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Abstract—We have created a highly declarative programming
language called PILOTS that enables error detection and esti-
mation of correct data streams based on analytical redundancy
(i.e., algebraic relationship between data streams). Data scientists
are able to express their analytical redundancy models with the
domain specific grammar of PILOTS and test their models with
erroneous data streams. PILOTS has the ability to express a
single analytical redundancy, and it has been successfully applied
to data from aircraft accidents such as Air France flight 447 and
Tuninter flight 1153 where only one simultaneous sensor type
failure was observed. In this work, we extend PILOTS to support
multiple models of analytical redundancy and improve situa-
tional awareness for multiple simultaneous sensor type failures.
Motivated by the two recent accidents involving the Boeing 737
Max 8, which was potentially caused by a faulty angle of attack
sensor, we focus on recovering angle of attack data streams under
multiple sensor type failure scenarios. The simulation results
show that multiple models of analytical redundancy enable us
to detect failure modes that are not detectable with a single
model.

Index Terms—fault-tolerance; data streams; analytical redun-
dancy

I. INTRODUCTION

Two recent airplane accidents, Lion Air flight 610 on
October 29, 2018 and Ethiopian Airlines flight 302 on March
10, 2019, involved fatal crashes of the Boeing 737 Max 8.
According to a preliminary report on the Lion Air accident [1],
[2], the pilots experienced inconsistent altitude and airspeed
data readings due to erroneous angle of attack data on the
day of the flight. It is speculated that erroneous angle of
attack data caused the Max 8’s Maneuvering Characteristics
Augmentation System (MCAS) to malfunction. The pilots
experienced repeated automatic nose down trim despite the
fact that they manually commanded nose up trim to avoid
stalling. The causes of these two accidents are still under active
investigation; however, if the 737 Max 8 aircraft was aware
of the erroneous angle of attack data and had the ability to
automatically recover the correct data, it could have reduced
the risk of accidents significantly.

In modern aircraft systems, triplex sensors are used to
provide a fault tolerant signal fusion scheme called signal con-
solidation [3]. One way to implement the signal consolidation
is to take a weighted sum of the values from three sensors.
However, when all three sensors are failed, this scheme cannot
produce reliable data. It indeed happened to Air France flight
447: When the aircraft went into a thunderstorm, all the pitot
tubes iced and produced abnormally low values [4]. One way

to overcome the limitation of this physical redundancy is to
adopt analytical redundancy [5], [6], which is an algebraic
relationship between multiple data streams. Even if all the
sensors of type X fail, we may be able to estimate the true
value of X using a mathematical relationship f with other
sensor streams Y and Z (i.e., X̂ “ fpY, Zq).

We have created a highly declarative programming language
called PILOTS [7], [8]1 that enables error detection and esti-
mation of correct data streams based on analytical redundancy.
PILOTS implements the concept of Dynamic Data-Driven
Application Systems [9], [10], [11], [12]. Data scientists are
able to express their error detection and data estimation models
with the domain specific grammar of PILOTS and test their
models with erroneous data streams. PILOTS has the ability
to express a single model of analytical redundancy, and it
has been successfully applied to aircraft accidents such as Air
France flight 447 [13] and Tuninter flight 1153 [14] where only
one simultaneous sensor type failure was observed. Assuming
there is no error on airspeed, we can recover angle of attack
data from airspeed using an algebraic relationship based on
the lift coefficient equation; however, there is no guarantee
that airspeed is always correct.

In this work, we enhance PILOTS to support multiple
models of analytical redundancy and improve situational
awareness for multiple simultaneous sensor type failures. In
particular, we consider situations where any combinations of
three types of sensors, GPS, pitot-static system, and angle of
attack sensor, can fail. Combining 1) an analytical redundancy
model on ground speed, airspeed, and wind speed, and 2)
another analytical redundancy model on airspeed and angle
of attack, we estimate the true failure modes of sensors
through PILOTS programs. To evaluate the mode estimation
accuracy, we produce test data streams using the X-Plane
flight simulator [15] and simulate multiple sensor type failure
scenarios. The simulation results show that multiple models of
analytical redundancy enable us to detect failure modes that
are not detectable just by using a single model.

The rest of the paper is organized as follows. We first
describe an overview of our PILOTS programming language
and its error detection method in Section II. In Section III,
we show analytical redundancy models on 1) speed data and
2) airspeed and angle of attack data, and show how we

1PILOTS is an open-source software and downloadable at:
http://wcl.cs.rpi.edu/pilots/.



implement these models separately on two PILOTS programs
using existing PILOTS capabilities. In Section IV, we enhance
PILOTS with the support for multiple models of analytical
redundancy and show three PILOTS program options to im-
plement these models. In Section V, we evaluate the proposed
PILOTS programs with multiple sensor type failure scenarios.
We present related work in Section VI and conclude the paper
in Section VII.

II. PILOTS: A PROGRAMMING LANGUAGE FOR
SELF-HEALING DATA STREAMS

PILOTS is a highly-declarative, domain-specific program-
ming language with self-healing capability [7]. It is designed
to be used for data streaming applications in avionics. PILOTS
application programs must contain inputs and outputs sections.
The inputs section specifies the incoming data streams and how
data is to be interpolated and/or extrapolated from incomplete
data, typically using declarative geometric criteria (e.g., clos-
est, interpolate, euclidean keywords). The outputs section spec-
ifies outgoing data streams to be produced by the application,
as a function of the input streams with a given frequency.
errors and signatures sections are optional and can be used to
detect errors. Similar to the outputs section, the errors section
specifies error streams to be produced by the application and
to be analyzed by the runtime system to recognize known
error signatures [13] as described in the signatures section.
If a detected error is recoverable, output values are computed
from corrected input data using estimation formulas under the
estimate clause.

A. Example PILOTS Program

Fig. 1 shows a primitive PILOTS program called Twice. As
its name suggests, it takes two input streams aptq and bptq,
where b is supposed to be twice as large as a. Both a and b are
expected to increase by one for a and two for b every second
(i.e., aptq “ t`k and bptq “ 2t`k, where t is time and k is a
constant). Thus, the error is zero in the Normal mode. Suppose
a is failed and keeps producing the last observed value, the
error keeps increasing with the slope of 2. Similarly, when b
is failed and keeps producing the last observed value, the error
keeps decreasing with the slope of ´2. We can express these
behaviors as error signatures: e “ 2t ` k and e “ ´2t ` k
respectively for A failure and B failure. Once we compute error
in e as specified in the errors section, we compute the relative
distances from e to each signature and estimate the most likely
error mode. Once a mode is determined, the original data is
estimated by the application model as shown in the estimate
clauses: a “ b{2 for A failure and b “ 2a for B failure.

B. Error Detection by Error Signatures

An error signature is a constrained mathematical function
pattern that is used to capture the characteristics of an error
function eptq 2. Looking at the example used in Fig. 1, the
error signature s1: e “ 2t ` k represents a set of all linear

2For the detailed definition, see [7]
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program Twice;
inputs

a (t) using closest(t);
b (t) using closest(t);

outputs
o: (b - 2*a) at every 1 sec;

errors
e: b - 2*a;

signatures
s0: e = 0 "Normal";
s1: e = 2*t + k "A failure"

estimate a = b / 2;
s2: e = -2*t + k "B failure"

estimate b = 2*a;
end

Fig. 1. Twice PILOTS program.

functions with slope of 2. Other examples of error signatures
include:

1) e “ 2t` k, k ă 5,
2) e “ k, 0 ă k, k ă 10.

The first example is a set of all linear functions with slope
of 2 and y-intercept less than 5. The second one represents a
range of constants k P p5, 10q.

Given a vector of error signatures xS0, . . . , Sny, we calcu-
late δipSi, tq, the distance between the measured error function
eptq and each error signature Si by:

δipSi, tq “ min
gptqPSi

ż t

t´ω

|eptq ´ gptq|dt, (1)

where ω is the window size. Note that our convention is
to capture “normal” conditions as signature S0. The smaller
the distance δi, the closer the raw data is to the theoret-
ical signature Si. We define the mode likelihood vector as
Lptq “ xl0ptq, l1ptq, . . . , lnptqy where each liptq is:

liptq “

#

1, if δiptq “ 0
mintδ0ptq,...,δnptqu

δiptq
, otherwise.

(2)

Using the mode likelihood vector, the final mode output is
estimated as follows. Observe that for each li P L, 0 ă li ď 1
where li represents the ratio of the likelihood of signature
Si being matched with respect to the likelihood of the best
signature. Because of the way Lptq is created, the largest
element lj will always be equal to 1. Given a threshold
τ P p0, 1q, we check for one likely candidate lj that is
sufficiently more likely than its successor lk by ensuring that
lk ď τ . Thus, we determine j to be the correct mode by
choosing the most likely error signature Sj . If j “ 0 then the
system is in normal mode. If lk ą τ , then regardless of the
value of k, unknown error mode (´1) is assumed.

III. SELF-HEALING DATA STREAMS WITH SINGLE MODEL
OF ANALYTICAL REDUNDANCY

In this section, we focus on two examples, 1) speed data
and 2) angle of attack data, to illustrate self-healing data
streams with a single analytical redundancy model. For each
example, we first show analytical redundancy that exists in
the data streams, describe how to detect errors under some



assumptions on how sensors fail, and show a PILOTS program
implemented with the analytical redundancy model.

A. Self-Healing Speed Data

1) Analytical Redundancy: We consider a physics-based
relationship that exists between airspeed ~va, ground speed ~vg ,
and wind speed ~vw. The airspeed is the speed of an aircraft
relative to the air mass, and the ground speed is the speed of
an aircraft relative to the ground. When there is wind, the air
mass is affected by the wind, and the ground speed ~vg can
be determined by the vector sum of the airspeed ~va and wind
speed ~vw as follows:

~vg “ ~va ` ~vw. (3)

Using trigonometry, the following relationship on the magni-
tude of ground speed holds:

v̂gp~va, ~vwq “ v̂gpva, αa, vw, αwq

“
a

v2a ` v
2
w ` 2vavw cospαw ´ αaq, (4)

where v̂g is the estimated ground speed computed from
airspeed va and its direction αa, and wind speed vw and its
direction αw. As long as all the speed data are consistent (i.e.,
have no error), the difference between vg and v̂g should be
zero. We define the difference by the following error e1 and
use it to monitor whether speed data are consistent:

e1 “ vg ´ v̂gpva, αa, vw, αwq. (5)

2) Error Detection: The advances of ADS-B [16] has
enabled an aircraft to obtain weather information from nearby
peer aircrafts and also from ground controllers. Given multiple
weather data from different sources, we can eliminate erro-
neous weather data using a simple technique such as majority
vote. Thus, we assume there is no error on wind data and only
consider the following four error modes:

‚ Normal: no error on all data.
‚ Pitot tube failure: error on airspeed va.
‚ GPS failure: error on ground speed vg .
‚ Pitot tube and GPS failures: error on va and vg .

We parameterize how these failures occur as follows:

‚ Wind speed is usually very small compared to airspeed:
vw “ ava, where a is the small wind to airspeed ratio.
This means that ground speed is approximately same as
airspeed: vg « va.

‚ Pitot tube produces airspeed that is proportional to how
much the pitot tube is cleared. Failed airspeed vfaila “ bva,
where b P rbl, bhs, 0 ď bl ď bh ď 1. b “ 0 represents a
fully clogged pitot tube, while b “ 1 represents a fully
clear pitot tube.

‚ When GPS fails, it produces zero ground speed: vfailg “ 0.

To identify the above error modes under the assumptions on
how pitot tube and GPS fail, we have previously designed error
signatures for speed data in [13]. We show them in Table I.

TABLE I
ERROR SIGNATURES FOR SPEED DATA [13].

Mode Error signature
Normal e1 P r´ava, avas

Pitot tube failure e1 P rp1´ a´ bhqva, p1´ |a´ bl|qvas
GPS failure e1 P r´pa` 1qva,´|a´ 1|vas

Pitot and GPS failures e1 P r´pa` bhqva,´|a´ bl|vas

3) Error Recovery: In case of the GPS failure mode, we can
estimate ground speed by Eq. 4. In case of the Pitot tube failure
mode, we can estimate airspeed by the following equation:

v̂ap~vg, ~vwq “
b

v2g ` v
2
w ´ 2vgvw cospαg ´ αwq. (6)

If the Pitot and GPS failures mode is detected, we cannot
recover either ground speed or airspeed as we do not have
enough redundancy between speed data.

4) PILOTS Program: In SpeedCheck program in Fig. 2,
the error signatures defined in Table I are translated into code
under the signatures section. Note that we plug in va “ 110
knots (denoted V CRUISE in the program), a “ 0.1, bl “
0.2, and bh “ 0.33 when translating the signatures into the
program. In case of the pitot tube failure or GPS failure, we
estimate the true airspeed or ground speed using Eqs. (6) or (4)
as shown under the estimate clauses. The mode variable in the
outputs section is reserved to store the estimated mode.
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program SpeedCheck;
/* va: airspeed, aa: airspeed angle,

vw: wind speed, aw: wind speed angle,
vg: ground speed, ag: ground angle */

inputs
va, vg, vw (t) using closest(t);
aa, ag, aw (t) using closest(t);

constants /* For Cessna 172 SP */
V_CRUISE = 110;
NORMAL_L = -0.1 * V_CRUISE;
NORMAL_H = 0.1 * V_CRUISE;
PITOT_L = 0.57 * V_CRUISE;
PITOT_H = 0.9 * V_CRUISE;
GPS_L = -1.1 * V_CRUISE;
GPS_H = -0.9 * V_CRUISE;
GPS_PITOT_L = -0.43 * V_CRUISE;
GPS_PITOT_H = -0.1 * V_CRUISE;

outputs
va, vg, mode at every 1 sec;

errors
e1: vg - sqrt(vaˆ2 + vwˆ2 +

2*va*vw*cos((PI/180)*(aw-aa)));
signatures
s0: e1 = k, NORMAL_L < k, k < NORMAL_H "Normal";
s1: e1 = k, PITOT_L < k, k < PITOT_H
"Pitot tube failure"
estimate va = sqrt(vgˆ2 + vwˆ2 -
2*vg*vw*cos((PI/180)*(ag-aw)));

s2: e1 = k, GPS_L < k, k < GPS_H "GPS failure"
estimate vg = sqrt(vaˆ2 + vwˆ2 +
2*va*vw*cos((PI/180)*(aw-aa)));

s3: e1 = k, GPS_PITOT_L < k, k < GPS_PITOT_H
"GPS + Pitot tube failure";

end;

Fig. 2. SpeedCheck PILOTS program.



B. Self-Healing Angle of Attack Data

1) Analytical Redundancy: The lift force L is defined as

L “ C`
ρv2a
2
S, (7)

where C` is the lift coefficient, ρ is the air density, va is the
airspeed, and S is the wing surface area. Solving Eq. (7) for
va, we get

va “

d

2L

C` ¨ ρS
. (8)

Using the fact that C` can also be modeled as a function of
angle of attack α, we define analytical redundancy between
airspeed va and angle of attack α. Depending on to what extent
we use a data-driven approach, we consider the following three
models.
Model 1 Thin air foil theory: According to the thin airfoil
theory [17], coefficient of lift is linearly approximated by C` “
2πα ` c`0 , where c`0 is the lift coefficient solely determined
by the shape of the wing when α “ 0. By plugging in this
formula to Eq. (8), Model 1 is defined as

v̂apαq “

d

2L

p2πα` c`0qρS
. (9)

Model 2 Linear least square approximation of coefficient of
lift: The coefficient of lift C` can be approximated by a linear
function of angle of attack α until α hits the stall angle. After
learning a linear function by minimizing square error with
respect to training samples of coefficient of lift, Model 2 is
defined as

v̂apαq “

d

2L

pk1α` k2qρS
, (10)

where k1 and k2 are constants obtained as the result of linear
least square.
Model 3 Non-linear least square approximation of airspeed:
Given a set of training data for airspeed va and angle of attack
α, we can directly approximate the relationship between va
and α. Keeping the general form of Eq. (8), Model 3 is defined
as

v̂apαq “

c

k1
k2α` k3

, (11)

where k1, k2, and k3 are constants obtained as the result of
non-linear least square approximation.

We define error e2 as the difference between the monitored
airspeed va and the airspeed estimated from angle of attack
v̂apαq as follows.

e2pαq “ va ´ v̂apαq. (12)

2) Error Detection & Recovery: To detect errors on angle
of attack, we check whether e2 is within a certain range
rrl, rhs. Assuming there is no error on airspeed, if e2 is out
of this range, we detect it as an error on angle of attack.
When we estimate the true angle of attack value, we use
analytical redundancy between airspeed and angle of attack.

For example, we can derive the estimated true value of angle
of attack α̂ for Model 1 as follows:

α̂pvaq “
L

πρv2aS
´
c`0
2π
. (13)

3) PILOTS Program: In AoaCheck program in Fig. 3, we
check if the computed error e2 is within ˘10% of the cruise
airspeed. If the error is outside the range, we estimate the true
angle of attack using Eq. (13) as shown under the estimate
clause.'
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program AoaCheck;
/* va: airspeed, aoa: angle of attack */
inputs
va, aoa (t) using closest(t);

constants /* For Cessna 172 SP */
MPS2KNOT = 1.94384;
G = 9.81;
L = 1156.6 * G;
RHO = 16.2;
S = 1.225;
CL0 = 0.2279;
V_CRUISE = 110;
NORMAL_L = -0.10 * V_CRUISE;
NORMAL_H = 0.10 * V_CRUISE;

outputs
va, aoa, mode at every 1 sec;

errors
e2: va - MPS2KNOT*

sqrt(2*L/(2*PI*(PI/180)*aoa + CL0)*S*RHO);
signatures
s0: e2 = k, NORMAL_L < k, k < NORMAL_H "Normal";
s1: e2 = k, k < NORMAL_L, NORMAL_H < k
"AoA sensor failure"
estimate aoa = L/(PI*RHO*vaˆ2*S) - CL0/(2*PI);

end;

Fig. 3. AoaCheck PILOTS program for Model 1.

IV. SELF-HEALING DATA STREAMS WITH MULTIPLE
MODELS OF ANALYTICAL REDUNDANCY

The AoaCheck program presented in Section III assumes
airspeed is always correct. However, pitot tube sensor failures
can occur at any time, and thus estimated modes from the
AoaCheck program are not totally reliable. In this section,
we enhance PILOTS to support multiple models of analytical
redundancy, aiming to improve situational awareness upon
failures of sensors of multiple types. Here is a summary of
the new features for the PILOTS programming language to
support multiple models of analytical redundancy.

‚ Support for multiple error values (i.e., analytical redun-
dancy models) under the errors section

‚ Enhancement of the modes section to support general
boolean expressions3

‚ Scoped naming for output variables from child programs
(e.g., variable x from program A can be referred to as A.x
in the parent program)

‚ Reserved mode variable to store the estimated mode

3The modes section was first introduced in [8].



A. Error Detection

Fig. 4 shows the relationship between the two error func-
tions, e1 and e2, which we have shown in Eqs. (5) and (12),
respectively. We expect one or more sensors of the GPS, pitot
tube, and angle of attack sensor fail at any time whereas we
assume other speed data vw, αa, αw do not fail. Since va is

Speed data (do not fail)

Angle of attack

Pitot tube

GPS

Fig. 4. Relationship between two error functions.

used by both error functions, when a pitot tube failure occurs,
both e1 and e2 are expected to be non-zero. On the other hand,
when a pitot tube failure does not occur, e2 solely depends on
α, and it allows us to determine whether there is an error on
α. This is an improvement over using the single AoaCheck
program, which makes mode detection decisions without the
ability to know whether the pitot tube may have failed.

The ground truth modes and corresponding detectable
modes by the SpeedCheck and AoaCheck programs are sum-
marized in Table II. When there is no error on the pitot tube,
the associated ground truth modes, 0, 1, 4, and 5, are uniquely
identifiable by the combination of SpeedCheck and AoaCheck
modes, p0, 0q, p0, 1q, p2, 0q, and p2, 1q. However, when there is
an error on the pitot tube, modes 2 and 3 are not separable
by SpeedCheck and AoaCheck. That is because depending on
the value of e2 used in AoaCheck, SpeedCheck and AoaCheck
can produce the same combination of modes p1, 1q for both
modes 2 and 3. For the same reason, modes 6 and 7 are not
separable too.

TABLE II
GROUND TRUTH MODES FOR GPS, PITOT TUBE, AND ANGLE OF ATTACK

(AOA) SENSORS (0: NOT FAILED, 1: FAILED) AND RESPECTIVE
DETECTABLE MODES BY SpeedCheck AND AoaCheck PROGRAMS.

Ground truth Detectable modes
Mode GPS Pitot tube AoA SpeedCheck AoaCheck

0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 1 1
3 0 1 1 1 0,1,-1
4 1 0 0 2 0
5 1 0 1 2 1
6 1 1 0 3 1
7 1 1 1 3 0,1,-1

B. PILOTS Program Options

Using the approach described in Section IV-A, we imple-
ment PILOTS programs to detect one or more combination
of GPS, pitot tube, and angle of attack sensor failures. We
consider three implementation options as shown in Fig. 5.

AoaSpeedCheck1 directly receives all the input data and detects
error modes by computing e1 and e2 internally. AoaSpeed-
Check2 detects error modes based on the outputs from Speed-
Check and AoaCheck. AoaSpeedCheck3 detects error modes
based on the outputs from SpeedCheck and angle of attack
data.

Speed
Check

Aoa
Check

AoaSpeedCheck3

AoaSpeedCheck2

AoaSpeedCheck1

Speed data

Angle of attack

Fig. 5. Options for PILOTS programs to detect one or more combination of
GPS, pitot tube, and angle of attack sensor failures.

Table III shows the detectable modes by the three AoaSpeed-
Check programs. The meaning of modes 0-5 are the same as
ground truth modes in Table II. Unlike AoaSpeedCheck1 and
AoaSpeedCheck2, AoaSpeedCheck3 can detect modes 2 and
3 due to its sequential approach, which will be explained in
Section IV-B3. Since none of the three programs can detect
modes 6 and 7, they are not shown in Table III. The ’?’ mark
used in modes 8-13 denotes unknown failure state: We do not
know if the corresponding sensor has failed or not. Due to
the reasons described in Section IV-A, in some cases PILOTS
programs cannot determine the state of sensors, with only two
redundancy models.

TABLE III
DETECTABLE MODES BY AoaSpeedCheck PROGRAMS

(0: NOT FAILED, 1: FAILED, ?: UNKNOWN).

Mode GPS Pitot tube AoA
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
8 0 0 ?
9 0 1 ?
10 1 0 ?
11 1 1 ?
12 ? ? 0
13 ? ? 1

1) AoaSpeedCheck1: Fig. 6 shows the AoaSpeedCheck1
PILOTS program. Under the modes section, there are multiple
conditions to detect error modes. Unlike the signature section
we have used in SpeedCheck and AoaCheck, it behaves like
a switch-case statement: Conditions are evaluated one by one
from the top (i.e., m0), and as soon as a condition is satisfied,
its associated mode is chosen. When the mode is chosen, the
integer part of mode identifier is set in the reserved mode
variable (e.g., if m9 is chosen, 9 is set in mode). If none
of the conditions are satisfied, unknown (-1) is set in the
mode variable. These conditions under the mode section are



a product of the conditions used in SpeedCheck with e1 and
AoaCheck with e2 except for m9 and m11, where we do not
need to check e2 since a pitot tube failure is already estimated
with e1.'
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program AoaSpeedCheck1;
inputs
va, vg, vw, aa, ag, aw, aoa (t) using closest(t);

constants
V_CRUISE = 110;
SPEED_NORMAL_L = -0.1 * V_CRUISE;
SPEED_NORMAL_H = 0.33 * V_CRUISE;
SPEED_PITOT_L = 0.34 * V_CRUISE;
SPEED_PITOT_H = 16.10 * V_CRUISE;
SPEED_GPS_L = -13.83 * V_CRUISE;
SPEED_GPS_H = -0.67 * V_CRUISE;
SPEED_GPS_PITOT_L = -0.66 * V_CRUISE;
SPEED_GPS_PITOT_H = -0.1 * V_CRUISE;
AOA_NORMAL = 0.10 * V_CRUISE;

outputs
va, vg, aoa, mode at every 1 sec;

errors
e1: vg - sqrt(vaˆ2 + vwˆ2 +

2*va*vw*cos((PI/180)*(aw-aa)));
e2: va -

MPS2KNOT*sqrt(2*L/(2*PI*aoa + CL0)*S*RHO);
modes

m0: SPEED_NORMAL_L < e1 and e1 < SPEED_NORMAL_H
and abs(e2) < AOA_NORMAL "Normal";

m1: SPEED_NORMAL_L < e1 and e1 < SPEED_NORMAL_H
and AOA_NORMAL <= abs(e2) "AoA sensor failure"
estimate aoa = L/(PI*RHO*vaˆ2*S) - CL0/(2*PI);

m9: SPEED_PITOT_L < e1 and e1 < SPEED_PITOT_H
"Pitot tube + (AoA sensor) failure"
estimate va = sqrt(vgˆ2 + vwˆ2 -
2*vg*vw*cos((PI/180)*(ag-aw)))

estimate aoa = L/(PI*RHO*vaˆ2*S) - CL0/(2*PI);
m4: SPEED_GPS_L < e1 and e1 < SPEED_GPS_H
and abs(e2) < AOA_NORMAL "GPS failure"
estimate vg = sqrt(vaˆ2 + vwˆ2 +
2*va*vw*cos((PI/180)*(aw-aa)));

m5: SPEED_GPS_L < e1 and e1 < SPEED_GPS_H
and AOA_NORMAL <= abs(e2)
"GPS failure + AoA sensor failure"
estimate vg = sqrt(vaˆ2 + vwˆ2 +
2*va*vw*cos((PI/180)*(aw-aa)))

estimate aoa = L/(PI*RHO*vaˆ2*S) - CL0/(2*PI);
m11: SPEED_GPS_PITOT_L < e1

and e1 < SPEED_GPS_PITOT_H
"GPS + Pitot tube + (AoA sensor) failure";

end;

Fig. 6. AoaSpeedCheck1 PILOTS program.

The threshold values for speed data used in AoaSpeed-
Check1 are different from the values used in SpeedCheck. This
is due to the following reasons. Even if the value of error is out
of range of defined error signatures, the error signature-based
mode estimation method in Section II-B chooses the closest
error signature and its associated mode. The final estimated
mode depends on the τ parameter: We choose the most
closest signature only if the likelihood of the second closest
signature is greater than τ . Unlike the signature-based mode
estimation, the mode estimation introduced in this section is
purely based on boolean expressions. Thus, if we directly
apply the threshold values for SpeedCheck defined in Table I to
the boolean expressions in AoaSpeecCheck1, we are expected
to end up with many unknown modes. To adjust the difference
between the two mode estimation methods, we expand the
threshold values defined for SpeedCheck. Fig. 7 shows the
boundaries of two error signatures Si and Sj . We consider a

case where error e is between the two error signatures, and let
bi and bj be the closer boundaries of the two error signatures
to e. The distances from e to Si and Sj are δi “ e ´ bi
and δj “ bj ´ e. When δi ă δj , the mode estimation
method chooses mode i if the following condition is met:
lj “

δi
δj
“ e´bi

bj´e
ă τ . Solving this inequality for e, we get

e ă
bi ` τbj
1` τ

. (14)

Since bi ă bj , the RHS of (14) is greater than bi, and thus τ
effectively expands the mode estimation boundary of signature
Si. Similarly, when δi ą δj ,

bj`τbi
1`τ ă e gives us the expanded

boundary for signature Sj . Applying these boundary expansion
operations to the error signatures in Fig. 2 with τ “ 0.95,
we obtain threshold values for AoaSpeedCheck1 as shown in
Fig. 6.

error

Signature Signature

Fig. 7. Boundaries of two error signatures Si and Sj .

2) AoaSpeedCheck2: Fig. 8 shows the AoaSpeedCheck2 PI-
LOTS program. This program makes mode decisions based on
the estimated modes received from SpeedCheck and AoaCheck.
The received modes are referred to as SpeedCheck.mode and
AoaCheck.mode for the SpeedCheck and AoaCheck programs,
respectively. Compared to AoaSpeedCheck1, modes 8, 10, 12,
and 13 are newly created to handle an unknown mode (-1)
sent from both child programs.

3) AoaSpeedCheck3: Fig. 9 shows the AoaSpeedCheck3
PILOTS program. This program takes an estimated mode
in SpeedCheck.mode, airspeed in SpeedCheck.va, and ground
speed in SpeedCheck.vg from the SpeedCheck program, and
makes mode decisions with the value of e2 computed from
angle of attack data. This program is superior compared
to AoaSpeedCheck1 and AoaSpeedCheck2 in terms of mode
separation ability for modes 2 and 3. When a pitot tube failure
is detected (i.e., SpeedCheck.mode = 0), we can assume Speed-
Check already estimated a correct value in SpeedCheck.va. That
allows us to compute e2 with the correct value of airspeed,
and thus we can separate modes 2 and 3. For the ground truth
modes 6 and 7 when both GPS and pitot tube failure have
occurred, SpeedCheck cannot estimate a correct airspeed value.
Thus, we cannot separate these two modes and can only detect
mode 11 same as AoaSpeedCheck1 and AoaSpeedCheck2.

V. EVALUATION

We evaluate the AoaSpeedCheck programs that we have
proposed in Section IV with test data streams produced with
the X-Plane flight simulator [15]. We first describe the experi-
mental settings, then compare the three redundancy models for
angle of attack, and finally compare the three AoaSpeedCheck
programs using the best performing angle of attack model.
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program AoaSpeedCheck2;
inputs
SpeedCheck.va, SpeedCheck.vg, SpeedCheck.mode,
AoaCheck.aoa, AoaCheck.mode (t) using closest(t);

outputs
SpeedCheck.va, SpeedCheck.vg, aoa, mode

at every 1 sec;
modes
m0: SpeedCheck.mode == 0 and AoaCheck.mode == 0

"Normal";
m1: SpeedCheck.mode == 0 and AoaCheck.mode == 1

"AoA sensor failure";
m8: SpeedCheck.mode == 0 and AoaCheck.mode == -1

"(AoA sensor) failure"
estimate AoaCheck.aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m9: SpeedCheck.mode == 1
"Pitot tube + (AoA sensor) failure"
estimate AoaCheck.aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m4: SpeedCheck.mode == 2 and AoaCheck.mode == 0
"GPS failure";

m5: SpeedCheck.mode == 2 and AoaCheck.mode == 1
"GPS + AoA sensor failure";

m10: SpeedCheck.mode == 2 and AoaCheck.mode == -1
"GPS + (AoA sensor) failure"
estimate AoaCheck.aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m11: SpeedCheck.mode == 3
"GPS + Pitot tube + (AoA sensor) failure";

m12: SpeedCheck.mode == -1 and AoaCheck.mode == 0
"(GPS) failure";

m13: SpeedCheck.mode == -1 and AoaCheck.mode == 1
"Unknown failure";

end;

Fig. 8. AoaSpeedCheck2 PILOTS program.

A. Experimental Settings

1) Test Data: Fig. 10 shows the test data streams. Test
data streams were produced by a pilot using the X-Plane
flight simulator with the Cessna 172 SP aircraft. We started
capturing the data 160 seconds after the take-off and recorded
ground speed, airspeed, and angle of attack for 240 seconds as
drawn by solid lines in Fig. 10(a), Fig. 10(b), and Fig. 10(c),
respectively.

To test the combinations of multiple sensor type failures,
we artificially added data errors according to the ground truth
modes that we defined in Fig. 10(d). These ground truth modes
created sensor failures as shown in Table II. Data streams after
failures are shown in dotted lines in Figs. 10(a)-(c). For GPS
and pitot tube failures, we followed the assumptions that we
made in Section III-A when we designed error signatures for
speed data: For GPS failures, we dropped the ground speed to
zero, whereas failed airspeed values kept 20% to 33% of their
original values. For angle of attack sensor failures, we shifted
the true angle of attack value αptq by a parameter δ ą 0 as
shown in Fig. 10(c).

2) Evaluation Metrics: We evaluate the mode estimation
with the following two types of mode estimation accuracy
metrics.
‚ Complete-match mode estimation accuracy: This metric

quantifies how accurately the estimated modes estimate
the ground truth modes. We call this metric complete-
match since we do not reward modes unless their asso-
ciated sensor failure states are completely matched. Let
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program AoaSpeedCheck3;
inputs
aoa,
SpeedCheck.va, SpeedCheck.vg, SpeedCheck.mode (t)
using closest(t);

constants
V_CRUISE = 110;
AOA_NORMAL = 0.10 * V_CRUISE;

outputs
SpeedCheck.va, SpeedCheck.vg, aoa, mode
at every 1 sec;

errors
e2: SpeedCheck.va -

MPS2KNOT*sqrt(2*L/(2*PI*aoa + CL0)*S*RHO);
modes
m0: SpeedCheck.mode == 0 and abs(e2) < AOA_NORMAL
"Normal";

m1: SpeedCheck.mode == 0 and abs(e2) >= AOA_NORMAL
"AoA sensor failure"
estimate aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m2: SpeedCheck.mode == 1 and abs(e2) < AOA_NORMAL
"Pitot tube failure";

m3: SpeedCheck.mode == 1 and abs(e2) >= AOA_NORMAL
"Pitot tube + AoA sensor failure"
estimate aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m4: SpeedCheck.mode == 2 and abs(e2) < AOA_NORMAL
"GPS failure";

m5: SpeedCheck.mode == 2 and abs(e2) >= AOA_NORMAL
"GPS + AoA sensor failure"
estimate aoa
= L/(PI*RHO*SpeedCheck.vaˆ2*S) - CL0/(2*PI);

m11: SpeedCheck.mode == 3
"GPS + Pitot tube (+ AoA sensor) failure";

m12: SpeedCheck.mode == -1 and abs(e2) < AOA_NORMAL
"(GPS) failure";

m13: SpeedCheck.mode == -1 and abs(e2) >= AOA_NORMAL
"Unknown failure";

end;

Fig. 9. AoaSpeedCheck3 PILOTS program with Model 1.

µ̂ptq and µptq be the estimated and ground truth modes for
time t, respectively, the complete-match mode estimation
accuracy [%] is defined by:

100

T

T
ÿ

t“1

I rµ̂ptq “ µptqs , (15)

where Ir¨s is the indicator function that returns 1 if the
argument is true and 0 otherwise and T is the total
evaluation period in seconds (i.e., T “ 240).

‚ Partial-match mode estimation accuracy: As shown in
Table III, AoaSpeedCheck programs are aware of sen-
sor failure states through mode estimation. Unlike the
complete-match mode estimation accuracy in Eq. (15)
requires all the sensor failure states to be equal for each
mode, this metric is designed to reward partial failure
state matches. For example, when the estimated mode is
9 and the ground truth mode is 2, their sensor failure
states are r0, 1, ?s and r0, 1, 0s as defined in Table III,
respectively. We reward 2/3 points in this case since the
sensor state estimation is correct for the first two. Let
sipµq be the i-th sensor failure state selector function for
a mode µ, the partial-match mode accuracy [%] is defined
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by:
100

T

T
ÿ

t“1

1

S

S
ÿ

i“1

I rsipµ̂ptqq “ sipµptqqs , (16)

where S is the total number of sensor types (i.e., S “ 3
for GPS, pitot tube, and angle of attack).

B. Angle of Attack Failure Detection

We compare prediction accuracy of the AoaCheck program
with the three redundancy models we developed in Eqs. (9)-
(11). First, we trained Models 2 and 3 with a training data set
that was recorded from a separate simulation flight with X-
Plane. After training, we obtained k1 “ 0.0694, k2 “ 0.3396
for Model 2, and k1 “ 2.900, k2 “ 0.0002, k3 “ 0.0011 for
Model 3. Fig. 11 shows a comparison of the three models after
training and the monitored (training) data in dots. Fig. 11(a)
shows estimated coefficient of lift using Models 1 and 2, and
Fig. 11(b) shows estimated airspeed using Models 1-3. From
Fig. 11(a), the linear model of Model 2 fits well with the
monitored data; however, we see that the slope of Model 1
(0.1097) is larger than the slope of Model 2 (0.0694), and it
makes Model 1 diverge from Model 2 as α increases. From
Fig. 11(b), we notice that the difference in coefficient of lift
between Model 1 and the other two models is magnified in the
airspeed as the angle of attack approaches zero. Model 2 is
slightly shifted upwards from Model 3, which closely follows
the monitored data.

We evaluate AoaCheck with Models 1-3 with δ “

t5, 10, 20, 40u to see the relationship between the model accu-
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Fig. 11. Comparison of three airspeed models.

racy and the magnitude of error on angle of attack data. When
we tested the AoaCheck program, we used the periods where
there were no errors on airspeed in test data: 0-60s and 120-
180s in Fig. 10. Fig. 12 shows the results of mode estimation
accuracy for the three models. Model 3 is so accurate that it
can pick up even a δ “ 5 degrees difference on angle of attack
data with almost 100% accuracy, whereas Models 1 and 2 can
barely detect error modes. Once δ gets to 20 degrees, Model 2
detects correct error modes almost 100% and Model 1 reaches
80% of mode estimation accuracy.
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Fig. 12. Comparison of mode estimation accuracy for the AoaCheck PILOTS
program with Models 1-3.

C. Multiple Sensor Type Failure Detection

Using Model 3 and δ “ 20 for the angle of attack test
data, we compare mode estimation accuracy between the three
AoaSpeedCheck programs. Figs. 13(a) and (b) show the mode
estimation results produced by the SpeedCheck and AoaCheck
programs, respectively. SpeedCheck correctly identified four
modes (i.e., 0: Normal, 1: Pitot tube failure, 2: GPS failure,
and 3: Pitot tube and GPS failures). During the pitot tube
failure periods, 60-120s and 180-240s, AoaCheck was not able
to produce the correct modes due to its inability to recognize
pitot tube failures. The zigzagging error modes during 90-120s
and 210-240s were generated because the values of e2 were
around the border between normal and angle of attack sensor
failure threshold values.

Figs. 14(a)-(c) show the mode estimation results produced
by the AoaSpeedCheck1, AoaSpeedCheck2, and AoaSpeed-
Check3, respectively. Fig. 15 shows the mode estimation
results for the three AoaSpeedCheck programs. Both AoaSpeed-
Check1 and AoaSpeedCheck2 managed to generate the same
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Fig. 13. Mode estimation results for SpeedCheck and AoaCheck programs.

mode estimation sequences, and we obtained the same mode
estimation accuracy metrics: 50% for complete-match and
82% for partial-match. They both failed to correctly identify
modes 2 and 3 during 60-120s and also modes 6 and 7
during 180-240s when the pitot tube sensor failure occured.
On the other hand, AoaSpeedCheck3 correctly estimated modes
2 and 3 during 60-120s since it could identify the angle of
attack sensor failure using corrected airspeed data provided
by SpeedCheck. That led to a significant improvement on
the mode estimation accuracy. For AoaSpeedCheck3, mode
estimation accuracy metrics reached 75% for complete-match
and 92% for partial-match. Since AoaSpeedCheck1 computes
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Fig. 14. Mode estimation results for AoaSpeedCheck programs.

e2 internally, we have the same zigzag patterns observed in
AoaCheck for 90-120s. For AoaSpeedCheck2, the same patterns
were propagated for 90-120s through the estimated mode from
AoaCheck.

Fig. 16 shows estimated data streams produced by
AoaSpeedCheck3. Using the redundancy between data streams,
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Fig. 15. Comparison of mode estimation accuracy for AoaSpeedCheck
PILOTS programs.

AoaSpeedCheck3 was able to recover from sensor failures
except for the period where both GPS and airspeed failed
simultaneously (i.e., 180-240s). Mean absolute error values
between the original and estimated data streams up to 180s
are 1.84 knots for ground speed, 2.53 knots for airspeed, and
0.21 degrees for angle of attack.
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Fig. 16. Data streams estimated by AoaSpeedCheck3 with Model 3 (δ “ 20).

VI. RELATED WORK

Fault detection, isolation, and reconfiguration (FDIR) has
a long history of research in the control systems commu-
nity [18]. Mission critical systems, such as nuclear power
plants, flight control systems, and automotive systems, are
main application systems of FDIR. FDIR systems 1) generate
a set of values called residuals using analytical redundancy [5],
[6] between sensor data and determine if a fault has occurred
based on residuals, 2) identify the type of the fault, and 3)
reconfigure the system accordingly. Commonly, the residual
is a difference between a measured value and an estimated
value (i.e., error). PILOTS has a resemblance to FDIR systems:
Error functions in PILOTS are equivalent to residuals in
FDIR, error mode detection based on the likelihood vector
in PILOTS is analogous to fault type identification in FDIR,



and data correction in PILOTS is a type of reconfiguration in
FDIR. However, due to PILOTS’ focus on domain-specific
programming language approach, it allows users to isolate
error conditions more generally through error signatures.

The angle of attack sensor is one of the important instru-
ments to ensure flight safety and has been widely studied.
Ossmann and Joos proposed a mechanism to detect and
isolate erroneous angle of attack sensors using a combination
of signal-based and model-based components [3]. While the
signal-based component uses discrete Fourier transformation
to detect unwanted oscillation in the signals, the model-
based component uses a linear filter to generate a residual
signal. Hardier et al. presented a method to estimate both
angle of attack and airspeed simultaneously from aerodynamic
coefficients [19]. They trained a neural network to learn a non-
linear relationship between multiple variables and used it to
estimate angle of attack and airspeed data. Both techniques are
mathematically more complicated than the approach we take
in this work; however, with the right level of abstraction, it is
possible for PILOTS to accurately isolate sensor failures and
estimate sensor values from redundant data streams for safer
more robust flight systems.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented enhancements to PILOTS
to support multiple models of analytical redundancy and im-
proved situational awareness for multiple simultaneous sensor
type failures. In particular, we assume a situation where
any combinations of three types of sensors, GPS, pitot tube,
and angle of attack, can fail. Combining 1) an analytical
redundancy model on airspeed, ground speed, and wind speed,
and 2) another analytical redundancy model on airspeed and
angle of attack, we estimated the true failure modes of sensors
through PILOTS programs. To evaluate the mode estimation
accuracy, we produced test data streams using the X-Plane
flight simulator and simulated multiple sensor type failure
scenarios. The simulation results show that multiple models
of analytical redundancy enable us to detect failure modes
that are not detectable just by using a single model.

As the number of sensors in aircraft increases, we need
to discover failure models and also execute mode estimation
process in a scalable manner. It is also important to pursuit
high-level abstractions that will enable data scientists to more
easily develop fault-tolerant applications for a massive number
of sensor data streams. Currently no semantics is defined
for the PILOTS programming language. Defining denotational
semantics for PILOTS is a future research direction toward
formally verifiable flight safety. Finally, uncertainty quantifi-
cation [10] is another important future direction to associate
confidence to mode estimation in support of decision making.
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