aircraft a, and the thresholds D and H . It
returns True if the assignment of v to the first unassigned
row satisfies the two conditions for a valid assignment and
False otherwise.

If a valid assignment of ground speed v can be found
for the first unassigned row, the current assignment ma-
trix M is updated to a new assignment matrix M ′ using
the set function. The set function assigns 1 to the cell
(unassigned(M),getindex(ξ, v)), where the function
getindex(ξ, v) returns the index of v in ξ. solve then
proceeds to make an assignment to the first unassigned row
in the updated assignment matrix M ′. If no valid assignment
of ground speed can be found for the first unassigned row of
M , then solve exits by returning M0.

In the next section, we will formalize some important prop-
erties of our approach, including the safety and completeness
properties.

V. FORMAL VERIFICATION OF THE FLIGHT-PLANNING
ALGORITHM

In this section, we present some important correctness prop-
erties of the specifications introduced in Section III. We also
present the formal specifications of safety and completeness
properties.

Theorem 1. ∀D,H, t1, t2 : R and Fa, Fb : F, exists-viol
ation(t1, t2, Fa, Fb, D,H) ⇐⇒ ∃ t : ‖sxy,t‖ < D &
|sz,t| < H & t1 < t ≤ t2.

Theorem 1 asserts that, the exists-violation function
correctly returns True if and only if a violation of minimum
horizontal separation D and minimum vertical separation H
between time t1 and t2 exists.

Theorem 2. ∀ D,H, t1, t2 : R, n : N, T : Rn, and Fa, Fb : F,(
exists-violation(t1, t2, Fa, Fb, D,H) =⇒ T-viol
ation(〈t1, t2, T 〉, Fa, Fb, D,H)

)
&

(
¬exists-violati

on(t1, t2, Fa, Fb, D,H) =⇒ T-violation(〈t1, t2, T 〉,
Fa, Fb, D,H)=T-violation(〈t2, T 〉, Fa, Fb, D,H)

)
.

Theorem 2 asserts that the function T-violation recur-
sively checks for possible conflicts between pair of consecutive
times in a vector of times 〈t1, t2, T 〉 and correctly returns
True when a conflict is detected between two consecutive
times t1 and t2.

Theorem 3. ∀D,H : R and Fa, Fb : F, T-violation(get
-all-times(Fa, Fb), Fa, Fb, D,H)⇐⇒ conflict(Fa

, Fb, D,H).

Theorem 3 asserts that the conflict function correctly
returns True if a conflict is detected at any time between two
given flight-plans and returns False otherwise.

Theorem 4. ∀ D,H : R, k : N, Φ : Fk and Fi, Fj : F,
¬
(
∃ Fi, Fj ∈ Φ : conflict(Fi, Fj , D,H)

)
⇐⇒

safe(Φ, D,H).

Theorem 4 asserts that the safe function returns True
if and only if there is no conflict between any two
flight-plans in the given set of flight-plans. Therefore,
safe(Φ, D,H)=True guarantees that a set of flight-plans
Φ is safe when the horizontal and vertical thresholds D and
H are given.

Theorem 5. ∀ D,H : R, n,m, k : N, M : {0, 1}n×m, F : F,
and Φ : Fk, ξ : Rm, safe(Φ∪plan(M,F, ξ), D,H) ⇐⇒
check-safety(M,F,Φ, ξ,D,H).

Theorem 5 asserts that the check-safety function cor-
rectly returns True for an assignment matrix M if and only if
adding the corresponding flight-plan to the set of traffic flight-
plans Φ results in a safe set of flight-plans.

Theorem 6. ∀ n, m : N, M : {0, 1}n×m, (∀ r ∈ M :
assigned(r)

)
⇐⇒ complete(M).

Theorem 6 asserts that the complete function returns
True if and only if every row in the matrix M has been
assigned a value of ground speed. Therefore, it can correctly
detect if an assignment matrix is complete.

Theorem 7. ∀ D,H, v : R, n,m, k : N, M : {0, 1}n×m,
Fa : F, Φ : Fk, and ξ : Rm, valid(v,M,F,Φ, ξ,D,H)
⇐⇒

(
check-safety(set(M,unassigned(M),get

index(ξ, v)), F,Φ, ξ,D,H)&¬(solve(M,F,Φ, ξ,D,H)
=M0)

)
Theorem 7 asserts that the valid function returns True

if and only if the assignment of v to the first unassigned row
satisfies the two conditions for a valid assignment.

The Safety Property

Theorem 8. ∀ D,H : R, n,m, k : N, M : {0, 1}n×m, Fa : F,
Φ : Fk, and ξ : Rm, complete(M) =⇒

(
(solve(M,F,

Φ, ξ,D,H) = M)⇐⇒ safe(Φ∪plan(M,F, ξ), D,H)
)
.

Theorem 8 asserts that if an assignment matrix M is
complete, solve will return M if and only if adding the
corresponding flight-plan F̄ to the set of traffic flight-plans

8

Φ creates a safe set of flight-plans. Therefore, Theorem 8
guarantees that the safety property is satisfied by the algorithm
specifications.

The Completeness Property

Theorem 9. ∀ D,H : R, n,m, k : N, M : {0, 1}n×m,
Fa : F, Φ : Fk, and ξ : Rm, ¬complete(M) =⇒(
(∃ v : v ∈ ξ & valid(v,M,F,Φ, ξ,D,H)) ⇐⇒
¬(solve(M,F,Φ, ξ,D,H)=M0)

)
Theorem 9 states that when the assignment matrix M is

incomplete, if there exists a valid assignment of ground speed
v for the first unassigned row, then solve does not return M0.
Therefore, Theorem 9 summarizes the completeness property
of our algorithm.

All the lemmas and theorems introduced in this section have
been verified using Athena1. Therefore, our algorithm has been
mechanically verified to satisfy the safety and completeness
properties mentioned in Section IV.

VI. EXPERIMENTATION AND RESULTS

We developed a reference implementation of our approach
in Python that closely follows the specifications that were used
to verify the properties in Athena. We created a proposal flight-
plan Fa for an ownship a and a set of traffic flight-plans Φ.
Initially, Φ contained only one traffic flight-plan Fb that had
a conflict with Fa. We then incrementally added two more
traffic flight-plans Fc and Fd that were designed such that a
solution flight-plan F̄a would not exist for the proposal. All
our experiments assume a Euclidean 3D coordinate system
(with 100 feet = 1 unit on both axes). We used a value of 1
nautical mile for the horizontal threshold (D) and 1000 feet
for the vertical threshold (H). All the flight-plans were at a
constant altitude of 5000 feet. The details of the flight-plans
are given below:

• Fa had a starting time of 0.00 seconds and was com-
prised of the way-points 〈−60, 100, 50〉, 〈−55, 65, 50〉,
〈5, 5, 50〉, and 〈125, 5, 50〉 with a proposed ground speed
of 240 kts in every segment.

• Fb had a starting time of 0.00 seconds and was com-
prised of the way-points 〈125, 5, 50〉, 〈5, 5, 50〉, and
〈−55,−55, 50〉 with a ground speed of 240 kts in every
segment.

• Fc had a starting time of 61.23 seconds and was com-
prised of the way-points 〈69,−85, 50〉, 〈71,−55, 50〉, and
〈121, 5, 50〉 with a ground speed of 200 kts in every
segment.

• Fd had a starting time of 63.66 seconds and was com-
prised of the way-points 〈3,−55, 50〉, 〈123, 65, 50〉, and
〈160, 70, 50〉 with a ground speed of 174 kts in every
segment.

• The vector of ground speeds for aircraft a was
ξ = 〈 100, 120, 140, 160, 180, 200, 220, 240〉 (all in kts).

1Complete Athena code available at: http://wcl.cs.rpi.edu/pilots/fvcafp

Fig. 6: Top view of a scenario where an aircraft a is in conflict
with a traffic aircraft b (aircraft markers represent the direction
of flight-plans and not actual positions).

Fig. 7: An assignment matrix for the scenario in Fig. 6.

Fig. 6 depicts the first scenario where Φ contains one traffic
flight-plan Fb. a has a possible conflict with aircraft b in the
third segment of Fa between the way-points 〈5, 5, 50〉 and
〈125, 5, 50〉. Our algorithm computed the assignment matrix
given in Fig. 7 that corresponded to a solution flight-plan F̄a.

Fig. 8: Top view of a scenario where an aircraft a is in conflict
with two traffic aircraft b and c (aircraft markers represent the
direction of flight-plans and not actual positions).

9

Fig. 9: An assignment matrix for the scenario in Fig. 8.

In the second scenario depicted in Fig. 8, we added a new
traffic flight-plan Fc to Φ (Φ

′
= Φ ∪ {Fc}) such that aircraft

a has a conflict with aircraft c if it follows the solution flight-
plan F̄a created from the assignment matrix in Fig. 7. In this
case, our algorithm computed the assignment matrix given in
Fig. 9 that can be used to create a solution flight-plan F̄a

′

that
maintains standard separation from both aircraft b and c.

Fig. 10: Top view of a scenario where an aircraft a is in conflict
with three traffic aircraft b, c, and d (aircraft markers represent
the direction of flight-plans and not actual positions).

Fig. 11: An assignment matrix for the scenario in Fig. 10.

For the third scenario, we added a fourth traffic aircraft d
to the airspace (Fig. 10). Adding the new flight-plan Fd to Φ

′

(Φ
′′

= Φ ∪ {Fd}) created a situation where no permutation
of ground speed in the three segments of Fa could generate
a solution that is conflict free from all three traffic aircraft.
However, on introducing an additional value of 60 kts ground
speed in ξ, our algorithm could compute the assignment matrix
for a solution flight-plan F̄a

′′

as given in Fig. 11.
It is evident from the experiments that our approach can be

effectively used for generating conflict-free flight-plans. The
third scenario where a flight-plan was not initially possible
but could be generated after a new discrete value of ground
speed was allowed clearly shows that given a start time, ξ is an
important variable in determining the possibility of a solution.
Since ξ is a function of the allowed values of airspeed for an
aircraft and the wind vector w, it is obvious that the wind
conditions can significantly impact solutions.

VII. CONCLUSION AND FUTURE WORK

The future of the National Airspace System, with the
integration of unmanned aerial systems for civilian use, will
face significant challenges in terms of air-traffic management.
With an increase in the density of aircraft in the airspace,
it will become necessary to update the current state-of-the-
art in traffic flow management to accurately maintain stan-
dard separation between aircraft in highly congested airspace.
Future advancements in ADS-B technology will give way to
the development of smarter and more efficient systems for
tracking aircraft in the airspace and providing both tactical and
strategic guidance to ensure standard separation between them.
The approach for conflict-aware flight planning presented in
this paper is one of the many possible techniques that can be
implemented with the rich data that can be provided by ADS-
B in the near future. Since our approach does not introduce
additional way-points in order to maintain standard separation,
it can be used in situations where airspace capacity, restricted
airspace, weather or terrain may prevent deviations between
way-points. Our work, therefore, is particularly suitable for
UAS integration in the national airspace since trajectory devi-
ations in urban environments are typically restricted by traffic
or terrain. It may also be implemented in terminal areas where
systems like TCAS are not feasible due to the low flight
altitudes of aircraft.

Our approach can only generate a flight-plan for an ownship
given a set of immutable traffic flight-plans. If a solution
cannot be found, no changes are made to the traffic flight-
plans in order to accommodate the ownship. A cooperative
protocol in which all aircraft adjust to accommodate each other
can be implemented by using consensus algorithms such as
RAFT. However, consensus is too strict a condition, especially
if an aircraft needs to propose an emergency flight-plan. In
real-world ground transportation systems, emergency vehicles
simply broadcast their intent and predefined protocols are
followed by the traffic vehicles in order to accommodate them.
Ground traffic management systems usually do not require any
form of consensus from the vehicles for ensuring conflict-free
flow of traffic. Therefore, our future directions of work include
the development of intent broadcast-based protocols which can
be cooperatively used by aircraft in an airspace for conflict-
aware flight-planning. Such protocols will make it possible to
better utilize the full capacity of an airspace while ensuring
minimum standard separation between aircraft.

ACKNOWLEDGMENT

This research is partially supported by the National Science Foundation
(NSF), Grant No. - CNS 1816307 and the Air Force Office of Scientific
Research (AFOSR), Grant No. - FA9550-19-1-0054.

10

REFERENCES

[1] Federal Aviation Administration, “Air Traffic By the Numbers,” 2018.
[2] Federal Aviation Administration, “Introduction to TCAS-II Version 7.1,”

2011.
[3] Federal Aviation Administration, “Traffic Flow Management in the

National Airspace System,” 2009.
[4] K. Arkoudas, “Athena.” http://proofcentral.org/athena.
[5] K. Arkoudas and D. Musser, “Athena Libraries.” http://proofcentral.org/

athena/lib.
[6] K. Arkoudas and D. Musser, Fundamental Proof Methods in Computer

Science: A Computer-Based Approach. MIT Press, 2017.
[7] A. R. Pritchett and A. Genton, “Negotiated decentralized aircraft conflict

resolution,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 81–91,
2018.

[8] G. Dowek, C. Muñoz, and V. Carreño, “Provably safe coordinated strat-
egy for distributed conflict resolution,” in AIAA Guidance, Navigation,
and Cont. (GNC) Conf., (San Francisco, CA), p. 6047, Aug. 2005.

[9] A. L. Galdino, C. Muñoz, and M. Ayala-Rincón, “Formal verification of
an optimal air traffic conflict resolution and recovery algorithm,” in Int.
Workshop on Logic, Lang., Info., and Comput., pp. 177–188, Springer,
2007.

[10] S. Balachandran, C. Muñoz, and M. Consiglio, “Distributed consensus to
enable merging and spacing of UAS in an urban environment,” in 2018
Int. Conf. on Unmanned Aircraft Syst. (ICUAS), pp. 670–675, IEEE,
2018.

[11] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Tech. Conf., pp. 305–319, 2014.

[12] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, “Collision-free
4D trajectory planning in unmanned aerial vehicles for assembly and
structure construction,” J. Intell. & Robotic Syst., vol. 73, no. 1-4,
pp. 783–795, 2014.

[13] M. Pontani and B. A. Conway, “Particle swarm optimization applied to
space trajectories,” J. Guidance, Cont., and Dynamics, vol. 33, no. 5,
pp. 1429–1441, 2010.

[14] C. Munoz, A. Narkawicz, J. Chamberlain, M. C. Consiglio, and J. M.
Upchurch, “A family of well-clear boundary models for the integration
of uas in the nas,” in 14th AIAA Aviation Technol., Integr., and Operat.
Conf., p. 2412, 2014.

[15] A. Narkawicz, C. Munoz, and A. Dutle, “Coordination logic for repul-
sive resolution maneuvers,” in 16th AIAA Aviation Technol., Integr., and
Operat. Conf., p. 3156, 2016.

[16] C. Muñoz, A. Narkawicz, and J. Chamberlain, “A TCAS-II resolution
advisory detection algorithm,” in AIAA Guidance, Navigation, and Cont.
(GNC) Conf., (Boston, MA), p. 4622, Aug. 2013.

[17] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M. Con-
siglio, and J. Chamberlain, “DAIDALUS: Detect and avoid alerting logic
for unmanned systems,” in Proc. 34th AIAA/IEEE Digit. Avionics Syst.
Conf., pp. 5A1–1, IEEE, 2015.

[18] S. Balachandran, C. A. Muñoz, M. C. Consiglio, M. A. Feliú, and A. V.
Patel, “Independent configurable architecture for reliable operation of
unmanned systems with distributed onboard services,” in Proc. 37th
AIAA/IEEE Digit. Avionics Syst. Conf., pp. 1–6, IEEE, 2018.

[19] J. P. Chamberlain, M. C. Consiglio, and C. Muñoz, “DANTi: Detect
and avoid in the cockpit,” in 17th AIAA Aviation Technol., Integr., and
Operat. Conf., p. 4491, 2017.

[20] S. Paul, F. Hole, A. Zytek, and C. Varela, “Flight trajectory planning for
fixed wing aircraft in loss of thrust emergencies,” tech. rep., Rensselaer
Polytechnic Institute, Troy, NY, USA, Oct. 2017.

[21] S. Paul, F. Hole, A. Zytek, and C. Varela, “Wind-aware trajectory
planning for fixed-wing aircraft in loss of thrust emergencies,” in Proc.
37th AIAA/IEEE Digit. Avionics Syst. Conf., (London, England, UK),
pp. 558–567, Sep. 2018.

[22] S. Paul, “Emergency trajectory generation for fixed-wing aircraft,”
Master’s thesis, Rensselaer Polytechnic Institute, Dec. 2018.

